1
|
Maia R, Ataka K, Heberle J, Baiz CR. Biophysics of pH-Driven Membrane Insertion: A Review of the pHLIP Peptide. J Phys Chem B 2025; 129:4123-4132. [PMID: 40249795 DOI: 10.1021/acs.jpcb.5c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The pH Low Insertion Peptide (pHLIP) is a useful model for exploring the biophysical chemistry of pH-driven membrane insertion and folding. This review discusses recent advancements in understanding the molecular mechanisms underlying pHLIP behavior, focusing on its ability to transition from a soluble, unstructured state to a membrane-inserted α-helix. Protonation of acidic residues, changes in peptide hydrophobicity, and interactions with the lipid bilayer, are described. Recent studies using NMR, infrared spectroscopy, and molecular dynamics simulations have provided a stepwise mechanistic model of the coupled folding and insertion process including its intermediate states present under different pH conditions. In addition, pHLIP ability to selectively target acidic microenvironments, such as those found in tumors, has made it a promising tool for biomedical applications. We provide an overview of recent fundamental studies and applications and discuss how future work can benefit from combining advanced experimental and computational approaches to refine our understanding of the peptide's structure-function relationships.
Collapse
Affiliation(s)
- Raiza Maia
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Perez HA, Brandan MA, Disalvo A, Frías MDLA. Differential insertion of arginine in saturated and unsaturated lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184405. [PMID: 39706462 DOI: 10.1016/j.bbamem.2024.184405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/24/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
In this work, the effects of L- Arginine (L-Arg) insertion on saturated and unsaturated lipid membranes were assessed by fluorescence spectroscopy, dynamic light scattering (DLS) and monolayer measurements. The studied systems were composed by DPPC, 16:0 DietherPC, 16:1 Δ9-CisPC, DPPC:Chol, 16:1 Δ9-CisPC:Chol, and 16:1 Δ9-CisPC:DPPC in the presence of increasing concentrations of L-Arg. The information obtained using fluorescence spectral Laurdan properties indicates that L- Arg produces a decrease in the polarizability of saturated lipids congruent with the increase in vesicle size and area per lipid. However, in unsaturated lipids, the polarizability increases without significant changes in size and area per lipid denoting a different mechanism of insertion. The two opposite effects can be modulated by the saturated and unsaturated ratio and are independent of carbonyl groups. This modulation is damped by cholesterol. The differences in the L-Arg insertion can be explained considering that in the presence of the double bonds, L-Arg decreases the organized water in the lipid matrix without expanding the bilayer. Instead, in saturated lipid membranes, L-Arg inserts into the acyl chains dragging water and expanding the membrane area.
Collapse
Affiliation(s)
- Hugo A Perez
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina
| | - María A Brandan
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina
| | - Aníbal Disalvo
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina
| | - María de Los A Frías
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina.
| |
Collapse
|
3
|
Sharma GP, Meyer AC, Habeeb S, Karbach M, Müller G. Free-energy landscapes and insertion pathways for peptides in membrane environment. Phys Rev E 2022; 106:014404. [PMID: 35974613 DOI: 10.1103/physreve.106.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Free-energy landscapes for short peptides-specifically for variants of the pH low insertion peptide (pHLIP)-in the heterogeneous environment of a lipid bilayer or cell membrane are constructed, taking into account a set of dominant interactions and the conformational preferences of the peptide backbone. Our methodology interprets broken internal H-bonds along the backbone of a polypeptide as statistically interacting quasiparticles, activated from the helix reference state. The favored conformation depends on the local environment (ranging from polar to nonpolar), specifically on the availability of external H-bonds (with H_{2}O molecules or lipid headgroups) to replace internal H-bonds. The dominant side-chain contribution is accounted for by residue-specific transfer free energies between polar and nonpolar environments. The free-energy landscape is sensitive to the level of pH in the aqueous environment surrounding the membrane. For high pH, we identify pathways of descending free energy that suggest a coexistence of membrane-adsorbed peptides with peptides in solution. A drop in pH raises the degree of protonation of negatively charged residues and thus increases the hydrophobicity of peptide segments near the C terminus. For low pH, we identify insertion pathways between the membrane-adsorbed state and a stable trans-membrane state with the C terminus having crossed the membrane.
