1
|
Cai B, Krusemark CJ. Multiplexed Small‐Molecule‐Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
2
|
Cai B, Krusemark CJ. Multiplexed Small-Molecule-Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis. Angew Chem Int Ed Engl 2022; 61:e202113515. [PMID: 34758183 PMCID: PMC8748404 DOI: 10.1002/anie.202113515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Indexed: 01/19/2023]
Abstract
Small-molecule binding assays to target proteins are a core component of drug discovery and development. While a number of assay formats are available, significant drawbacks still remain in cost, sensitivity, and throughput. To improve assays by capitalizing on the power of DNA sequence analysis, we have developed an assay method that combines DNA encoding with split-and-pool sample handling. The approach involves affinity labeling of DNA-linked ligands to a protein target. Critically, the labeling event assesses ligand binding and enables subsequent pooling of several samples. Application of a purifying selection on the pool for protein-labeled DNAs allows detection of ligand binding by quantification of DNA barcodes. We demonstrate the approach in both ligand displacement and direct binding formats and demonstrate its utility in determination of relative ligand affinity, profiling ligand specificity, and high-throughput small-molecule screening.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Zheng F, Meng T, Jiang D, Sun J, Yao H, Zhu J, Min Q. Nanomediator–Effector Cascade Systems for Amplified Protein Kinase Activity Imaging and Phosphorylation‐Induced Drug Release In Vivo. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fenfen Zheng
- State Key Laboratory of Analytical Chemistry for life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- School of Environmental & Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Tiantian Meng
- State Key Laboratory of Analytical Chemistry for life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Difei Jiang
- School of Environmental & Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jiamin Sun
- School of Environmental & Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Haiyang Yao
- School of Environmental & Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jun‐Jie Zhu
- State Key Laboratory of Analytical Chemistry for life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for life Science Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
4
|
Zheng F, Meng T, Jiang D, Sun J, Yao H, Zhu JJ, Min Q. Nanomediator-Effector Cascade Systems for Amplified Protein Kinase Activity Imaging and Phosphorylation-Induced Drug Release In Vivo. Angew Chem Int Ed Engl 2021; 60:21565-21574. [PMID: 34322988 DOI: 10.1002/anie.202109108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/06/2022]
Abstract
Protein kinases constitute a rich pool of biomarkers and therapeutic targets of tremendous diseases including cancer. However, sensing kinase activity in vivo while implementing treatments according to kinase hyperactivation remains challenging. Herein, we present a nanomediator-effector cascade system that can in situ magnify the subtle events of kinase-catalyzed phosphorylation via DNA amplification machinery to achieve kinase activity imaging and kinase-responsive drug release in vivo. In this cascade, the phosphorylation-mediated disassembly of DNA/peptide complex on the nanomediators initiated the detachment of fluorescent hairpin DNAs from the nanoeffectors via hybridization chain reaction (HCR), leading to fluorescence recovery and therapeutic cargo release. We demonstrated that this nanosystem simultaneously enabled trace protein kinase A (PKA) activity imaging and on-demand drug delivery for inhibition of tumor cell growth both in vitro and in vivo, affording a kinase-specific sense-and-treat paradigm for cancer theranostics.
Collapse
Affiliation(s)
- Fenfen Zheng
- State Key Laboratory of Analytical Chemistry for life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Tiantian Meng
- State Key Laboratory of Analytical Chemistry for life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Difei Jiang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Jiamin Sun
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Haiyang Yao
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Cavett V, Paegel BM. Multiplexed Enzyme Activity-Based Probe Display via Hybridization. ACS COMBINATORIAL SCIENCE 2020; 22:579-585. [PMID: 32803953 DOI: 10.1021/acscombsci.0c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Emulsions offer the means to miniaturize and parallelize high-throughput screening but require a robust method to localize activity-based fluorescent probes in each droplet. Multiplexing probes in droplets is impractical, though highly desirable for identifying library members that possess very specific activity. Here, we present multiplexed probe immobilization on library beads for emulsion screening. During library bead preparation, we quantitated ∼106 primers per bead by fluorescence in situ hybridization, however emulsion PCR yielded only ∼103 gene copies per bead. We leveraged the unextended bead-bound primers to hybridize complementary probe-oligonucleotide heteroconjugates to the library beads. The probe-hybridized bead libraries were then used to program emulsion in vitro transcription/translation reactions and analyzed by FACS to perform multiplexed activity-based screening of trypsin and chymotrypsin mutant libraries for novel proteolytic specificity. The approach's modularity should permit a high degree of probe multiplexing and appears extensible to other enzyme classes and library types.
Collapse
Affiliation(s)
- Valerie Cavett
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Brian M. Paegel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
- Departments of Chemistry & Biomedical Engineering, University of California, Irvine, California 92617, United States
| |
Collapse
|
6
|
Li Y, Zimmermann G, Scheuermann J, Neri D. Quantitative PCR is a Valuable Tool to Monitor the Performance of DNA-Encoded Chemical Library Selections. Chembiochem 2017; 18:848-852. [PMID: 28220596 PMCID: PMC5606288 DOI: 10.1002/cbic.201600626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 01/25/2023]
Abstract
Phage-display libraries and DNA-encoded chemical libraries (DECLs) represent useful tools for the isolation of specific binding molecules from large combinatorial sets of compounds. With both methods, specific binders are recovered at the end of affinity capture procedures by using target proteins of interest immobilized on a solid support. However, although the efficiency of phage-display selections is routinely quantified by counting the phage titer before and after the affinity capture step, no similar quantification procedures have been reported for the characterization of DECL selections. In this article, we describe the potential and limitations of quantitative PCR (qPCR) methods for the evaluation of selection efficiency by using a combinatorial chemical library with more than 35 million compounds. In the experimental conditions chosen for the selections, a quantification of DNA input/recovery over five orders of magnitude could be performed, revealing a successful enrichment of abundant binders, which could be confirmed by DNA sequencing. qPCR provided rapid information about the performance of selections, thus facilitating the optimization of experimental conditions.
Collapse
Affiliation(s)
- Yizhou Li
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| | - Gunther Zimmermann
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| |
Collapse
|
7
|
Yuen LH, Franzini RM. Achievements, Challenges, and Opportunities in DNA-Encoded Library Research: An Academic Point of View. Chembiochem 2017; 18:829-836. [DOI: 10.1002/cbic.201600567] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| | - Raphael M. Franzini
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| |
Collapse
|