1
|
De A, Reddy YN, Paul S, Sharma V, Tippavajhala VK, Bhaumik J. Photosensitizable ZIF-8 BioMOF for Stimuli-Responsive Antimicrobial Phototherapy. Mol Pharm 2025; 22:827-839. [PMID: 39836523 DOI: 10.1021/acs.molpharmaceut.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Resistant pathogens are increasingly posing a heightened risk to healthcare systems, leading to a growing concern due to the lack of effective antimicrobial treatments. This has prompted the adoption of antimicrobial photodynamic therapy (aPDT), which eradicates microorganisms by generating reactive oxygen species (ROS) through the utilization of a photosensitizer, photons, and molecular oxygen. However, a challenge arises from the inherent characteristics of photosensitizers, including photobleaching, aggregation, and self-quenching. Consequently, a strategy has been devised to adsorb or bind photosensitizers to diverse carriers to facilitate their delivery. Notably, metal-organic frameworks (MOFs) have emerged as a promising means of transporting photosensitizers, even though achieving uniform particle sizes through room-temperature synthesis remains a complex task. In this work, we have tackled the issue of heterogeneous particle size distribution in MOFs, achieving a particle size of 150 ± 50 nm. Subsequently, we harnessed Zeolite Imidazolate Framework 8 (ZIF-8), an excellent subclass of biocompatible MOF, to effectively load two distinct categories of photosensitizers, namely, Rose Bengal (RB) and porphyrin, using a simple, straightforward, and single-step process. Our findings indicate that the prepared RB@ZIF-8 complex generates a more substantial amount of reactive singlet oxygen species when subjected to photoirradiation (using green light-emitting diode (LED)) at low concentrations, in comparison with porphyrin@ZIF-8, as demonstrated in in vitro experiments. Additionally, we investigated the pH-responsive behavior of the complex to ascertain its implications under biological conditions. Correspondingly, the RB@ZIF-8 complex exhibited a more favorable IC50 value against Escherichia coli compared to bare photosensitizers, ZIF-8 alone, and other photosensitizer-loaded ZIF-8 complexes. This underscores the potential of BioMOF as a promising strategy for combatting multidrug-resistant bacteria across a spectrum of infection scenarios, complemented by its responsiveness to stimuli.
Collapse
Affiliation(s)
- Angana De
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Vaibhav Sharma
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
2
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
3
|
Reddy YN, De A, Paul S, Pujari AK, Bhaumik J. In Situ Nanoarchitectonics of a MOF Hydrogel: A Self-Adhesive and pH-Responsive Smart Platform for Phototherapeutic Delivery. Biomacromolecules 2023; 24:1717-1730. [PMID: 36897993 DOI: 10.1021/acs.biomac.2c01489] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Metal-organic frameworks (MOFs) have dramatically changed the fundamentals of drug delivery, catalysis, and gas storage as a result of their porous geometry, controlled architecture, and ease of postsynthetic modification. However, the biomedical applications of MOFs still remain a less explored area due to the constraints associated with handling, utilizing, and site-specific delivery. The major drawbacks associated with the synthesis of nano-MOFs are related to the lack of control over particle size and inhomogeneous dispersion during doping. Therefore, a smart strategy for the in situ growth of a nano-metal-organic framework (nMOF) has been devised to incorporate it into a biocompatible polyacrylamide/starch hydrogel (PSH) composite for therapeutic applications. In this study, the post-treatment of zinc metal ion cross-linked PSH with the ligand solution generated the nZIF-8@PAM/starch composites (nZIF-8, nano-zeolitic imidazolate framework-8). The ZIF-8 nanocrystals thus formed have been found to be evenly dispersed throughout the composites. This newly designed nanoarchitectonics of an MOF hydrogel was found to be self-adhesive, which also exhibited improved mechanical strength, a viscoelastic nature, and a pH-responsive behavior. Taking advantage of these properties, it has been utilized as a sustained-release drug delivery platform for a potential photosensitizer drug (Rose Bengal). The drug was initially diffused into the in situ hydrogel, and then the entire scaffold was analyzed for its potential in photodynamic therapy against bacterial strains such as E. coli and B. megaterium. The Rose Bengal loaded nano-MOF hydrogel composite exhibited remarkable IC50 values within the range of 7.37 ± 0.04 and 0.51 ± 0.05 μg/mL for E. coli and B. megaterium. Further, reactive oxygen species (ROS) directed antimicrobial potential was validated using a fluorescence-based assay. This smart in situ nanoarchitectonics hydrogel platform can also serve as a potential biomaterial for topical treatment including wound healing, lesions, and melanoma.