Collapse
Affiliation(s)
- Ganga P Sharma
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Aaron C Meyer
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Suhail Habeeb
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Michael Karbach
- Fachgruppe Physik, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Gerhard Müller
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
4
|
Chen YR, Sun S, Yin H, Wang W, Liu R, Xu H, Yang Y, Wu ZS. Tumor-targeting [2]catenane-based grid-patterned periodic DNA monolayer array for in vivo theranostic application. J Mater Chem B 2022; 10:1969-1979. [PMID: 35014661 DOI: 10.1039/d1tb01978c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA nanotechnology is often used to build various nano-structures for signaling and/or drug delivery, but it essentially suffers from several major limitations, such as a large number of DNA strands and limited targeting ligands. Moreover, there is no report on in vivo two-dimensional DNA arrays because of various technical challenges. By cross-catenating two palindromic DNA rings, herein, we demonstrate a catenane-based grid-patterned periodic DNA monolayer array ([2]GDA) capable of preferentially accumulating in tumor tissues without any targeting ligands, with a thickness equal to the double-helical DNA monolayer (nearly 2 nm). The structural flexibility of [2]GDA enabled it to fold into a spherical object in solution, favoring cellular uptake. Thus, its cellular internalization activity was comparable with that of the commercial lipofectamine 3000. Moreover, [2]GDA retained the structural integrity over 24 h incubation in biological solutions, achieving a 360-fold improvement in in vivo stability. Significantly, anticancer drug-loaded [2]GDA exhibits desirable therapeutic efficacy in tumor-bearing animals without detectable side effects.
Collapse
Affiliation(s)
- Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Shujuan Sun
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Hongwei Yin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Weijun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Ran Liu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Huo Xu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| |
Collapse
|
5
|
Wang C, Piao J, Li Y, Tian X, Dong Y, Liu D. Construction of Liposomes Mimicking Cell Membrane Structure through Frame‐Guided Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chao Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiafang Piao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yujie Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiancheng Tian
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Wang C, Piao J, Li Y, Tian X, Dong Y, Liu D. Construction of Liposomes Mimicking Cell Membrane Structure through Frame‐Guided Assembly. Angew Chem Int Ed Engl 2020; 59:15176-15180. [DOI: 10.1002/anie.202005334] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiafang Piao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yujie Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiancheng Tian
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
7
|
Bañó-Polo M, Martínez-Gil L, Barrera FN, Mingarro I. Insertion of Bacteriorhodopsin Helix C Variants into Biological Membranes. ACS OMEGA 2020; 5:556-560. [PMID: 31956802 PMCID: PMC6964287 DOI: 10.1021/acsomega.9b03126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
A peptide corresponding to bacteriorhodopsin (bR) helix C, later named pHLIP, inserts across lipid bilayers as a monomeric α-helix at acidic pH, but is an unstructured surface-bound monomer at neutral pH. As a result of such pH-responsiveness, pHLIP targets acidic tumors and has been used as a vehicle for imaging and drug-delivery cargoes. To gain insights about the insertion of bR helix C into biological membranes, we replaced two key aspartic residues that control the topological transition from the aqueous phase into a lipid bilayer. Here, we used an in vitro transcription-translation system to study the translocon-mediated insertion of helix C-derived segments into rough microsomes. Our data provide the first quantitative biological understanding of this effect. Interestingly, replacing the aspartic residues by glutamic residues does not significantly alters the insertion propensity, while replacement by alanines promotes a transmembrane orientation. These results are consistent with mutational data obtained in synthetic liposomes by manipulating pH conditions. Our findings support the notion that the translocon facilitates topogenesis under physiological pH conditions.
Collapse
Affiliation(s)
- Manuel Bañó-Polo
- Departament
de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar
en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València. E-46100 Burjassot, Spain
| | - Luis Martínez-Gil
- Departament
de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar
en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València. E-46100 Burjassot, Spain
| | - Francisco N. Barrera
- Department
of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ismael Mingarro
- Departament
de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar
en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València. E-46100 Burjassot, Spain
| |
Collapse
|