1
|
Schnepel C, Moritzer A, Gäfe S, Montua N, Minges H, Nieß A, Niemann HH, Sewald N. Enzymatic Late-Stage Halogenation of Peptides. Chembiochem 2023; 24:e202200569. [PMID: 36259362 PMCID: PMC10099709 DOI: 10.1002/cbic.202200569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Indexed: 01/05/2023]
Abstract
The late-stage site-selective derivatisation of peptides has many potential applications in structure-activity relationship studies and postsynthetic modification or conjugation of bioactive compounds. The development of orthogonal methods for C-H functionalisation is crucial for such peptide derivatisation. Among them, biocatalytic methods are increasingly attracting attention. Tryptophan halogenases emerged as valuable catalysts to functionalise tryptophan (Trp), while direct enzyme-catalysed halogenation of synthetic peptides is yet unprecedented. Here, it is reported that the Trp 6-halogenase Thal accepts a wide range of amides and peptides containing a Trp moiety. Increasing the sequence length and reaction optimisation made bromination of pentapeptides feasible with good turnovers and a broad sequence scope, while regioselectivity turned out to be sequence dependent. Comparison of X-ray single crystal structures of Thal in complex with d-Trp and a dipeptide revealed a significantly altered binding mode for the peptide. The viability of this bioorthogonal approach was exemplified by halogenation of a cyclic RGD peptide.
Collapse
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
- Present address: Department of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Ann‐Christin Moritzer
- StrukturbiochemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Simon Gäfe
- StrukturbiochemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Nicolai Montua
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hannah Minges
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Anke Nieß
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hartmut H. Niemann
- StrukturbiochemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
2
|
Gruß H, Feiner RC, Mseya R, Schröder DC, Jewgiński M, Müller KM, Latajka R, Marion A, Sewald N. Peptide stapling by late-stage Suzuki–Miyaura cross-coupling. Beilstein J Org Chem 2022; 18:1-12. [PMID: 35047078 PMCID: PMC8744458 DOI: 10.3762/bjoc.18.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
The development of peptide stapling techniques to stabilise α-helical secondary structure motifs of peptides led to the design of modulators of protein–protein interactions, which had been considered undruggable for a long time. We disclose a novel approach towards peptide stapling utilising macrocyclisation by late-stage Suzuki–Miyaura cross-coupling of bromotryptophan-containing peptides of the catenin-binding domain of axin. Optimisation of the linker length in order to find a compromise between both sufficient linker rigidity and flexibility resulted in a peptide with an increased α-helicity and enhanced binding affinity to its native binding partner β-catenin. An increased proteolytic stability against proteinase K has been demonstrated.
Collapse
Affiliation(s)
- Hendrik Gruß
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Rebecca C Feiner
- Department of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Ridhiwan Mseya
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - David C Schröder
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Kristian M Müller
- Department of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - Norbert Sewald
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Dachwitz S, Scharkowski B, Sewald N. Negishi Cross-Coupling Provides Alkylated Tryptophans and Tryptophan Regioisomers. Chemistry 2021; 27:18043-18046. [PMID: 34713938 PMCID: PMC9299634 DOI: 10.1002/chem.202103353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Mild transition-metal catalysed cross-couplings enable direct functionalisation of biocatalytically halogenated tryptophans with alkyl iodides, representing a new alternative for late-stage derivatisations of halogenated aromatic amino acids. Moreover, this strategy enables preparation of (homo)tryptophan regioisomers in a simple two-step synthesis using a Pd-catalysed Negishi cross coupling. This method provides access to non-canonical constitutional surrogates of tryptophan, ready for use in peptide synthesis.
