1
|
Falanga AP, Piccialli I, Greco F, D'Errico S, Nolli MG, Borbone N, Oliviero G, Roviello GN. Nanostructural Modulation of G-Quadruplex DNA in Neurodegeneration: Orotate Interaction Revealed Through Experimental and Computational Approaches. J Neurochem 2025; 169:e16296. [PMID: 39829311 PMCID: PMC11744338 DOI: 10.1111/jnc.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
The natural compound orotic acid and its anionic form, orotate, play a pivotal role in various biological processes, serving as essential intermediates in pyrimidine de novo synthesis, with demonstrated connections to dietary, supplement, and neurodrug applications. A novel perspective on biomolecular aggregation at the nanoscale, particularly pertinent to neurodegeneration, challenges the established paradigm positing that peptide (amyloid beta) and protein (tau) aggregation mainly govern the molecular events underlying prevalent neuropathologies. Emerging biological evidence indicates a notable role for G-quadruplex (G4) DNA aggregation in neurodegenerative processes affecting neuronal cells, particularly in the presence of extended (G4C2)n repeats in nuclear DNA sequences. Our study concerns d[(GGGGCC)3GGGG], a G4-forming DNA model featuring G4C2 repeats that is in correlation with neurodegeneration. Through different investigations utilizing spectroscopic techniques (CD, UV, and thermal denaturations), PAGE electrophoresis, and molecular docking, the study explores the influence of orotate on the aggregation of this neurodegeneration-associated DNA. A computational approach was employed to construct an in silico model of the DNA aggregate, which involved the docking of multiple G4 units and subsequent integration of the ligand into both the DNA monomer and its in silico aggregated model. The convergence of computational analyses and empirical data collectively supports the hypothesis that orotate possesses the capability to modulate the aggregation of neurodegeneration-related DNA. Notably, the findings suggest the potential utility of orotate as a neurodrug, especially for the therapy of amyotrophic lateral sclerosis (ALS) and Frontotemporal Dementia (FTD), with its current status as a dietary supplement indicating minimal safety concerns. Additionally, orotate demonstrated a slight increase in mitochondrial dehydrogenase activity as assessed by the MTT assay, which is beneficial for a neurodrug as it suggests a potential role in enhancing mitochondrial function and supporting neuronal health.
Collapse
Affiliation(s)
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Francesca Greco
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Stefano D'Errico
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | - Nicola Borbone
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
- ISBE‐IT, University of Naples Federico IINaplesItaly
| | - Giorgia Oliviero
- ISBE‐IT, University of Naples Federico IINaplesItaly
- Department of Molecular Medicine and Medical BiotechnologiesUniversity of Naples Federico IINaplesItaly
| | - Giovanni N. Roviello
- Institute of Biostructures and BioimagingItalian National Council for Research (IBB‐CNR)NaplesItaly
| |
Collapse
|
2
|
Gil-Martínez A, López-Molina S, Galiana-Roselló C, Lázaro-Gómez A, Schlüter F, Rizzo F, González-García J. Modulating the G-Quadruplex and Duplex DNA Binding by Controlling the Charge of Fluorescent Molecules. Chemistry 2023; 29:e202203094. [PMID: 36318180 PMCID: PMC10107164 DOI: 10.1002/chem.202203094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Two fluorescent and non-toxic spirobifluorene molecules bearing either positive (Spiro-NMe3) or negative (Spiro-SO3) charged moieties attached to the same aromatic structure have been investigated as binders for DNA. The novel Spiro-NMe3 containing four alkylammonium substituents interacts with G-quadruplex (G4) DNA structures and shows preference for G4s over duplex by means of FRET melting and fluorescence experiments. The interaction is governed by the charged substituents of the ligands as deduced from the lower binding of the sulfonate analogue (Spiro-SO3). On the contrary, Spiro-SO3 exhibits higher binding affinity to duplex DNA structure than to G4. Both molecules show a moderate quenching of the fluorescence upon DNA binding. The confocal microscopy evaluation shows the internalization of both molecules in HeLa cells and their lysosomal accumulation.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Sònia López-Molina
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Andrea Lázaro-Gómez
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Friederike Schlüter
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Fabio Rizzo
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany.,Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via G. Fantoli 16/15, 20138, Milano, Italy
| | - Jorge González-García
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
3
|
Pandith A, Luo Y, Jang Y, Bae J, Kim Y. Self-Assembled Peptidyl Aggregates for the Fluorogenic Recognition of Mitochondrial DNA G-Quadruplexes. Angew Chem Int Ed Engl 2023; 62:e202215049. [PMID: 36396597 DOI: 10.1002/anie.202215049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/19/2022]
