1
|
Giri R, Mosiagin I, Franzoni I, Nötel NY, Patra S, Katayev D. Photoredox Activation of Anhydrides for the Solvent-Controlled Switchable Synthesis of gem-Difluoro Compounds. Angew Chem Int Ed Engl 2022; 61:e202209143. [PMID: 35997088 PMCID: PMC9826529 DOI: 10.1002/anie.202209143] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
The incorporation of the gem-difluoromethylene (CF2 ) group into organic frameworks is highly sought due to the influence of this unit on the physicochemical and pharmacological properties of molecules. Herein we report an operationally simple, mild, and switchable protocol to access various gem-difluoro compounds that employs chlorodifloroacetic anhydride (CDFAA) as a low-cost and versatile fluoroalkylating reagent. Detailed mechanistic studies revealed that electron-transfer photocatalysis triggers mesolytic cleavage of a C-Cl bond generating a gem-difluoroalkyl radical. In the presence of alkene, this radical species acts as a unique intermediate that, under solvent-controlled reaction conditions, delivers a wide range of gem-difluorinated γ-lactams, γ-lactones, and promotes oxy-perfluoroalkylation. These protocols are flow- and batch-scalable, possess excellent chemo- and regioselectivity, and can be used for the late-stage diversification of complex molecules.
Collapse
Affiliation(s)
- Rahul Giri
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| | - Ivan Mosiagin
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| | - Ivan Franzoni
- NuChem Sciences Inc.2350 Rue Cohen, Suite 201Saint-LaurentQuebecH4R 2N6Canada
- Present address: Valence Discovery Inc.6666 Rue St-Urbain, Suite 200MontrealQuebecH2S 3H1Canada
| | - Nicolas Yannick Nötel
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZürichVladimir-Prelog-Weg8093ZürichSwitzerland
| | - Subrata Patra
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| | - Dmitry Katayev
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| |
Collapse
|
2
|
Giri R, Mosiagin I, Franzoni I, Nötel NY, Patra S, Katayev D. Photoredox Activation of Anhydrides for the Solvent‐Controlled Switchable Synthesis of gem‐Difluoro Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rahul Giri
- University of Fribourg: Universite de Fribourg Chemistry Department Chemin du Musée 9 1700 Fribourg SWITZERLAND
| | - Ivan Mosiagin
- University of Fribourg: Universite de Fribourg Chemistry Department Chemin du Musée9 1700 Fribourg SWITZERLAND
| | - Ivan Franzoni
- Valence Discovery Inc. Research Department 6666 Rue St-Urbain, Suite 200Montreal H2S 3H1 Quebec CANADA
| | - Nicolas Yannick Nötel
- Swiss Federal Institute of Technology Zurich: Eidgenossische Technische Hochschule Zurich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND
| | - Subrata Patra
- University of Fribourg: Universite de Fribourg Chemistry Department Chemin du Musée9 1700 Fribourg SWITZERLAND
| | - Dmitry Katayev
- University of Fribourg: Universite de Fribourg Department of Chemistry Chemin du Musée 9 1700 Fribourg SWITZERLAND
| |
Collapse
|
3
|
Zhou Y, Gao CF, Ma H, Nie J, Ma JA, Zhang FG. Quadruple Functionalized Pyrazole Pharmacophores via One-pot Regioselective [3 + 2] Cycloaddition of Fluorinated Nitrile Imines and Dicyanoalkenes. Chem Asian J 2022; 17:e202200436. [PMID: 35603760 DOI: 10.1002/asia.202200436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/22/2022] [Indexed: 11/08/2022]
Abstract
Here we present a quadruple functionalization approach for the modular construction of fully substituted N 1 -aryl 3-di/trifluoro-methyl-4/5-cyanopyrazole pharmacophores from readily available hydrazonyl chlorides and dicyanoalkenes. The realization of this [3 + 2] cycloaddition reaction hinges upon the employment of N -aryl di/trifluoromethyl nitrile imines as the 1,3-dipoles to bypass external synthetic steps and dicyanoalkenes as the dipolarophiles to tune the regioselectivity. This one-pot strategy offers access to a divergent library of cyano analogues of prevalent 3-di/trifluoromethyl pyrazole pharmacophores, among which several compounds have shown potent inhibitory activity towards cyclooxygenase 2 (COX-2) compared with marketed drug Celecoxib.
