1
|
Park S, Kim J, Oh SS, Choi SQ. Arginine-Rich Cell-Penetrating Peptides Induce Lipid Rearrangements for Their Active Translocation across Laterally Heterogeneous Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404563. [PMID: 38932459 PMCID: PMC11348069 DOI: 10.1002/advs.202404563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Arginine-rich cell-penetrating peptides (CPPs) have emerged as valuable tools for the intracellular delivery of bioactive molecules, but their membrane perturbation during cell penetration is not fully understood. Here, nona-arginine (R9)-mediated membrane reorganization that facilitates the translocation of peptides across laterally heterogeneous membranes is directly visualized. The electrostatic binding of cationic R9 to anionic phosphatidylserine (PS)-enriched domains on a freestanding lipid bilayer induces lateral lipid rearrangements; in particular, in real-time it is observed that R9 fluidizes PS-rich liquid-ordered (Lo) domains into liquid-disordered (Ld) domains, resulting in the membrane permeabilization. The experiments with giant unilamellar vesicles (GUVs) confirm the preferential translocation of R9 through Ld domains without pore formation, even when Lo domains are more negatively charged. Indeed, whenever R9 comes into contact with negatively charged Lo domains, it dissolves the Lo domains first, promoting translocation across phase-separated membranes. Collectively, the findings imply that arginine-rich CPPs modulate lateral membrane heterogeneity, including membrane fluidization, as one of the fundamental processes for their effective cell penetration across densely packed lipid bilayers.
Collapse
Affiliation(s)
- Sujin Park
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jinmin Kim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Seung Soo Oh
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I‐CREATE)Yonsei UniversityIncheon21983Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
2
|
Saha A, Mandal S, Arafiles JVV, Gómez‐González J, Hackenberger CPR, Brik A. Structure-Uptake Relationship Study of DABCYL Derivatives Linked to Cyclic Cell-Penetrating Peptides for Live-Cell Delivery of Synthetic Proteins. Angew Chem Int Ed Engl 2022; 61:e202207551. [PMID: 36004945 PMCID: PMC9828537 DOI: 10.1002/anie.202207551] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 01/12/2023]
Abstract
Modifying cyclic cell-penetrating deca-arginine (cR10) peptides with 4-(4-dimethylaminophenylazo)benzoic acid (DABCYL) improves the uptake efficiency of synthetic ubiquitin (Ub) cargoes into living cells. To probe the role of the DABCYL moiety, we performed time-lapse microscopy and fluorescence lifetime imaging microscopy (FLIM) of fluorescent DABCYL-R10 to evaluate the impact on cell entry by the formation of nucleation zones. Furthermore, we performed a structure-uptake relationship study with 13 DABCYL derivatives coupled to CPP to examine their effect on the cell-uptake efficiency when conjugated to mono-Ub through disulfide linkages. Our results show that through structure variations of the DABCYL moiety alone we could reach, at nanomolar concentration, an additional threefold increase in the cytosolic delivery of Ub, which will enable studies on various intracellular processes related to Ub signaling.
Collapse
Affiliation(s)
- Abhishek Saha
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Shaswati Mandal
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Jan Vincent V. Arafiles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 10Berlin13125Germany
| | - Jacobo Gómez‐González
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 10Berlin13125Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 10Berlin13125Germany
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Str.2Berlin12489Germany
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
3
|
Xian W, Hennefarth MR, Lee MW, Do T, Lee EY, Alexandrova AN, Wong GCL. Histidine-Mediated Ion Specific Effects Enable Salt Tolerance of a Pore-Forming Marine Antimicrobial Peptide. Angew Chem Int Ed Engl 2022; 61:e202108501. [PMID: 35352449 PMCID: PMC9189074 DOI: 10.1002/anie.202108501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptides (AMPs) preferentially permeate prokaryotic membranes via electrostatic binding and membrane remodeling. Such action is drastically suppressed by high salt due to increased electrostatic screening, thus it is puzzling how marine AMPs can possibly work. We examine as a model system, piscidin-1, a histidine-rich marine AMP, and show that ion-histidine interactions play unanticipated roles in membrane remodeling at high salt: Histidines can simultaneously hydrogen-bond to a phosphate and coordinate with an alkali metal ion to neutralize phosphate charge, thereby facilitating multidentate bonds to lipid headgroups in order to generate saddle-splay curvature, a prerequisite to pore formation. A comparison among Na+ , K+ , and Cs+ indicates that histidine-mediated salt tolerance is ion specific. We conclude that histidine plays a unique role in enabling protein/peptide-membrane interactions that occur in marine or other high-salt environment.
