1
|
Kamp M, Sacanna S, Dullens RPA. Spearheading a new era in complex colloid synthesis with TPM and other silanes. Nat Rev Chem 2024; 8:433-453. [PMID: 38740891 DOI: 10.1038/s41570-024-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Colloid science has recently grown substantially owing to the innovative use of silane coupling agents (SCAs), especially 3-trimethoxysilylpropyl methacrylate (TPM). SCAs were previously used mainly as modifying agents, but their ability to form droplets and condense onto pre-existing structures has enabled their use as a versatile and powerful tool to create novel anisotropic colloids with increasing complexity. In this Review, we highlight the advances in complex colloid synthesis facilitated by the use of TPM and show how this has driven remarkable new applications. The focus is on TPM as the current state-of-the-art in colloid science, but we also discuss other silanes and their potential to make an impact. We outline the remarkable properties of TPM colloids and their synthesis strategies, and discuss areas of soft matter science that have benefited from TPM and other SCAs.
Collapse
Affiliation(s)
- Marlous Kamp
- Van 't Hoff Laboratory for Physical & Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| | - Stefano Sacanna
- Department of Chemistry, New York University, New York, NY, USA
| | - Roel P A Dullens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Camerin F, Marín-Aguilar S, Dijkstra M. Depletion-induced crystallization of anisotropic triblock colloids. NANOSCALE 2024; 16:4724-4736. [PMID: 38289471 PMCID: PMC10903402 DOI: 10.1039/d3nr04816k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/19/2024] [Indexed: 03/01/2024]
Abstract
The intricate interplay between colloidal particle shape and precisely engineered interaction potentials has paved the way for the discovery of unprecedented crystal structures in both two and three dimensions. Here, we make use of anisotropic triblock colloidal particles composed of two distinct materials. The resulting surface charge heterogeneity can be exploited to generate regioselective depletion interactions and directional bonding. Using extensive molecular dynamics simulations and a dimensionality reduction analysis approach, we map out state diagrams for the self-assembly of such colloids as a function of their aspect ratio and for varying depletant features in a quasi two-dimensional set-up. We observe the formation of a wide variety of crystal structures such as a herringbone, brick-wall, tilted brick-wall, and (tilted) ladder-like structures. More specifically, we determine the optimal parameters to enhance crystallization, and investigate the nucleation process. Additionally, we explore the potential of using crystalline monolayers as templates for deposition, thereby creating complex three-dimensional structures that hold promise for future applications.
Collapse
Affiliation(s)
- Fabrizio Camerin
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- International Institute for Sustainability with Knotted Chiral MetaMatter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Susana Marín-Aguilar
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- International Institute for Sustainability with Knotted Chiral MetaMatter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
3
|
Liang H, Zhang S, Liu Y, Yang Y, Zhang Y, Wu Y, Xu H, Wei Y, Ji Y. Merging the Interfaces of Different Shape-Shifting Polymers Using Hybrid Exchange Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2202462. [PMID: 36325655 DOI: 10.1002/adma.202202462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sophisticated shape-shifting structures and integration of advanced functions often call for different-chemistry-based polymers (such as epoxy and polyurethane) in a unified system. However, permanent cross-links pose crucial obstacles to be seamless. Here, merging interfaces via hybrid exchange reactions among different dynamic covalent bonds (including ester, urethane, thiourethane, boronic-ester, and oxime-ester linkages) is proposed, breaking the long-lasting restriction that these widely used bonds only undergo self-exchange reactions. Model compound studies are conducted to verify that hybrid exchange reactions occur. As demonstrations, different liquid crystal elastomers are tenaciously joined into coherent assemblies, with the desired biomimetic structures (e.g., flying fish containing stiff and flexible parts) and rare deformation modes (e.g., flower blooming upon both heating and cooling). Besides connecting polymers, hybrid exchange reactions also facilitate the creation of new materials through cross-fusion of different polymers. In addition to the polymers used in this work, hybrid exchange reactions can be adapted to other polymers based on similar mechanisms and beyond. Besides shape-shifting-related areas (e.g., soft robots, flexible electronics, and biomedical devices), it may also foster innovation in other fields involving general polymers, as well as promote deeper understanding of dynamic covalent chemistry.