Collapse
Affiliation(s)
- Steffen Dachwitz
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Bjarne Scharkowski
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
4
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:16962-16993. [PMID: 38505660 PMCID: PMC10946893 DOI: 10.1002/ange.202014931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 03/21/2024]
Abstract
AbstractDie Enzymkatalyse gewinnt zunehmend an Bedeutung in der Synthesechemie. Die durch Bioinformatik und Enzym‐Engineering stetig wachsende Zahl von Biokatalysatoren eröffnet eine große Vielfalt selektiver Reaktionen. Insbesondere für späte Funktionalisierungsreaktionen ist die Biokatalyse ein geeignetes Werkzeug, das oftmals der konventionellen De‐novo‐Synthese überlegen ist. Enzyme haben sich als nützlich erwiesen, um funktionelle Gruppen direkt in komplexe Molekülgerüste einzuführen sowie für die rasche Diversifizierung von Substanzbibliotheken. Biokatalytische Oxyfunktionalisierungen, Halogenierungen, Methylierungen, Reduktionen und Amidierungen sind von besonderem Interesse, da diese Strukturmotive häufig in Pharmazeutika vertreten sind. Dieser Aufsatz gibt einen Überblick über die Stärken und Schwächen der enzymkatalysierten späten Modifizierungen durch native und optimierte Enzyme in der Synthesechemie. Ebenso werden wichtige Beispiele in der Wirkstoffentwicklung hervorgehoben.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| |
Collapse
|
5
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew Chem Int Ed Engl 2021; 60:16824-16855. [PMID: 33453143 PMCID: PMC8359417 DOI: 10.1002/anie.202014931] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
6
|
Michikita R, Usuki Y, Satoh T. Synthesis of 7‐Phenylindole Derivatives through Rhodium‐Catalyzed Dehydrogenative Coupling of 2‐(Acetylamino)‐1,1’‐biphenyls with Alkynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ryudai Michikita
- Department of Chemistry Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Yoshinosuke Usuki
- Department of Chemistry Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Tetsuya Satoh
- Department of Chemistry Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
7
|
Schnepel C, Dodero VI, Sewald N. Novel Arylindigoids by Late-Stage Derivatization of Biocatalytically Synthesized Dibromoindigo. Chemistry 2021; 27:5404-5411. [PMID: 33496351 PMCID: PMC8048522 DOI: 10.1002/chem.202005191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/18/2022]
Abstract
Indigoids represent natural product-based compounds applicable as organic semiconductors and photoresponsive materials. Yet modified indigo derivatives are difficult to access by chemical synthesis. A biocatalytic approach applying several consecutive selective C-H functionalizations was developed that selectively provides access to various indigoids: Enzymatic halogenation of l-tryptophan followed by indole generation with tryptophanase yields 5-, 6- and 7-bromoindoles. Subsequent hydroxylation using a flavin monooxygenase furnishes dibromoindigo that is derivatized by acylation. This four-step one-pot cascade gives dibromoindigo in good isolated yields. Moreover, the halogen substituent allows for late-stage diversification by cross-coupling directly performed in the crude mixture, thus enabling synthesis of a small set of 6,6'-diarylindigo derivatives. This chemoenzymatic approach provides a modular platform towards novel indigoids with attractive spectral properties.
Collapse
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
- Present address: School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Veronica I. Dodero
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
8
|
Neubauer PR, Pienkny S, Wessjohann L, Brandt W, Sewald N. Predicting the Substrate Scope of the Flavin-Dependent Halogenase BrvH. Chembiochem 2020; 21:3282-3288. [PMID: 32645255 PMCID: PMC7754283 DOI: 10.1002/cbic.202000444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 01/16/2023]
Abstract
The recently described flavin-dependent halogenase BrvH is able to catalyse both the bromination and chlorination of indole, but shows significantly higher bromination activity. BrvH was annotated as a tryptophan halogenase, but does not accept tryptophan as a substrate. Its native substrate remains unknown. A predictive model with the data available for BrvH was analysed. A training set of compounds tested in vitro was docked into the active site of a complete protein model based on the X-ray structure of BrvH. The atoms not resolved experimentally were modelled by using molecular mechanics force fields to obtain this protein model. Furthermore, docking poses for the substrates and known non-substrates have been calculated. Parameters like distance, partial charge and hybridization state were analysed to derive rules for predicting activity. With this model for activity of the BrvH, a virtual screening suggested several structures for potential substrates. Some of the compounds preselected in this way were tested in vitro, and several could be verified as convertible substrates. Based on information on halogenated natural products, a new dataset was created to specifically search for natural products as substrates/products, and virtual screening in this database yielded further hits.