Abstract
The selective monitoring of G-quadruplex (G4) structures in living cells is important to elucidate their functions and reveal their value as diagnostic or therapeutic targets. Here we report a fluorogenic probe (CV2) able to selectively light-up parallel G4 DNA over antiparallel topologies. CV2 was constructed by conjugating the excimer-forming CV dye with a peptide sequence (l-Arg-l-Gly-glutaric acid) that specifically recognizes G4s. CV2 forms self-assembled, red excimer-emitting nanoaggregates in aqueous media, but specific binding to G4s triggers its disassembly into rigidified monomeric dyes, leading to a dramatic fluorescence enhancement. Moreover, selective permeation of CV2 stains G4s in mitochondria over the nucleus. CV2 was employed for tracking the folding and unfolding of G4s in living cells, and for monitoring mitochondrial DNA (mtDNA) damage. These properties make CV2 appealing to investigate the possible roles of mtDNA G4s in diseases that involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anup Pandith
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.,Current address, International Ph.D. Program in Biomedical Engineering (IPBME), College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan (R.O.C
| | - Yongyang Luo
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Yul Jang
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
4
|
Zhou X, Lin S, Yan H. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. J Nanobiotechnology 2022; 20:257. [PMID: 35658974 PMCID: PMC9164479 DOI: 10.1186/s12951-022-01449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Self-assembled photonic systems with well-organized spatial arrangement and engineered optical properties can be used as efficient energy materials and as effective biomedical agents. The lessons learned from natural light-harvesting antennas have inspired the design and synthesis of a series of biomimetic photonic complexes, including those containing strongly coupled dye aggregates with dense molecular packing and unique spectroscopic features. These photoactive components provide excellent features that could be coupled to multiple applications including light-harvesting, energy transfer, biosensing, bioimaging, and cancer therapy. Meanwhile, nanoscale DNA assemblies have been employed as programmable and addressable templates to guide the formation of DNA-directed multi-pigment complexes, which can be used to enhance the complexity and precision of artificial photonic systems and show the potential for energy and biomedical applications. This review focuses on the interface of DNA nanotechnology and biomimetic photonic systems. We summarized the recent progress in the design, synthesis, and applications of bioinspired photonic systems, highlighted the advantages of the utilization of DNA nanostructures, and discussed the challenges and opportunities they provide.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
5
|
Wickhorst PJ, Druzhinin SI, Ihmels H, Müller M, Sutera Sardo M, Schönherr H, Viola G. A Dimethylaminophenyl‐Substituted Naphtho[1,2‐
b
]quinolizinium as a Multicolor NIR Probe for the Fluorimetric Detection of Intracellular Nucleic Acids and Proteins. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peter Jonas Wickhorst
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Sergey I. Druzhinin
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Heiko Ihmels
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Mareike Müller
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | | | - Holger Schönherr
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Giampietro Viola
- Department of Women's and Child's health Oncohematology laboratory University of Padova Via Giustiniani 2 I-35128 Padova Italy
| |
Collapse
|
6
|
Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Turkin A, Holzapfel M, Agarwal M, Fischermeier D, Mitric R, Schweins R, Gröhn F, Lambert C. Solvent Induced Helix Folding of Defined Indolenine Squaraine Oligomers. Chemistry 2021; 27:8380-8389. [PMID: 33871113 PMCID: PMC8251825 DOI: 10.1002/chem.202101063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 01/01/2023]
Abstract
A protecting group strategy was employed to synthesise a series of indolenine squaraine dye oligomers up to the nonamer. The longer oligomers show a distinct solvent dependence of the absorption spectra, that is, either a strong blue shift or a strong red shift of the lowest energy bands in the near infrared spectral region. This behaviour is explained by exciton coupling theory as being due to H- or J-type coupling of transition moments. The H-type coupling is a consequence of a helix folding in solvents with a small Hansen dispersity index. DOSY NMR, small angle neutron scattering (SANS), quantum chemical and force field calculations agree upon a helix structure with an unusually large pitch and open voids that are filled with solvent molecules, thereby forming a kind of clathrate. The thermodynamic parameters of the folding process were determined by temperature dependent optical absorption spectra.