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yubai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yahe Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li, Taiwan, 32023, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
5
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Neibloom D, Bevan MA, Frechette J. Droplet Formation and Growth Mechanisms in Reaction-Induced Spontaneous Emulsification of 3-(Trimethoxysilyl) Propyl Methacrylate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11625-11636. [PMID: 34569795 DOI: 10.1021/acs.langmuir.1c02048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spontaneous emulsification of 3-(trimethoxysilyl) propyl methacrylate (TPM) can produce complex and active colloids, nanoparticles, or monodisperse Pickering emulsions. Despite the applicability of TPM in particle synthesis, the nucleation and growth mechanisms of TPM emulsions are still poorly understood. We investigate droplet formation and growth of TPM in aqueous solutions under quiescent conditions. Our results show that in the absence of stirring the mechanisms of diffusion and stranding likely drive the spontaneous emulsification of TPM through the formation of co-soluble species during hydrolysis. In addition, turbidity and dynamic light scattering experiments show that the pH modulates the growth mechanism. At pH 10.1, the droplets grow via Ostwald ripening, while at pH 11.5, the droplets grow via monomer addition. Adding surfactants [Tween, sodium dodecyl sulfate (SDS), or cetyltrimethylammonium bromide] leads to <100 nm droplets that are kinetically stable. The growth of Tween droplets occurs through addition of TPM species while the number density of droplets is kept constant. In addition, in the presence of the ionic surfactant SDS, electrostatic repulsion between the solubilized TPM species and SDS leads to a significant increase in the number density of droplets as well as additional nucleation events. Finally, imaging of the solubilization of TPM in capillaries shows that in the absence of a surfactant, TPM hydrolysis is likely the rate-limiting step for emulsification, whereas the presence of silica particles in the aqueous phase likely acts as a catalyst of TPM hydrolysis. Our experiments highlight the importance of diffusion and solubilization of TPM species in the aqueous phase in the nucleation and growth of droplets.
Collapse
Affiliation(s)
- Denise Neibloom
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael A Bevan
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joelle Frechette
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, California 94760, United States
| |
Collapse
|
7
|
Liu M, Zheng X, Grebe V, He M, Pine DJ, Weck M. Two-Dimensional (2D) or Quasi-2D Superstructures from DNA-Coated Colloidal Particles. Angew Chem Int Ed Engl 2021; 60:5744-5748. [PMID: 33285024 DOI: 10.1002/anie.202014045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Indexed: 11/10/2022]
Abstract
This contribution describes the synthesis of colloidal di-patch particles functionalized with DNA on the patches and their assembly into colloidal superstructures via cooperative depletion and DNA-mediated interactions. The assembly into flower-like Kagome, brick-wall like monolayer, orthogonal packed single or double layers, wrinkled monolayer, and colloidal honeycomb superstructures can be controlled by tuning the particles' patch sizes and assembly conditions. Based on these experimental results, we generate an empirical phase diagram. The principles revealed by the phase diagram provide guidance in the design of two-dimensional (2D) materials with desired superstructures. Our strategy might be translatable to the assembly of three-dimensional (3D) colloidal structures.