Collapse
Affiliation(s)
- Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Angana De
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Anil Kumar Pujari
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
4
|
Xu S, Li J, Cai P, Liu X, Liu B, Wang X. Self-Improving Photosensitizer Discovery System via Bayesian Search with First-Principle Simulations. J Am Chem Soc 2021; 143:19769-19777. [PMID: 34788033 DOI: 10.1021/jacs.1c08211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Artificial intelligence (AI) based self-learning or self-improving material discovery system will enable next-generation material discovery. Herein, we demonstrate how to combine accurate prediction of material performance via first-principle calculations and Bayesian optimization-based active learning to realize a self-improving discovery system for high-performance photosensitizers (PSs). Through self-improving cycles, such a system can improve the model prediction accuracy (best mean absolute error of 0.090 eV for singlet-triplet spitting) and high-performance PS search ability, realizing efficient discovery of PSs. From a molecular space with more than 7 million molecules, 5357 potential high-performance PSs were discovered. Four PSs were further synthesized to show performance comparable with or superior to commercial ones. This work highlights the potential of active learning in first-principle-based materials design, and the discovered structures could boost the development of photosensitization related applications.
Collapse
Affiliation(s)
- Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jiali Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Pengfei Cai
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Xiaoli Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xiaonan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
5
|
Judzewitsch PR, Corrigan N, Wong EHH, Boyer C. Photo-Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021; 60:24248-24256. [PMID: 34453390 DOI: 10.1002/anie.202110672] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/14/2022]
Abstract
This work presents the synthesis of a novel photosensitive acrylate monomer for use as both a self-catalyst in the photoinduced electron/energy transfer-reversible addition fragmentation chain transfer (PET-RAFT) polymerisation process and a photosensitiser (PS) for antibacterial applications. Hydrophilic, cationic, and antimicrobial formulations are explored to compare the antibacterial effects between charged and non-charged polymers. Covalent attachment of the catalyst to well-defined linear polymer chains has no effect on polymerisation control or singlet oxygen generation. The addition of the PS to polymers provides activity against S. aureus for all polymer formulations, resulting in up to a 99.99999 % killing efficacy in 30 min. Antimicrobial peptide mimetic polymers previously active against P. aeruginosa, but not S. aureus, gain significant bactericidal activity against S. aureus through the inclusion of PS groups, with 99.998 % killing efficiency after 30 min incubation with light. Thus, a broader spectrum of antimicrobial activity is achieved using two distinct mechanisms of bactericidal activity via the incorporation of a photosensitiser monomer into an antimicrobial polymer.