Collapse
Affiliation(s)
- Wujing Xian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew R Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tran Do
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Xian W, Hennefarth MR, Lee MW, Do T, Lee EY, Alexandrova AN, Wong GCL. Histidine‐Mediated Ion Specific Effects Enable Salt Tolerance of a Pore‐Forming Marine Antimicrobial Peptide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wujing Xian
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
| | - Matthew R. Hennefarth
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Michelle W. Lee
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
| | - Tran Do
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ernest Y. Lee
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
- California Nano Systems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Gerard C. L. Wong
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
- California Nano Systems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
5
|
Sakamoto K, Michibata J, Hirai Y, Ide A, Ikitoh A, Takatani-Nakase T, Futaki S. Potentiating the Membrane Interaction of an Attenuated Cationic Amphiphilic Lytic Peptide for Intracellular Protein Delivery by Anchoring with Pyrene Moiety. Bioconjug Chem 2021; 32:950-957. [PMID: 33861579 DOI: 10.1021/acs.bioconjchem.1c00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported an approach for intracellular protein delivery by attenuating membrane-lytic activity of cationic amphiphilic peptides on cell surfaces. HAad is one such peptides that cytosolically delivers proteins of interest, including antibodies, by stimulating their endosomal escape. Additionally, HAad elicits ruffling of cell membrane, accompanied by transient membrane permeabilization, allowing for the efficient cytosolic translocation of proteins. In this study, we prepared a conjugate of HAad with pyrenebutyric acid as a membrane-anchoring unit (pBu-HAad). pBu-HAad demonstrated protein delivery into cells with only 1/20 concentration of HAad. However, the conjugates with cholesteryl hemisuccinate and aliphatic fatty acids (C = 3, 6, and 10) did not yield such marked effects. The results of time-course and inhibitor studies suggest that the membrane anchoring of HAad by a pyrene moiety leads to enhanced peptide-membrane interaction and to loosen lipid packing, thus facilitating cytosolic translocation through membranes.
Collapse
Affiliation(s)
- Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Hirai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akiko Ide
- Faculty of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Asuka Ikitoh
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Martinent R, Du D, López-Andarias J, Sakai N, Matile S. Oligomers of Cyclic Oligochalcogenides for Enhanced Cellular Uptake. Chembiochem 2020; 22:253-259. [PMID: 32975867 DOI: 10.1002/cbic.202000630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/24/2020] [Indexed: 12/20/2022]
Abstract
Monomeric cyclic oligochalcogenides (COCs) are emerging as attractive transporters to deliver substrates of interest into the cytosol through thiol-mediated uptake. The objective of this study was to explore COC oligomers. We report a systematic evaluation of monomers, dimers, and trimers of asparagusic, lipoic, and diselenolipoic acid as well as their supramolecular monomers, dimers, trimers, and tetramers. COC dimers were more than twice as active as the monomers on both the covalent and noncovalent levels, whereas COC trimers were not much better than dimers. These trends might suggest that thiol-mediated uptake of COCs is synergistic over both short and long distances, that is, it involves more than two COCs and more than one membrane protein, although other interpretations cannot be excluded at this level of complexity. These results thus provide attractive perspectives for structural evolution as well as imminent use in practice. Moreover, they validate automated HC-CAPA as an invaluable method to collect comprehensive data on cytosolic delivery within a reasonable time at a level of confidence that is otherwise inconceivable.
Collapse
Affiliation(s)
- Rémi Martinent
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Dongchen Du
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| |
Collapse
|
7
|
Affiliation(s)
- John Howl
- Research Institute in Healthcare Science, University of Wolverhampton Wolverhampton UK
| | - Sarah Jones
- Research Institute in Healthcare Science, University of Wolverhampton Wolverhampton UK
| |
Collapse
|
8
|
Meingast C, Heldt CL. Arginine‐enveloped virus inactivation and potential mechanisms. Biotechnol Prog 2019; 36:e2931. [DOI: 10.1002/btpr.2931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Christa Meingast
- Department of Civil and Environmental Engineering Michigan Technological University Houghton Michigan
| | - Caryn L. Heldt
- Department of Chemical Engineering Michigan Technological University Houghton Michigan
| |
Collapse
|
9
|
Sakai T, Kawano K, Iino M, Takeuchi T, Imanishi M, Futaki S. Loosening of Lipid Packing by Cell‐Surface Recruitment of Amphiphilic Peptides by Coiled‐Coil Tethering. Chembiochem 2019; 20:2151-2159. [DOI: 10.1002/cbic.201900347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Takayuki Sakai
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Kenichi Kawano
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Masatomo Iino
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Toshihide Takeuchi
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Miki Imanishi
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Shiroh Futaki
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
10
|
Lu S, Cui W, Li J, Sheng Y, Chen P. Functional Control of Peptide Amphiphile Assemblies via Modulation of Internal Cohesion and Surface Chemistry Switch. Chemistry 2018; 24:13931-13937. [PMID: 29974535 DOI: 10.1002/chem.201803026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 01/01/2023]
Abstract
Understanding the impacts of the internal cohesion and surface chemistry of supramolecular systems on the collective behaviors in the contacts between the systems and biomolecules can greatly expand the functional diversity and adaptivity of supramolecular nanostructures. Here we show how the tuned molecular interactions modulate the morphologies and internal cohesion of peptide amphiphile (PA) self-assemblies and their resultant functions. Circular dichroism spectroscopy, fluorescence probing, atomic force and electron microscopy, along with molecular dynamics simulations, revealed that the PA self-assembly formed compact long fibers when surface charge repulsion was screened, but formed loose short fibers or micelle-like assemblies when hydrogen bonding was disrupted or hydrophobic core was enhanced. More importantly, depending on the strength of the phospholipid affinity for the cationic segment of the PA, the same internal cohesion of PA nanostructures can lead to either cell death or cell survival, providing unique insights into the design of supramolecular materials.
Collapse
Affiliation(s)
- Sheng Lu
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Weijia Cui
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jason Li
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yuebiao Sheng
- Department of Physics and High Performance Computing Center, Nanjing University, Nanjing, 210093, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|