Collapse
Affiliation(s)
- Pia R. Neubauer
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstrasse 2533501BielefeldGermany
| | - Silke Pienkny
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Ludger Wessjohann
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Wolfgang Brandt
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Norbert Sewald
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstrasse 2533501BielefeldGermany
| |
Collapse
|
9
|
Dachwitz S, Duwe DH, Wang YH, Gruß H, Hannappel Y, Hellweg T, Sewald N. Suzuki-Miyaura Cross-Coupling of Bromotryptophan Derivatives at Ambient Temperature. Chemistry 2020; 26:16357-16364. [PMID: 32639079 PMCID: PMC7756874 DOI: 10.1002/chem.202002454] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Mild reaction conditions are highly desirable for bio‐orthogonal side chain derivatizations of amino acids, peptides or proteins due to the sensitivity of these substrates. Transition metal catalysed cross‐couplings such as Suzuki–Miyaura reactions are highly versatile, but usually require unfavourable reaction conditions, in particular, when applied with aryl bromides. Ligand‐free solvent‐stabilised Pd‐nanoparticles represent an efficient and sustainable alternative to conventional phosphine‐based catalysts, because the cross‐coupling can be performed at considerably lower temperature. We report on the application of such a highly reactive heterogeneous catalyst for the Suzuki–Miyaura cross‐coupling of brominated tryptophan derivatives. The solvent‐stabilised Pd‐nanoparticles are even more efficient than the literature‐known ADHP‐Pd precatalyst. Interestingly, the latter also leads to the formation of quasi‐homogeneous Pd‐nanoparticles as the catalytic species. One advantage of our approach is the compatibility with aqueous and aerobic conditions at near‐ambient temperatures and short reaction times of only 2 h. The influence of different Nα‐protecting groups, boronic acids as well as the impact of different amino acid side chains in bromotryptophan‐containing peptides has been studied. Notably, a surprising acceleration of the catalysis was observed when palladium‐coordinating side chains were present in proximal positions.
Collapse
Affiliation(s)
- Steffen Dachwitz
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Dario H Duwe
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yating Hong Wang
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hendrik Gruß
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yvonne Hannappel
- Department of Chemistry, Physical Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
10
|
Li H, Fang W, Zhao Z, Li A, Li Z, Li M, Li Q, Feng X, Song Y. Droplet Precise Self‐Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huizeng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Wei Fang
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - An Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Qunyang Li
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Xiqiao Feng
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
11
|
Li H, Fang W, Zhao Z, Li A, Li Z, Li M, Li Q, Feng X, Song Y. Droplet Precise Self‐Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angew Chem Int Ed Engl 2020; 59:10535-10539. [DOI: 10.1002/anie.202003839] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Huizeng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Wei Fang
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - An Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Qunyang Li
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Xiqiao Feng
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
12
|
Abstract
Pd-mediated reactions have emerged as a powerful tool for the site-selective and bioorthogonal late-stage diversification of amino acids, peptides and related compounds. Indole moieties of tryptophan derivatives are susceptible to C2 H-activation, whereas halogenated aromatic amino acids such as halophenylalanines or halotryptophans provide a broad spectrum of different functionalisations. The compatibility of transition-metal-catalysed cross-couplings with functional groups in peptides, other biologically active compounds and even proteins has been demonstrated. This Review primarily compiles the application of different cross-coupling reactions to modify halotryptophans, halotryptophan containing peptides or halogenated, biologically active compounds derived from tryptophan. Modern approaches use regio- and stereoselective biocatalytic strategies to generate halotryptophans and derivatives on a preparative scale. The combination of bio- and chemocatalysis in cascade reactions is given by the biocompatibility and bioorthogonality of Pd-mediated reactions.
Collapse
Affiliation(s)
- Hendrik Gruß
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
13
|
Abstract
Monomeric RGD peptides show unspecific fluid-phase uptake in cells, whereas multimeric RGD peptides are thought to be internalized by integrin-mediated endocytosis. However, a potential correlation between uptake mechanism and molecular mass has been neglected so far. A dual derivatization of peptide c(RGDw(7Br)K) was performed to investigate this. A fluorescent probe was installed by chemoselective Suzuki-Miyaura cross-coupling of the 7-bromotryptophan and a poly(ethylene glycol) (PEG) linker was attached to the lysine residue. Flow cytometry and live cell imaging confirmed unspecific uptake of the small, non-PEGylated peptide, whereas the PEG5000 peptide conjugate unveiled a selective internalization by M21 cells overexpressing αv β3 and no uptake in αv -deficient M21L cells.