Collapse
Affiliation(s)
- Mingzhu Liu
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Xiaolong Zheng
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Veronica Grebe
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY, 10003, USA.,Department of Chemical & Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - David J Pine
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY, 10003, USA.,Department of Chemical & Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Marcus Weck
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, 10003, USA
| |
Collapse
|
8
|
Liu M, Zheng X, Grebe V, He M, Pine DJ, Weck M. Two‐Dimensional (2D) or Quasi‐2D Superstructures from DNA‐Coated Colloidal Particles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingzhu Liu
- Molecular Design Institute Department of Chemistry New York University New York NY 10003 USA
| | - Xiaolong Zheng
- Molecular Design Institute Department of Chemistry New York University New York NY 10003 USA
| | - Veronica Grebe
- Molecular Design Institute Department of Chemistry New York University New York NY 10003 USA
| | - Mingxin He
- Department of Physics Center for Soft Matter Research New York University New York NY 10003 USA
- Department of Chemical & Biomolecular Engineering Tandon School of Engineering New York University Brooklyn NY 11201 USA
| | - David J. Pine
- Department of Physics Center for Soft Matter Research New York University New York NY 10003 USA
- Department of Chemical & Biomolecular Engineering Tandon School of Engineering New York University Brooklyn NY 11201 USA
| | - Marcus Weck
- Molecular Design Institute Department of Chemistry New York University New York NY 10003 USA
| |
Collapse
|
9
|
Kamp M, de Nijs B, van der Linden MN, de Feijter I, Lefferts MJ, Aloi A, Griffiths J, Baumberg JJ, Voets IK, van Blaaderen A. Multivalent Patchy Colloids for Quantitative 3D Self-Assembly Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2403-2418. [PMID: 32097015 PMCID: PMC7202687 DOI: 10.1021/acs.langmuir.9b03863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/23/2020] [Indexed: 06/10/2023]
Abstract
We report methods to synthesize sub-micron- and micron-sized patchy silica particles with fluorescently labeled hemispherical titania protrusions, as well as routes to efficiently characterize these particles and self-assemble these particles into non-close-packed structures. The synthesis methods expand upon earlier work in the literature, in which silica particles packed in a colloidal crystal were surface-patterned with a silane coupling agent. Here, hemispherical amorphous titania protrusions were successfully labeled with fluorescent dyes, allowing for imaging by confocal microscopy and super-resolution techniques. Confocal microscopy was exploited to experimentally determine the numbers of protrusions per particle over large numbers of particles for good statistical significance, and these distributions were compared to simulations predicting the number of patches as a function of core particle polydispersity and maximum separation between the particle surfaces. We self-assembled these patchy particles into open percolating gel networks by exploiting solvophobic attractions between the protrusions.
Collapse
Affiliation(s)
- Marlous Kamp
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- NanoPhotonics
Centre, Department of Physics, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Bart de Nijs
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- NanoPhotonics
Centre, Department of Physics, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Marjolein N. van der Linden
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Isja de Feijter
- Laboratory
of Self-Organizing Soft Matter, Laboratory of Macromolecular and Organic
Chemistry, Department of Chemical Engineering and Chemistry, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Post Office
Box 513, 5600 MB Eindhoven, The Netherlands
| | - Merel J. Lefferts
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Antonio Aloi
- Laboratory
of Self-Organizing Soft Matter, Laboratory of Macromolecular and Organic
Chemistry, Department of Chemical Engineering and Chemistry, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Post Office
Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jack Griffiths
- NanoPhotonics
Centre, Department of Physics, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Department of Physics, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Ilja K. Voets
- Laboratory
of Self-Organizing Soft Matter, Laboratory of Macromolecular and Organic
Chemistry, Department of Chemical Engineering and Chemistry, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Post Office
Box 513, 5600 MB Eindhoven, The Netherlands
| | - Alfons van Blaaderen
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
10
|
Hamilton HSC, Bradley LC. Probing the morphology evolution of chemically anisotropic colloids prepared by homopolymerization- and copolymerization-induced phase separation. Polym Chem 2020. [DOI: 10.1039/c9py01166h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemically anisotropic colloids prepared by polymerization-induced phase separation during seeded emulsion polymerization with non-crosslinked seeds reveals tunability in both surface and interior properties based on the morphology evolution.