Collapse
Affiliation(s)
- Yin Zhou
- Tianjin University, Department of Chemistry, CHINA
| | | | - Hai Ma
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica, Chemistry, CHINA
| | - Jing Nie
- Tianjin University, Department of Chemistry, CHINA
| | - Jun-An Ma
- Tianjin University, Department of Chemistry, School of Science,, No. 92, Weijin Road, 300072, Tianjin, CHINA
| | - Fa-Guang Zhang
- Tianjin University, Department of Chemistry, 92 WEIJIN Road, 300072, Tianjin, CHINA
| |
Collapse
|
4
|
Kong R, Fu T, Yang R, Chen D, Liang D, Dong Y, Li W, Wang B. 4‐Nitroanisole Facilitates Proton Reduction: Visible Light‐Induced Oxidative Aryltrifluoromethylation of Alkenes with Hydrogen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202100304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rui Kong
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Tingfeng Fu
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ruihan Yang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Danna Chen
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ying Dong
- College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan Shandong Province 250014 P. R. China
| | - Weili Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| |
Collapse
|
5
|
Li Z, Wang M, Shi Z. Radical Addition Enables 1,2-Aryl Migration from a Vinyl-Substituted All-Carbon Quaternary Center. Angew Chem Int Ed Engl 2021; 60:186-190. [PMID: 32914547 DOI: 10.1002/anie.202010839] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Indexed: 12/19/2022]
Abstract
An efficient method for photocatalytic perfluoroalkylation of vinyl-substituted all-carbon quaternary centers involving 1,2-aryl migration has been developed. The rearrangement reactions use fac-Ir(ppy)3 , visible light and commercially available fluoroalkyl halides and can generate valuable multisubstituted perfluoroalkylated compounds in a single step that would be challenging to prepare by other methods. Mechanistically, the photoinduced alkyl radical addition to an alkene leads to the migration of a vicinal aryl substituent from its adjacent all-carbon quaternary center with the concomitant generation of a C-radical bearing two electron-withdrawing groups that is further reduced by a hydrogen donor to complete the domino sequence.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
6
|
Li Z, Wang M, Shi Z. Radical Addition Enables 1,2‐Aryl Migration from a Vinyl‐Substituted All‐Carbon Quaternary Center. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
7
|
Barthelemy AL, Bourdreux F, Dagousset G, Magnier E. Photoredox-Catalyzed Selective Synthesis of Allylic Perfluoroalkanes from Alkenes. Chemistry 2020; 26:10213-10216. [PMID: 32343860 DOI: 10.1002/chem.202002046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 12/22/2022]
Abstract
We report herein a novel photoredox-catalyzed synthesis of allylic trifluoromethanes. The use of sulfilimino iminium as a source of trifluoromethyl radicals proves crucial to achieving high selectivity. Importantly, both styrene derivatives and unactivated alkenes are for the first time suitable partners for this process. The mild reaction conditions are compatible with a variety of functional groups. Remarkably, this method is readily broadened to other perfluoroalkyl groups (RF =CFCl2 , CF2 Br, C4 F9 ). An extensive mechanistic study is also provided.
Collapse
Affiliation(s)
- Anne-Laure Barthelemy
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78000, Versailles, France
| | - F Bourdreux
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78000, Versailles, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78000, Versailles, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, UMR 8180, 78000, Versailles, France
| |
Collapse
|
8
|
Wang Y, Yang Y, Wang C. Rhenium‐Catalyzed Decarboxylative Tri‐/Difluoromethylation of Styrenes with Fluorinated Carboxylic Acid‐Derived Hypervalent Iodine Reagents. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yin Wang
- Radiochemistry Laboratory, School of Nuclear Science and TechnologyLanzhou University Lanzhou Gansu 730000 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science LaboratoryHuairou National Comprehensive Science Center Beijing 101400 China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science LaboratoryHuairou National Comprehensive Science Center Beijing 101400 China
| |
Collapse
|
9
|
Wang Q, Qu Y, Tian H, Liu Y, Song H, Wang Q. Trifluoromethylation and Monofluoroalkenylation of Alkenes through Radical-Radical Cross-Coupling. Chemistry 2019; 25:8686-8690. [PMID: 31025767 DOI: 10.1002/chem.201901349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Indexed: 11/07/2022]
Abstract
The first visible-light-induced trifluoromethylation and monofluoroalkenylation of simple alkenes via a challenging radical-radical cross-coupling step was achieved. This method provided a mild, step-economical and redox-neutral route to privileged two different fluorinated difunctionalized allyl compounds. The utility of this method is illustrated by late-stage modification of medically important molecules.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yi Qu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Hao Tian
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Novartis Chemistry Lectureship 2018–2019: E. A. Anderson, M. B. Francis, R. Martín, M. Sodeoka. Angew Chem Int Ed Engl 2019; 58:1549. [DOI: 10.1002/anie.201813736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Novartis Chemistry Lectureship 2018–2019: E. A. Anderson, M. B. Francis, R. Martín, M. Sodeoka. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Wang J, Weng Z. Borrowing and Returning Oxygen Atom in Trifluoroacetic Anhydride Transfer to Nitrones: A Versatile Route for the Synthesis of N