Collapse
Affiliation(s)
- Peter R Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Photo‐Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Wu M, Liu X, Chen H, Duan Y, Liu J, Pan Y, Liu B. Activation of Pyroptosis by Membrane‐Anchoring AIE Photosensitizer Design: New Prospect for Photodynamic Cancer Cell Ablation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Min Wu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xingang Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Huan Chen
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jingjing Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
8
|
Wu M, Liu X, Chen H, Duan Y, Liu J, Pan Y, Liu B. Activation of Pyroptosis by Membrane‐Anchoring AIE Photosensitizer Design: New Prospect for Photodynamic Cancer Cell Ablation. Angew Chem Int Ed Engl 2021; 60:9093-9098. [DOI: 10.1002/anie.202016399] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xingang Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Huan Chen
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jingjing Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
9
|
Qi R, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E, Lv F, Huang Y, Liu L, Wang Y, Wang S. In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio‐Palladium Catalysis for Modulating Biological Functions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xin Zhou
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jian Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Nan Dai
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yue Zeng
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Endong Zhang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
10
|
Qi R, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E, Lv F, Huang Y, Liu L, Wang Y, Wang S. In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio‐Palladium Catalysis for Modulating Biological Functions. Angew Chem Int Ed Engl 2021; 60:5759-5765. [DOI: 10.1002/anie.202015247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xin Zhou
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jian Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Nan Dai
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yue Zeng
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Endong Zhang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
11
|
Intrinsically antibacterial thin film composite membranes with supramolecularly assembled lysozyme nanofilm as selective layer for molecular separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Chen H, Li S, Wu M, Kenry, Huang Z, Lee C, Liu B. Membrane‐Anchoring Photosensitizer with Aggregation‐Induced Emission Characteristics for Combating Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2020; 59:632-636. [DOI: 10.1002/anie.201907343] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/27/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Huan Chen
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
13
|
Guo L, Wang H, Wang Y, Feng L. Tailor-Made Polymer Nano-Assembly with Switchable Function and Amplified Anti-Tumor Therapy. Adv Healthc Mater 2020; 9:e1901492. [PMID: 31800169 DOI: 10.1002/adhm.201901492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Indexed: 11/11/2022]
Abstract
The difficulty in killing tumor cells due to the tendency to metastasis and drug resistance are outstanding and urgent problems for the treatment of cancer. It is imperative to figure out an effective therapy strategy to break the treatment dilemmas. Nano self-assembly has the characteristics of flexible regulation, biological compatibility, and easy access. Herein, an albumin-polymer nano-assembly with switchable cytotoxicity and reactive oxygen species (ROS) amplification capability is developed for anti-tumor therapy. The nano-assembly (PFFBT@HSA) is comprised of conjugated polymer PFFBT and natural protein human serum albumin (HSA) via the hydrophobic and electrostatic interactions. The innovative switchable strategy is proposed and realized by HSA turning off the cytotoxicity of PFFBT and then turning on and enhancing the cytotoxicity by generating massive ROS upon light irradiation. The combination of HSA provides more stable microenvironment to benefit the generation of highly effective anti-tumor model of "0+1>1". These results display that the nanostructured self-assembly and the proposed anti-tumor regulation strategy are effective, which will contribute to the diversified treatment of cancer.
Collapse
Affiliation(s)
- Lixia Guo
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 P. R. China
| | - Haoping Wang
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 P. R. China
| | - Yunxia Wang
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 P. R. China
| | - Liheng Feng
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 P. R. China
| |
Collapse
|
14
|
Mal A, Vijayakumar S, Mishra RK, Jacob J, Pillai RS, Dileep Kumar BS, Ajayaghosh A. Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Arindam Mal
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Samiyappan Vijayakumar
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rakesh K. Mishra
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Department of Chemistry National Institute of Technology, Uttarakhand (NITUK) Srinagar (Garhwal) 246174 India
| | - Jubi Jacob
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Agro-Processing and Technology Division CSIR-NIIST Thiruvananthapuram 695019 India
| | - Renjith S. Pillai
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - B. S. Dileep Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Agro-Processing and Technology Division CSIR-NIIST Thiruvananthapuram 695019 India
| | - Ayyappanpillai Ajayaghosh
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
15
|