Collapse
Affiliation(s)
- Heather S. C. Hamilton
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| | - Laura C. Bradley
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| |
Collapse
|
11
|
Wang Z, Wang Z, Li J, Cheung STH, Tian C, Kim SH, Yi GR, Ducrot E, Wang Y. Active Patchy Colloids with Shape-Tunable Dynamics. J Am Chem Soc 2019; 141:14853-14863. [PMID: 31448592 DOI: 10.1021/jacs.9b07785] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Controlling the complex dynamics of active colloids-the autonomous locomotion of colloidal particles and their spontaneous assembly-is challenging yet crucial for creating functional, out-of-equilibrium colloidal systems potentially useful for nano- and micromachines. Herein, by introducing the synthesis of active "patchy" colloids of various low-symmetry shapes, we demonstrate that the dynamics of such systems can be precisely tuned. The low-symmetry patchy colloids are made in bulk via a cluster-encapsulation-dewetting method. They carry essential information encoded in their shapes (particle geometry, number, size, and configurations of surface patches, etc.) that programs their locomotive and assembling behaviors. Under AC electric field, we show that the velocity of particle propulsion and the ability to brake and steer can be modulated by having two asymmetrical patches with various bending angles. The assembly of monopatch particles leads to the formation of dynamic and reconfigurable structures such as spinners and "cooperative swimmers" depending on the particle's aspect ratios. A particle with two patches of different sizes allows for "directional bonding", a concept popular in static assemblies but rare in dynamic ones. With the capability to make tunable and complex shapes, we anticipate the discovery of a diverse range of new dynamics and structures when other external stimuli (e.g., magnetic, optical, chemical, etc.) are employed and spark synergy with shapes.
Collapse
Affiliation(s)
- Zuochen Wang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Zhisheng Wang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Jiahui Li
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Simon Tsz Hang Cheung
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Changhao Tian
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Shin-Hyun Kim
- Department of Chemical & Biomolecular Engineering , KAIST , Daejeon 34141 , Republic of Korea
| | - Gi-Ra Yi
- School of Chemical Engineering , Sungkyunkwan University , Suwon 440-746 , Republic of Korea
| | - Etienne Ducrot
- Center for Soft Matter Research, Department of Physics , New York University , New York , New York 11206 , United States
| | - Yufeng Wang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| |
Collapse
|
12
|
Guo D, Zheng X, Wang X, Li H, Li K, Li Z, Song Y. Formation of Multicomponent Size‐Sorted Assembly Patterns by Tunable Templated Dewetting. Angew Chem Int Ed Engl 2018; 57:16126-16130. [DOI: 10.1002/anie.201810728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/11/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Dan Guo
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiaohe Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of Sciences Beijing 100190 P. R. China
| | - Huizeng Li
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Kaixuan Li
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Zheng Li
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Yanlin Song
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
13
|
Guo D, Zheng X, Wang X, Li H, Li K, Li Z, Song Y. Formation of Multicomponent Size‐Sorted Assembly Patterns by Tunable Templated Dewetting. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dan Guo
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiaohe Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of Sciences Beijing 100190 P. R. China
| | - Huizeng Li
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Kaixuan Li
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Zheng Li
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Yanlin Song
- Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing Engineering Research Center of Nanomaterials for Green Printing TechnologyBeijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
14
|
Martínez-Esaín J, Puig T, Obradors X, Ros J, Yáñez R, Faraudo J, Ricart S. Faceted-Charge Patchy LnF 3
Nanocrystals with a Selective Solvent Interaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jordi Martínez-Esaín
- Departament de Química; Universitat Autònoma de Barcelona; Campus de la UAB 08193 Bellaterra Spain
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| | - Teresa Puig
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| | - Xavier Obradors
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| | - Josep Ros
- Departament de Química; Universitat Autònoma de Barcelona; Campus de la UAB 08193 Bellaterra Spain
| | - Ramón Yáñez
- Departament de Química; Universitat Autònoma de Barcelona; Campus de la UAB 08193 Bellaterra Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| | - Susagna Ricart
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| |
Collapse
|
15
|
Martínez-Esaín J, Puig T, Obradors X, Ros J, Yáñez R, Faraudo J, Ricart S. Faceted-Charge Patchy LnF3