-Trifluoroacetyl Amides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry; Fuzhou University; 350108 Fuzhou China
| | - Zhiqiang Weng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry; Fuzhou University; 350108 Fuzhou China
| |
Collapse
|
13
|
Das S, Hashmi ASK, Schaub T. Direct Photoassisted α-Trifluoromethylation of Aromatic Ketones with Trifluoroacetic Anhydride (TFAA). Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Somnath Das
- Catalysis Research Laboratory (CaRLa); Im Neuenheimer Feld 584 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut; Heidelberg University; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa); Im Neuenheimer Feld 584 69120 Heidelberg Germany
- BASF SE; Synthesis and Homogeneous Catalysis; 67056 Ludwigshafen Germany
| |
Collapse
|
14
|
Zhang W, Zou Z, Wang Y, Wang Y, Liang Y, Wu Z, Zheng Y, Pan Y. Leaving Group Assisted Strategy for Photoinduced Fluoroalkylations Using N
-Hydroxybenzimidoyl Chloride Esters. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yuanheng Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Youxuan Zheng
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
15
|
Zhang W, Zou Z, Wang Y, Wang Y, Liang Y, Wu Z, Zheng Y, Pan Y. Leaving Group Assisted Strategy for Photoinduced Fluoroalkylations Using N-Hydroxybenzimidoyl Chloride Esters. Angew Chem Int Ed Engl 2018; 58:624-627. [PMID: 30444559 DOI: 10.1002/anie.201812192] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 01/07/2023]
Abstract
Redox-active esters (RAEs) as alkyl radical precursors have been extensively developed for C-C bond formations. However, the analogous transformations of fluoroalkyl radicals from the corresponding acid or ester precursors remain challenging because of the high oxidation potential of the fluoroalkyl carboxylate anions. The newly developed N-hydroxybenzimidoylchloride (NHBC) ester provides a general leaving group assisted strategy to generate a portfolio of fluoroalkyl radicals, and can be successfully applied in photoinduced decarboxylative hydrofluoroalkylation and heteroarylation of unactivated olefins. In addition, DFT calculations revealed that the NHBC ester proceeds by the fluorocarbon radical pathway, whereas other well-known RAEs proceed by the nitrogen radical pathway.
Collapse
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuanheng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhengguang Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Youxuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Ouyang Y, Xu XH, Qing FL. Trifluoromethanesulfonic Anhydride as a Low-Cost and Versatile Trifluoromethylation Reagent. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803566] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
17
|
Ouyang Y, Xu XH, Qing FL. Trifluoromethanesulfonic Anhydride as a Low-Cost and Versatile Trifluoromethylation Reagent. Angew Chem Int Ed Engl 2018; 57:6926-6929. [PMID: 29673060 DOI: 10.1002/anie.201803566] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Indexed: 12/31/2022]
Abstract
A large number of reagents have been developed for the synthesis of trifluoromethylated compounds. However, an ongoing challenge in trifluoromethylation reaction is the use of less expensive and practical trifluoromethyl sources. We report herein the unprecedented direct trifluoromethylation of (hetero)arenes using trifluoromethanesulfonic anhydride as a radical trifluoromethylation reagent by merging photoredox catalysis and pyridine activation. Furthermore, introduction of both the CF3 and OTf groups of the trifluoromethanesulfonic anhydride into internal alkynes to access tetrasubstituted trifluoromethylated alkenes was achieved. Since trifluoromethanesulfonic anhydride is a low-cost and abundant chemical, this method provides a cost-efficient and practical route to trifluoromethylated compounds.
Collapse
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032, China.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, China
| |
Collapse
|
18
|
Xu J, Cheng K, Shen C, Bai R, Xie Y, Zhang P. Coordinating Activation Strategy-Induced Selective C−H Trifluoromethylation of Anilines. ChemCatChem 2018. [DOI: 10.1002/cctc.201701596] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun Xu
- Collaborative Innovation Center of Yangtze River, Delta Region, Green Pharmaceuticals; Zhejiang University of Technology; Chao Wang Road 18th Hangzhou 310014 P.R. China
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Xue Lin Street 16th Hangzhou 310036 P.R. China
| | - Ke Cheng
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou 310014 P.R. China
| | - Chao Shen
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Xue Lin Street 16th Hangzhou 310036 P.R. China
| | - Renren Bai
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou 310014 P.R. China
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River, Delta Region, Green Pharmaceuticals; Zhejiang University of Technology; Chao Wang Road 18th Hangzhou 310014 P.R. China
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou 310014 P.R. China
| | - Pengfei Zhang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou 310014 P.R. China
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Xue Lin Street 16th Hangzhou 310036 P.R. China
| |
Collapse
|
19
|
Arthur C. Cope Scholar Awards. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
|
21
|
Li M, Wang Y, Xue XS, Cheng JP. A Systematic Assessment of Trifluoromethyl Radical Donor Abilities of Electrophilic Trifluoromethylating Reagents. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600539] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Man Li
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Ya Wang
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 China
- Center of Basic Molecular Science; Department of Chemistry; Tsinghua University; Beijing 100084 China
| |
Collapse
|