1
|
Nolten M, Xia KT, Pezzotti S, Schwaab G, Bergman RG, Raymond KN, Dean Toste F, Head-Gordon T, Li WL, Havenith M. Tuning the free energy of host-guest encapsulation by cosolvent. Phys Chem Chem Phys 2025; 27:10120-10128. [PMID: 40302653 PMCID: PMC12042075 DOI: 10.1039/d5cp00661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
Supramolecular hosts create unique microenvironments which enable the tuning of reactions via steric confinement and electrostatics. It has been shown that "solvent shaping inside hydrophobic cavities" is an important thermodynamic driving force for guest encapsulation in the nanocage host. Here, we show that even small (5%) changes in the solvent composition can have a profound impact on the free energy of encapsulation. In a combined THz, NMR and ab initio MD study, we reveal that the preferential residing of a single DMSO molecule in the cavity upon addition of ≥5% DMSO results in a considerable change of ΔS from 63-76 cal mol-1 K-1 to 23-24 cal mol-1 K-1. This can be rationalized by reduction of the cavity volume due to the DMSO molecule which resides preferentially in the cavity. These results provide novel insights into the guest-binding interactions, emphasizing that the entropic driving force is notably influenced by even small changes in the solvent composition, irrespective of changes in metal ligand vertices. Having demonstrated that the local solvent composition within the cage is essential for regulating catalytic efficiency, solvent tuning might enable novel applications in supramolecular chemistry in catalysis and chemical separation.
Collapse
Affiliation(s)
- Melinda Nolten
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Kay T Xia
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Simone Pezzotti
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Gerhard Schwaab
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Kenneth S. Pitzer Theory Center and Departments of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Wan-Lu Li
- Department of Chemical and Nano Engineering, University of California, San Diego, CA 92093, USA.
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
2
|
Kumar GS, Sobhia ME. Water network chemistry to exploit the nature of catalytic water molecules in Mtb DNA gyrase: a computational study to understand the binding mechanism of fluoroquinolones. J Biomol Struct Dyn 2024; 42:725-733. [PMID: 37121993 DOI: 10.1080/07391102.2023.2199869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023]
Abstract
The dynamics of DNA gyrase and mutants of DNA gyrA such as G88A, A90V, S91P, D94A, D94G, D94N, D94Y; and double-point mutant (S91P-D94G), are meticulously investigated using computational approaches. Molecular dynamics (MD) and hydration thermodynamics have shed light on the fundamental, mechanistic basis of mutations on the conformational stability of Quinolone Binding Pocket (QBP) of DNA gyrase. Analysis of MD results revealed the displacement of a single crystal water molecule (HOH201) from the catalytic site of wild-type (WT) and mutants of DNA gyrA. This prompted our research group to probe the five crystal water molecules present in the QBP of the enzyme using water thermodynamics. Hydration thermodynamics analysis revealed the displacement of HOH201 due to unstable thermodynamic signatures. Further, the analysis highlighted significant changes in thermodynamic signatures and locations of five crystal water hydration sites upon mutation. Integrated MD simulations and water thermodynamics provided promising insights into the conformational changes and inaccessibility of the catalytic water molecule that can influence the design of DNA gyrase inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Siva Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
3
|
Stachowski TR, Vanarotti M, Seetharaman J, Lopez K, Fischer M. Water Networks Repopulate Protein-Ligand Interfaces with Temperature. Angew Chem Int Ed Engl 2022; 61:e202112919. [PMID: 35648650 PMCID: PMC9329195 DOI: 10.1002/anie.202112919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/14/2022]
Abstract
High-resolution crystal structures highlight the importance of water networks in protein-ligand interactions. However, as these are typically determined at cryogenic temperature, resulting insights may be structurally precise but not biologically accurate. By collecting 10 matched room-temperature and cryogenic datasets of the biomedical target Hsp90α, we identified changes in water networks that impact protein conformations at the ligand binding interface. Water repositioning with temperature repopulates protein ensembles and ligand interactions. We introduce Flipper conformational barcodes to identify temperature-sensitive regions in electron density maps. This revealed that temperature-responsive states coincide with ligand-responsive regions and capture unique binding signatures that disappear upon cryo-cooling. Our results have implications for discovering Hsp90 selective ligands, and, more generally, for the utility of hidden protein and water conformations in drug discovery.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTN 38105USA
| | - Murugendra Vanarotti
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTN 38105USA
| | - Jayaraman Seetharaman
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTN 38105USA
| | - Karlo Lopez
- School of Natural SciencesMathematicsand EngineeringCalifornia State UniversityBakersfieldCA 93311USA
| | - Marcus Fischer
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTN 38105USA
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTN 38105USA
| |
Collapse
|
4
|
Stachowski TR, Vanarotti M, Seetharaman J, Lopez K, Fischer M. Water Networks Repopulate Protein‐Ligand Interfaces With Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy R Stachowski
- St Jude Children's Research Hospital Chemical Biology & Therapeutics UNITED STATES
| | - Murugendra Vanarotti
- St Jude Children's Research Hospital Chemical Biology & Therapeutics UNITED STATES
| | | | - Karlo Lopez
- California State University - Bakersfield School of Natural Sciences, Mathematics, and Engineering UNITED STATES
| | - Marcus Fischer
- St. Jude Children's Research Hospital Chemical Biology & Therapeutics 262 Danny Thomas Place 38105 Memphis UNITED STATES
| |
Collapse
|
5
|
Lawal MM, Vaissier Welborn V. Structural dynamics support electrostatic interactions in the active site of Adenylate Kinase. Chembiochem 2022; 23:e202200097. [PMID: 35303385 DOI: 10.1002/cbic.202200097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Abstract
Electrostatic preorganization as well as structural and dynamic heterogeneity are often used to rationalize the remarkable catalytic efficiency of enzymes. However, they are often presented as incompatible because the generation of permanent electrostatic effects implies that the protein structure remains rigid. Here, we use a metric, electric fields, that can treat electrostatic contributions and dynamics effects on equal footing, for a unique perspective on enzymatic catalysis. We find that the residues that contribute the most to electrostatic interactions with the substrate in the active site of Adenylate Kinase (our working example) are also the most flexible residues. Further, entropy-tuning mutations raise flexibility at the picosecond timescale where more conformations can be visited on short time periods, thereby softening the sharp heterogeneity normally visible at the microsecond timescale.