Collapse
Affiliation(s)
- Isabell Kemker
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rebecca C. Feiner
- Zelluläre und Molekulare BiotechnologieTechnische FakultätUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Kristian M. Müller
- Zelluläre und Molekulare BiotechnologieTechnische FakultätUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
14
|
Bergmann Medal: R. T. Raines / Bergmann Young Investigator Award: C. Schnepel / Bessel Award: S. T. Liddle. Angew Chem Int Ed Engl 2020; 59:2941. [DOI: 10.1002/anie.202000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Bergmann‐Medaille: R. T. Raines / Bergmann‐Nachwuchspreis: C. Schnepel / Bessel‐Forschungspreis: S. T. Liddle. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Minges H, Schnepel C, Böttcher D, Weiß MS, Sproß J, Bornscheuer UT, Sewald N. Targeted Enzyme Engineering Unveiled Unexpected Patterns of Halogenase Stabilization. ChemCatChem 2019. [DOI: 10.1002/cctc.201901827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hannah Minges
- Organic and Bioorganic Chemistry Department of ChemistryBielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Christian Schnepel
- Organic and Bioorganic Chemistry Department of ChemistryBielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Dominique Böttcher
- Institute of Biochemistry Department of Biotechnology and Enzyme CatalysisGreifswald University Felix-Hausdorff-Str.4 17489 Greifswald Germany
| | - Martin S. Weiß
- Institute of Biochemistry Department of Biotechnology and Enzyme CatalysisGreifswald University Felix-Hausdorff-Str.4 17489 Greifswald Germany
| | - Jens Sproß
- Industrial Organic Chemistry and Biotechnology Department of ChemistryBielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Department of Biotechnology and Enzyme CatalysisGreifswald University Felix-Hausdorff-Str.4 17489 Greifswald Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry Department of ChemistryBielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
17
|
Ressmann AK, Schwendenwein D, Leonhartsberger S, Mihovilovic MD, Bornscheuer UT, Winkler M, Rudroff F. Substrate‐Independent High‐Throughput Assay for the Quantification of Aldehydes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna K. Ressmann
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| | | | - Simon Leonhartsberger
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald University Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | | | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| |
Collapse
|
18
|
Gruß H, Belu C, Bernhard LM, Merschel A, Sewald N. Fluorogenic Diversification of Unprotected Bromotryptophan by Aqueous Mizoroki–Heck Cross‐Coupling. Chemistry 2019; 25:5880-5883. [DOI: 10.1002/chem.201900437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hendrik Gruß
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Clara Belu
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Laura M. Bernhard
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Arne Merschel
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Norbert Sewald
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
19
|
Gesse P, Müller TJJ. Consecutive Five-Component Ugi-4CR-CAL B-Catalyzed Aminolysis Sequence and Concatenation with Transition Metal Catalysis in a One-Pot Fashion to Substituted Triamides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pascal Gesse
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf; Germany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf; Germany
| |
Collapse
|
20
|
Andorfer MC, Belsare KD, Girlich AM, Lewis JC. Aromatic Halogenation by Using Bifunctional Flavin Reductase-Halogenase Fusion Enzymes. Chembiochem 2017; 18:2099-2103. [PMID: 28879681 PMCID: PMC5898195 DOI: 10.1002/cbic.201700391] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/11/2022]
Abstract
The remarkable site selectivity and broad substrate scope of flavin-dependent halogenases (FDHs) has led to much interest in their potential as biocatalysts. Multiple engineering efforts have demonstrated that FDHs can be tuned for non-native substrate scope and site selectivity. FDHs have also proven useful as in vivo biocatalysts and have been successfully incorporated into biosynthetic pathways to build new chlorinated aromatic compounds in several heterologous organisms. In both cases, reduced flavin cofactor, usually supplied by a separate flavin reductase (FR), is required. Herein, we report functional synthetic, fused FDH-FR proteins containing various FDHs and FRs joined by different linkers. We show that FDH-FR fusion proteins can increase product titers compared to the individual components for in vivo biocatalysis in Escherichia coli.
Collapse
Affiliation(s)
- Mary C Andorfer
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, SCL 302, Chicago, IL, 60637, USA
| | - Ketaki D Belsare
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, SCL 302, Chicago, IL, 60637, USA
| | - Anna M Girlich
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, SCL 302, Chicago, IL, 60637, USA
| | - Jared C Lewis
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, SCL 302, Chicago, IL, 60637, USA
| |
Collapse
|
21
|
Schnepel C, Sewald N. Enzymatic Halogenation: A Timely Strategy for Regioselective C−H Activation. Chemistry 2017; 23:12064-12086. [DOI: 10.1002/chem.201701209] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| | - Norbert Sewald
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|