Nanocrystals with a Selective Solvent Interaction. Angew Chem Int Ed Engl 2018; 57:14747-14751. [DOI: 10.1002/anie.201806273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/03/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Jordi Martínez-Esaín
- Departament de Química; Universitat Autònoma de Barcelona; Campus de la UAB 08193 Bellaterra Spain
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| | - Teresa Puig
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| | - Xavier Obradors
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| | - Josep Ros
- Departament de Química; Universitat Autònoma de Barcelona; Campus de la UAB 08193 Bellaterra Spain
| | - Ramón Yáñez
- Departament de Química; Universitat Autònoma de Barcelona; Campus de la UAB 08193 Bellaterra Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| | - Susagna Ricart
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra Spain
| |
Collapse
|
16
|
Chen C, Li X, Deng J, Wang Z, Wang Y. Shape Engineering of Biomass-Derived Nanoparticles from Hollow Spheres to Bowls through Solvent-Induced Buckling. CHEMSUSCHEM 2018; 11:2540-2546. [PMID: 29923347 DOI: 10.1002/cssc.201801215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/15/2018] [Indexed: 05/21/2023]
Abstract
The realization of asymmetric hollow carbonaceous nanostructures remains a great challenge, especially when biomass is chosen as the carbon resource through hydrothermal carbonization (HTC). Herein, a simple and straightforward solvent-induced buckling strategy is demonstrated for the synthesis of asymmetric spherical and bowl-like carbonaceous nanomaterials. The formation of the bowl-like morphology was attributed to the buckling of the spherical shells induced by the dissolution of the oligomers. The bowl-like particles prepared through this solvent-driven approach demonstrated a well-controlled morphology and a uniform particle size of approximately 360 nm. The obtained nanospheres and nanobowls were loaded with CoS2 nanoparticles to act as heterogeneous catalysts for the selective hydrogenation of aromatic nitro compounds. As expected, the CoS2 /nanobowls catalyst showed good tolerance to a wide scope of reducible groups and afforded both high activity and selectivity in almost all the tested substrates.
Collapse
Affiliation(s)
- Chunhong Chen
- Advanced Materials and Catalysis Group, Institute of Catalysis, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Xuefeng Li
- Advanced Materials and Catalysis Group, Institute of Catalysis, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Jiang Deng
- Advanced Materials and Catalysis Group, Institute of Catalysis, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Zhe Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Zhejiang University, Hangzhou, 310028, P. R. China
| |
Collapse
|
17
|
Watanabe T, Song C, Murata K, Kureha T, Suzuki D. Seeded Emulsion Polymerization of Styrene in the Presence of Water-Swollen Hydrogel Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8571-8580. [PMID: 29957963 DOI: 10.1021/acs.langmuir.8b01047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In a previous study, we have ascertained that the charge distribution in hydrogel microspheres (microgels) plays a crucial role in controlling the nanocomposite structure of the polystyrene obtained from the seeded emulsion polymerization (SEP) of styrene in the presence of microgels. However, all these polymerizations were conducted at high temperature, where most of these microgels were dehydrated and deswollen. In the present study, we initially verified that the nanocomposite microgels can be synthesized even when the seed microgels are swollen and hydrated during the SEP of styrene. These highly swollen microgels were used as the nucleation sites for the polystyrene, and subsequently the propagation of the hydrophobic polystyrenes proceeded within water-swollen microgels.
Collapse
Affiliation(s)
| | - Chihong Song
- National Institute for Physiological Sciences , 38 Nishigonaka , Okazaki , Aichi 444-8585 , Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences , 38 Nishigonaka , Okazaki , Aichi 444-8585 , Japan
| | | | | |
Collapse
|
18
|
Genix AC, Oberdisse J. Nanoparticle self-assembly: from interactions in suspension to polymer nanocomposites. SOFT MATTER 2018; 14:5161-5179. [PMID: 29893402 DOI: 10.1039/c8sm00430g] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent experimental results using in particular small-angle scattering to characterize the self-assembly of mainly hard spherical nanoparticles into higher ordered structures ranging from fractal aggregates to ordered assemblies are reviewed. The crucial control of interparticle interactions is discussed, from chemical surface-modification, or the action of additives like depletion agents, to the generation of directional patches and the use of external fields. It is shown how the properties of interparticle interactions have been used to allow inducing and possibly controlling aggregation, opening the road to the generation of colloidal molecules or potentially metamaterials. In the last part, studies of the microstructure of polymer nanocomposites as an application of volume-spanning and stress-carrying aggregates are discussed.