Collapse
Affiliation(s)
| | - Valerie Vaissier Welborn
- Virginia Polytechnic Institute and State University, Chemistry, Davidson 421A, 1040 Drillfield Drive, 24073, Blacksburg, UNITED STATES
| |
Collapse
|
6
|
Tobola F, Lepšík M, Zia SR, Leffler H, Nilsson UJ, Blixt O, Imberty A, Wiltschi B. Engineering the ligand specificity of the human galectin-1 by incorporation of tryptophan analogs. Chembiochem 2022; 23:e202100593. [PMID: 34978765 DOI: 10.1002/cbic.202100593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Indexed: 11/05/2022]
Abstract
Galectin-1 is a β-galactoside-binding lectin with manifold biological functions. A single tryptophan residue (W68) in its carbohydrate binding site plays a major role in ligand binding and is highly conserved among galectins. To fine tune galectin-1 specificity, we introduced several non-canonical tryptophan analogs at this position of human galectin-1 and analyzed the resulting variants using glycan microarrays. Two variants containing 7-azatryptophan and 7-fluorotryptophan showed a reduced affinity for 3'-sulfated oligosaccharides. Their interaction with different ligands was further analyzed by fluorescence polarization competition assay. Using molecular modeling we provide structural clues that the change in affinities comes from modulated interactions and solvation patterns. Thus, we show that the introduction of subtle atomic mutations in the ligand binding site of galectin-1 is an attractive approach for fine-tuning its interactions with different ligands.
Collapse
Affiliation(s)
- Felix Tobola
- Graz University of Technology: Technische Universitat Graz, Institute of Molecular Biotechnology, Petersgasse 14, 8010, Graz, AUSTRIA
| | - Martin Lepšík
- Université Grenoble Alpes: Universite Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, FRANCE
| | | | - Hakon Leffler
- Lund University: Lunds Universitet, Laboratory Medicine Section MIG, Klinikgatan 28, 221 84, Lund, SWEDEN
| | - Ulf J Nilsson
- Lund University: Lunds Universitet, Centre for Analysis and Synthesis, Department of Chemistry, Box 124, 221 00, Lund, SWEDEN
| | - Ola Blixt
- Technical University of Denmark: Danmarks Tekniske Universitet, Biotechnology and Biomedicine, Søltofts Plads, 2800, Kgs. Lyngby, DENMARK
| | - Anne Imberty
- Université Grenoble Alpes: Universite Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, FRANCE
| | - Birgit Wiltschi
- Austrian Centre of Industrial Biotechnology, Synthetic Biology, Petersgasse 14, 8010, Graz, AUSTRIA
| |
Collapse
|
7
|
Pecina A, Eyrilmez SM, Köprülüoğlu C, Miriyala VM, Lepšík M, Fanfrlík J, Řezáč J, Hobza P. SQM/COSMO Scoring Function: Reliable Quantum-Mechanical Tool for Sampling and Ranking in Structure-Based Drug Design. Chempluschem 2020; 85:2362-2371. [PMID: 32609421 DOI: 10.1002/cplu.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Quantum mechanical (QM) methods have been gaining importance in structure-based drug design where a reliable description of protein-ligand interactions is of utmost significance. However, strategies i. e. QM/MM, fragmentation or semiempirical (SQM) methods had to be pursued to overcome the unfavorable scaling of QM methods. Various SQM-based approaches have significantly contributed to the accuracy of docking and improvement of lead compounds. Parametrizations of SQM and implicit solvent methods in our laboratory have been instrumental to obtain a reliable SQM-based scoring function. The experience gained in its application for activity ranking of ligands binding to tens of protein targets resulted in setting up a faster SQM/COSMO scoring approach, which outperforms standard scoring methods in native pose identification for two dozen protein targets with ten thousand poses. Recently, SQM/COSMO was effectively applied in a proof-of-concept study of enrichment in virtual screening. Due to its superior performance, feasibility and chemical generality, we propose the SQM/COSMO approach as an efficient tool in structure-based drug design.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Saltuk M Eyrilmez
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Cemal Köprülüoğlu
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| |
Collapse
|