Mal A, Vijayakumar S, Mishra RK, Jacob J, Pillai RS, Dileep Kumar BS, Ajayaghosh A. Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angew Chem Int Ed Engl 2019; 59:8713-8719. [DOI: 10.1002/anie.201912363] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Arindam Mal
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Samiyappan Vijayakumar
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rakesh K. Mishra
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Department of Chemistry National Institute of Technology, Uttarakhand (NITUK) Srinagar (Garhwal) 246174 India
| | - Jubi Jacob
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Agro-Processing and Technology Division CSIR-NIIST Thiruvananthapuram 695019 India
| | - Renjith S. Pillai
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - B. S. Dileep Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Agro-Processing and Technology Division CSIR-NIIST Thiruvananthapuram 695019 India
| | - Ayyappanpillai Ajayaghosh
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
16
|
Preparation and characterization of antibacterial polyamine-based cyclophosphazene nanofiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117371] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Chen H, Li S, Wu M, Kenry, Huang Z, Lee C, Liu B. Membrane‐Anchoring Photosensitizer with Aggregation‐Induced Emission Characteristics for Combating Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huan Chen
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
18
|
Zhou K, Tian R, Li G, Qiu X, Xu L, Guo M, Chigan D, Zhang Y, Chen X, He G. Cationic Chalcogenoviologen Derivatives for Photodynamic Antimicrobial Therapy and Skin Regeneration. Chemistry 2019; 25:13472-13478. [DOI: 10.1002/chem.201903278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Kun Zhou
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Ran Tian
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Guoping Li
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xinyu Qiu
- Center for Tissue Engineering, School of StomatologyFourth Military Medical University Xi'an Shaanxi Province 710032 China
| | - Letian Xu
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Mengying Guo
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Dongdong Chigan
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Yanfeng Zhang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xin Chen
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Gang He
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
19
|
Zhang AN, Wu W, Zhang C, Wang QY, Zhuang ZN, Cheng H, Zhang XZ. A versatile bacterial membrane-binding chimeric peptide with enhanced photodynamic antimicrobial activity. J Mater Chem B 2019; 7:1087-1095. [PMID: 32254776 DOI: 10.1039/c8tb03094d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) has become an effective antibiosis method for overcoming antibiotic resistance. In this study, we developed a versatile bacterial membrane-binding chimeric peptide PpIX-[PEG8-(KLAKLAK)2]2 (denoted as PPK) by conjugating a photosensitizer protoporphyrin IX (PpIX) with an antimicrobial peptide (KLAKLAK)2 (KLA) for effective photodynamic inactivation of bacteria. The chimeric peptide PPK with positively charged properties and an α-helical conformation could rapidly bind to microbial cells through electrostatic interactions and membrane insertion. Moreover, PPK could disrupt the bacterial membrane and further elicit lipid bilayer leakage to kill bacteria by toxic reactive oxygen species (ROS) generated by PpIX under 660 nm light. In vitro experiments demonstrated that cationic PPK possessed excellent antimicrobial activity against both Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). Afterward, PPK also exhibited perfect therapeutic effects on S. aureus-infected mice without any systemic side effects. This chimeric peptide PPK will show great potential for photodynamic antibiosis.
Collapse
Affiliation(s)
- Ai-Nv Zhang
- College of Pharmacy, Hubei University of Medicine, Shiyan 442000, P. R. China
| | | | | | | | | | | | | |
Collapse
|
20
|
Li R, Lian X, Wang Z, Wang Y. Radical Cation Initiated Surface Polymerization on Photothermal Rubber for Smart Antifouling Coatings. Chemistry 2018; 25:183-188. [PMID: 30325541 DOI: 10.1002/chem.201804526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/13/2022]
Abstract
Biofouling on surfaces of various materials has attracted considerable attention in biomedical and marine industries. Surface grafting based on covalent surface-initiated polymerization offers a popular route to address this problem by providing diverse robust polymer coatings capable of preventing the biofouling in complex environments. However, the existing methods for synthesizing polymer coatings are complicated and rigorous, or require special catalysts, greatly limiting their practical applications. In this work, a radical-cation-based surface-initiated polymerization protocol to graft the surface of darkened trans-polyisoprene (TPI) rubber with a thermo-responsive smart polymer, poly(N-isopropylacrylamide) (PNIPAM), through a simple iodine doping process is reported. A series of characterizations were performed to provide adequate evidence to confirm the successful grafting. Combining the thermal sensitivity of PNIPAM with the photothermal conversion ability of the darkened rubber, efficient bacteria-killing and antifouling capabilities were successfully achieved as a result of temperature-controlled iodine release and switchable amphiphilicity of PNIPAM.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xiaodong Lian
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhen Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
21
|