Collapse
Affiliation(s)
- Arthur Turkin
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Marco Holzapfel
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Mohit Agarwal
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI)University of Erlangen-NürnbergEgerlandstraße 391058ErlangenGermany
- Institut Max von Laue - Paul Langevin (ILL), DS / LSS71, Avenue des Martyrs - CS 2015638042Grenoble Cedex 9France
| | - David Fischermeier
- Institut für Physikalische und Theoretische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Roland Mitric
- Institut für Physikalische und Theoretische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Ralf Schweins
- Institut Max von Laue - Paul Langevin (ILL), DS / LSS71, Avenue des Martyrs - CS 2015638042Grenoble Cedex 9France
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI)University of Erlangen-NürnbergEgerlandstraße 391058ErlangenGermany
| | - Christoph Lambert
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
8
|
Sun R, Guo X, Yang D, Tang Y, Lu J, Sun H. c-Myc G-quadruplex is sensitively and specifically recognized by a fluorescent probe. Talanta 2021; 226:122125. [PMID: 33676679 DOI: 10.1016/j.talanta.2021.122125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
The G-quadruplex structure formed by the c-myc gene sequence has attracted much attention due to its important physiological function in biology and wide application in nanotechnology. So far, probes capable of recognition of c-myc G-quadruplex with both high specificity and sensitivity are still scarce. This work presented a cyanine dye fluorescent probe named Cy-1, which has almost no fluorescence in aqueous solution, but showing more than 1000-fold fluorescence enhancement for recognizing c-myc G-quadruplex. Cy-1 also has good specificity and can selectively recognize c-myc G-quadruplex from other a variety of G-quadruplex and non-G-quadruplex structures. These properties make Cy-1 a promising probe for c-myc G-quadruplex recognition in nanotechnology or biology.
Collapse
Affiliation(s)
- Ranran Sun
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiaomeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dawei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
9
|
Ashokkumar P, Collot M, Klymchenko AS. Fluorogenic Squaraine Dendrimers for Background-Free Imaging of Integrin Receptors in Cancer Cells. Chemistry 2021; 27:6795-6803. [PMID: 33567148 DOI: 10.1002/chem.202100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 11/06/2022]
Abstract
To overcome the limited brightness of existing fluorogenic molecular probes for biomolecular targets, we introduce a concept of fluorogenic dendrimer probe, which undergoes polarity-dependent switching due to intramolecular aggregation-caused quenching of its fluorophores. Based on a rational design of dendrimers with four and eight squaraine dyes, we found that octamer bearing dyes through a sufficiently long PEG(8) linker displays >400-fold fluorescence enhancement from water to non-polar dioxane. High extinction coefficient (≈2,300,000 m-1 cm-1 ) resulted from eight squaraine dyes and quantum yield (≈25 %) make this octamer the brightest environment-sensitive fluorogenic molecule reported to date. Its conjugate with cyclic RGD used at low concentration (3 nm) enables integrin-specific fluorescence imaging of cancer cells with high signal-to-background ratio. The developed dendrimer probe is a "golden middle" between molecular probes and nanoparticles, combining small size, turn-on response and high brightness, important for bioimaging.
Collapse
Affiliation(s)
- Pichandi Ashokkumar
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch, France.,Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Mayeul Collot
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch, France
| |
Collapse
|
10
|
Deiana M, Chand K, Jamroskovic J, Obi I, Chorell E, Sabouri N. A Light‐up Logic Platform for Selective Recognition of Parallel G‐Quadruplex Structures via Disaggregation‐Induced Emission. Angew Chem Int Ed Engl 2020; 59:896-902. [DOI: 10.1002/anie.201912027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Karam Chand
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Erik Chorell
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| |
Collapse
|
11
|
Lin Y, Sun L, Zeng F, Wu S. An Unsymmetrical Squaraine-Based Activatable Probe for Imaging Lymphatic Metastasis by Responding to Tumor Hypoxia with MSOT and Aggregation-Enhanced Fluorescent Imaging. Chemistry 2019; 25:16740-16747. [PMID: 31674063 DOI: 10.1002/chem.201904675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Optoacoustic imaging has great potential for preclinical research and clinical practice, and designing robust activatable optoacoustic probes for specific diseases is beneficial for its further development. Herein, an activatable probe has been developed for tumor hypoxia imaging. For this probe, indole and quinoline were linked on each side of an oxocyclobutenolate core to form an unsymmetrical squaraine. A triarylamine group was incorporated to endow the molecule with the aggregation enhanced emission (AEE) properties. In aqueous media, the squaraine chromophore aggregates into the nanoprobe, which specifically responds to nitroreductase and produces strong optoacoustic signals due to its high extinction coefficient, as well as prominent fluorescence emission as a result of its AEE feature. The nanoprobe was used to image tumor metastasis via the lymphatic system both optoacoustically and fluorescently. Moreover, both the fluorescence signals and three-dimensional multispectral optoacoustic tomography signals from the activated nanoprobe allow us to locate the tumor site and to map the metastatic route.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| |