Collapse
Affiliation(s)
- Anne-Caroline Genix
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, F-34095 Montpellier, France.
| | | |
Collapse
|
19
|
Wang Y, Song S, Yuan J, Zhu L, Pan M, Liu G. Architecture and Performance of Raspberry-like Colloidal Particle Clusters via Self-Assembly of in Situ Generated Janus Particles. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yajiao Wang
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Shaofeng Song
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| |
Collapse
|
20
|
Li C, Zhang S, Zhang B, Liu J, Zhang W, Solovev AA, Tang R, Bao F, Yu J, Zhang Q, Lifshitz Y, He L, Zhang X. Local-Curvature-Controlled Non-Epitaxial Growth of Hierarchical Nanostructures. Angew Chem Int Ed Engl 2018; 57:3772-3776. [DOI: 10.1002/anie.201713185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Shumin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Bingchang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Weihu Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Alexander A. Solovev
- Department of Materials Science; Fudan University; 220 Handan Road 200433 Shanghai PR China
| | - Rujun Tang
- Jiangsu Key Laboratory of Thin Films; College of Physics, Optoelectronics and Energy; Soochow University; Suzhou 215006 Jiangsu PR China
| | - Feng Bao
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Yeshayahu Lifshitz
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
- Department of Materials Science and Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| |
Collapse
|
21
|
Li C, Zhang S, Zhang B, Liu J, Zhang W, Solovev AA, Tang R, Bao F, Yu J, Zhang Q, Lifshitz Y, He L, Zhang X. Local-Curvature-Controlled Non-Epitaxial Growth of Hierarchical Nanostructures. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Shumin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Bingchang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Weihu Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Alexander A. Solovev
- Department of Materials Science; Fudan University; 220 Handan Road 200433 Shanghai PR China
| | - Rujun Tang
- Jiangsu Key Laboratory of Thin Films; College of Physics, Optoelectronics and Energy; Soochow University; Suzhou 215006 Jiangsu PR China
| | - Feng Bao
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Yeshayahu Lifshitz
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
- Department of Materials Science and Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Soochow University; 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| |
Collapse
|
22
|
Girard M, Nguyen TD, de la Cruz MO. Orbitals for classical arbitrary anisotropic colloidal potentials. Phys Rev E 2017; 96:053309. [PMID: 29347702 DOI: 10.1103/physreve.96.053309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Coarse-grained potentials are ubiquitous in mesoscale simulations. While various methods to compute effective interactions for spherically symmetric particles exist, anisotropic interactions are seldom used, due to their complexity. Here we describe a general formulation, based on a spatial decomposition of the density fields around the particles, akin to atomic orbitals. We show that anisotropic potentials can be efficiently computed in numerical simulations using Fourier-based methods. We validate the field formulation and characterize its computational efficiency with a system of colloids that have Gaussian surface charge distributions. We also investigate the phase behavior of charged Janus colloids immersed in screened media, with screening lengths comparable to the colloid size. The system shows rich behaviors, exhibiting vapor, liquid, gel, and crystalline morphologies, depending on temperature and screening length. The crystalline phase only appears for symmetric Janus particles. For very short screening lengths, the system undergoes a direct transition from a vapor to a crystal on cooling; while, for longer screening lengths, a vapor-liquid-crystal transition is observed. The proposed formulation can be extended to model force fields that are time or orientation dependent, such as those in systems of polymer-grafted particles and magnetic colloids.
Collapse
Affiliation(s)
- Martin Girard
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Trung Dac Nguyen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|