Hou W, Yuan Y, Sun Z, Guo S, Dong H, Wu C. Ratiometric Fluorescent Detection of Intracellular Singlet Oxygen by Semiconducting Polymer Dots. Anal Chem 2018; 90:14629-14634. [DOI: 10.1021/acs.analchem.8b04859] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weiying Hou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Ye Yuan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Zezhou Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Shuxu Guo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Haowen Dong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| |
Collapse
|
22
|
Chmovzh TN, Knyazeva EA, Mikhalchenko LV, Golovanov IS, Amelichev SA, Rakitin OA. Synthesis of the 4,7-Dibromo Derivative of Highly Electron-Deficient [1,2,5]Thiadiazolo[3,4-d
]pyridazine and Its Cross-Coupling Reactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Timofey N. Chmovzh
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospekt 119991 Moscow Russia
| | - Ekaterina A. Knyazeva
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospekt 119991 Moscow Russia
- Nanotechnology Education and Research Center; South Ural State University; 454080 Chelyabinsk Russia
| | - Ludmila V. Mikhalchenko
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospekt 119991 Moscow Russia
| | - Ivan S. Golovanov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospekt 119991 Moscow Russia
| | - Stanislav A. Amelichev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospekt 119991 Moscow Russia
| | - Oleg A. Rakitin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospekt 119991 Moscow Russia
- Nanotechnology Education and Research Center; South Ural State University; 454080 Chelyabinsk Russia
| |
Collapse
|
23
|
Galstyan A, Putze J, Dobrindt U. Gaining Access to Bacteria through (Reversible) Control of Lipophilicity. Chemistry 2017; 24:1178-1186. [DOI: 10.1002/chem.201704562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Anzhela Galstyan
- Center for Nanotechnology; Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 48149 Münster Germany
| | - Johannes Putze
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| | - Ulrich Dobrindt
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| |
Collapse
|
24
|
Wang B, Feng G, Seifrid M, Wang M, Liu B, Bazan GC. Antibacterial Narrow‐Band‐Gap Conjugated Oligoelectrolytes with High Photothermal Conversion Efficiency. Angew Chem Int Ed Engl 2017; 56:16063-16066. [DOI: 10.1002/anie.201709887] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Martin Seifrid
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Ming Wang
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Guillermo C. Bazan
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| |
Collapse
|
25
|
Wang B, Feng G, Seifrid M, Wang M, Liu B, Bazan GC. Antibacterial Narrow‐Band‐Gap Conjugated Oligoelectrolytes with High Photothermal Conversion Efficiency. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Martin Seifrid
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Ming Wang
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Guillermo C. Bazan
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| |
Collapse
|
26
|
Song RB, Wu Y, Lin ZQ, Xie J, Tan CH, Loo JSC, Cao B, Zhang JR, Zhu JJ, Zhang Q. Living and Conducting: Coating Individual Bacterial Cells with In Situ Formed Polypyrrole. Angew Chem Int Ed Engl 2017; 56:10516-10520. [DOI: 10.1002/anie.201704729] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/27/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Rong-Bin Song
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - YiChao Wu
- Singapore Centre for Environment Life Science, Engineering Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
- School of Civil and Environmental Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Zong-Qiong Lin
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jian Xie
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Chuan Hao Tan
- Singapore Centre for Environment Life Science, Engineering Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Joachim Say Chye Loo
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
- Singapore Centre for Environment Life Science, Engineering Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Bin Cao
- Singapore Centre for Environment Life Science, Engineering Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
- School of Civil and Environmental Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
- School of Chemistry and Life Science; Nanjing University Jingling College; Nanjing 210089 P.R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Qichun Zhang
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
27
|
Song RB, Wu Y, Lin ZQ, Xie J, Tan CH, Loo JSC, Cao B, Zhang JR, Zhu JJ, Zhang Q. Living and Conducting: Coating Individual Bacterial Cells with In Situ Formed Polypyrrole. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704729] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Rong-Bin Song
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - YiChao Wu
- Singapore Centre for Environment Life Science, Engineering Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
- School of Civil and Environmental Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Zong-Qiong Lin
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jian Xie
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Chuan Hao Tan
- Singapore Centre for Environment Life Science, Engineering Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Joachim Say Chye Loo
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
- Singapore Centre for Environment Life Science, Engineering Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Bin Cao
- Singapore Centre for Environment Life Science, Engineering Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
- School of Civil and Environmental Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
- School of Chemistry and Life Science; Nanjing University Jingling College; Nanjing 210089 P.R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Qichun Zhang
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|