Collapse
|
12
|
Deiana M, Chand K, Jamroskovic J, Obi I, Chorell E, Sabouri N. A Light‐up Logic Platform for Selective Recognition of Parallel G‐Quadruplex Structures via Disaggregation‐Induced Emission. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Karam Chand
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Erik Chorell
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| |
Collapse
|
13
|
Schreck MH, Röhr MIS, Clark T, Stepanenko V, Würthner F, Lambert C. A Self‐Assembled Unit Comprising 12 Squaraine Dyes Built Up from Two Star‐Shaped Hexasquarainyl‐Benzene Molecules. Chemistry 2019; 25:2831-2839. [DOI: 10.1002/chem.201805685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Maximilian H. Schreck
- Institut für Organische Chemie & Center for Nanosystems Chemistry Julius-Maximilians-Universität Würzburg 97074 Würzburg Germany
| | - Merle I. S. Röhr
- Institut für Organische Chemie & Center for Nanosystems Chemistry Julius-Maximilians-Universität Würzburg 97074 Würzburg Germany
| | - Timothy Clark
- Computer Chemistry Center, Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg 91052 Erlangen Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie & Center for Nanosystems Chemistry Julius-Maximilians-Universität Würzburg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry Julius-Maximilians-Universität Würzburg 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie & Center for Nanosystems Chemistry Julius-Maximilians-Universität Würzburg 97074 Würzburg Germany
| |
Collapse
|
14
|
Zuffo M, Xie X, Granzhan A. Strength in Numbers: Development of a Fluorescence Sensor Array for Secondary Structures of DNA. Chemistry 2019; 25:1812-1818. [DOI: 10.1002/chem.201805422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Michela Zuffo
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| | - Xiao Xie
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| |
Collapse
|
15
|
Dudek M, Deiana M, Pokladek Z, Pawlik K, Matczyszyn K. Reversible Photocontrol of DNA Melting by Visible-Light-Responsive F4-Coordinated Azobenzene Compounds. Chemistry 2018; 24:18963-18970. [PMID: 30198626 DOI: 10.1002/chem.201803529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Spatiotemporal control over the regulation of intra- and intermolecular motions in naturally occurring systems is systematically studied to expand the toolbox of mechanical operations in multicomponent nanoarchitectures. DNA is ideally suited for programming light-powered processes that are based on a minimalist molecular design. Here, the noncovalent incorporation of bistable photoswitches into B-like DNA moieties is shown to trigger the thermal transition midpoint of the duplexes by converting visible light into directed mechanical work by orchestrating the collective actions of the photoresponsive chromophores and the host DNA nanostructures. Besides its practical applications, the resulting hybrid nanosystem bears unique features of modulability, biocompatibility, reversibility, and addressability, which are key components for developing molecular photon-controlled programmed materials.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Ziemowit Pokladek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Krzysztof Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
16
|
Liu B, Wang Z, Lan L, Yang Q, Zhang P, Shi L, Lang Y, Tabib-Salazar A, Wigneshweraraj S, Zhang J, Wang Y, Tang Y, Matthews S, Zhang X. A Rapid Colorimetric Method to Visualize Protein Interactions. Chemistry 2018; 24:6727-6731. [DOI: 10.1002/chem.201800401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Bing Liu
- BioBank; First Affiliated Hospital; School of medicine; Xi'an Jiaotong University; Xi'an 710049 P. R. China
- Department of Life Sciences; Imperial College London; London UK
| | - Zhihao Wang
- Department of Life Sciences; Imperial College London; London UK
| | - Ling Lan
- Beijing National Laboratory for Molecular Science; State Key Laboratory for Structural Chemistry of Unstable, and Stable Species; Institute of Chemistry Chinese Academy of Science; Beijing 100190 P. R. China
| | - Qianfan Yang
- College of Chemistry; Sichuan University; Chengdu 610065 P. R. China
| | - Peipei Zhang
- BioBank; First Affiliated Hospital; School of medicine; Xi'an Jiaotong University; Xi'an 710049 P. R. China
| | - Lei Shi
- College of Chemical Engineering; North China University of Science and Technology; Tangshan 063210 P. R. China
| | - Yunhe Lang
- College of Chemical Engineering; North China University of Science and Technology; Tangshan 063210 P. R. China
| | | | | | - Jiye Zhang
- BioBank; First Affiliated Hospital; School of medicine; Xi'an Jiaotong University; Xi'an 710049 P. R. China
| | - Yawen Wang
- BioBank; First Affiliated Hospital; School of medicine; Xi'an Jiaotong University; Xi'an 710049 P. R. China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Science; State Key Laboratory for Structural Chemistry of Unstable, and Stable Species; Institute of Chemistry Chinese Academy of Science; Beijing 100190 P. R. China
| | - Steve Matthews
- Department of Life Sciences; Imperial College London; London UK
| | - Xiufeng Zhang
- College of Chemical Engineering; North China University of Science and Technology; Tangshan 063210 P. R. China
| |
Collapse
|