1
|
Shukla R, Sen A. Hydrogen- and halogen-bonding-directed trimeric supramolecular motifs in dihalogenated 1,2,4-triazoles. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:163-170. [PMID: 38682692 DOI: 10.1107/s2052520624002427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
Hydrogen-bonding and halogen-bonding interactions are important noncovalent interactions that play a significant role in the crystal structure of organic molecules. An in-depth analysis is given of the crystal packing of two previously reported crystal structures of dihalogenated 1,2,4-triazole derivatives, namely 3,5-dichloro-1H-1,2,4-triazole and 3,5-dibromo-1H-1,2,4-triazole. This work provides insights into the complex interplay of hydrogen-bonding and halogen-bonding interactions resulting in the formation of multiple trimeric motifs in the crystal structure of 1,2,4-triazole derivatives. Analysis of the crystal packing of these isostructural crystal structures revealed that the molecular arrangement in these molecules is primarily stabilized by the formation of different trimeric motifs stabilized by N-H...N hydrogen bonds, N-H...X (X = Cl/Br) halogen bonds and C-X...X halogen-bonding interactions. Computational studies further revealed that all these trimers are energetically stable. A crystallographic database search further reveals that while the cyclic trimers reported in this study are present in other molecules, structures analyzed in this study are the sole instances where all are present simultaneously.
Collapse
Affiliation(s)
- Rahul Shukla
- Department of Chemistry (NCI Laboratory), School of Science, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Anik Sen
- Department of Chemistry (CMDD Laboratory), School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
2
|
Novoa T, Laplaza R, Peccati F, Fuster F, Contreras-García J. The NCIWEB Server: A Novel Implementation of the Noncovalent Interactions Index for Biomolecular Systems. J Chem Inf Model 2023; 63:4483-4489. [PMID: 37537899 DOI: 10.1021/acs.jcim.3c00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
It is well-known that the activity and function of proteins is strictly correlated with their secondary, tertiary, and quaternary structures. Their biological role is regulated by their conformational flexibility and global fold, which, in turn, is largely governed by complex noncovalent interaction networks. Because of the large size of proteins, the analysis of their noncovalent interaction networks is challenging, but can provide insights into the energetics of conformational changes or protein-protein and protein-ligand interactions. The noncovalent interaction (NCI) index, based on the reduced density gradient, is a well-established tool for the detection of weak contacts in biological systems. In this work, we present a web-based application to expand the use of this index to proteins, which only requires a molecular structure as input and provides a mapping of the number, type, and strength of noncovalent interactions. Structure preparation is automated and allows direct importing from the PDB database, making this server (https://nciweb.dsi.upmc.fr) accessible to scientists with limited experience in bioinformatics. A quick overview of this tool and concise instructions are presented, together with an illustrative application.
Collapse
Affiliation(s)
- Trinidad Novoa
- Laboratoire de Chimie Théorique, LCT, Sorbonne Université, CNRS, F-75005 Paris, France
- Laboratoire Jacques-Louis Lions, LJLL, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Rubén Laplaza
- Laboratoire de Chimie Théorique, LCT, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Francesca Peccati
- Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Franck Fuster
- Laboratoire de Chimie Théorique, LCT, Sorbonne Université, CNRS, F-75005 Paris, France
| | | |
Collapse
|
3
|
Kojasoy V, Tantillo DJ. Importance of Noncovalent Interactions Involving Sulfur Atoms in Thiopeptide Antibiotics─Glycothiohexide α and Nocathiacin I. J Phys Chem A 2023; 127:2081-2090. [PMID: 36855831 DOI: 10.1021/acs.jpca.2c07600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Noncovalent interactions involving sulfur atoms play essential roles in protein structure and function by significantly contributing to protein stability, folding, and biological activity. Sulfur is a highly polarizable atom that can participate in many types of noncovalent interactions including hydrogen bonding, sulfur-π interactions, and S-lone pair interactions, but the impact of these sulfur-based interactions on molecular recognition and drug design is still often underappreciated. Here, we examine, using quantum chemical calculations, the roles of sulfur-based noncovalent interactions in complex naturally occurring molecules representative of thiopeptide antibiotics: glycothiohexide α and its close structural analogue nocathiacin I. While donor-acceptor orbital interactions make only very small contributions, electrostatic and dispersion contributions are predicted to be significant in many cases. In pursuit of understanding the magnitudes and nature of these noncovalent interactions, we made potential structural modifications that could significantly expand the chemical space of effective thiopeptide antibiotics.
Collapse
Affiliation(s)
- Volga Kojasoy
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| |
Collapse
|
4
|
Kojasoy V, Tantillo DJ. Impacts of noncovalent interactions involving sulfur atoms on protein stability, structure, folding, and bioactivity. Org Biomol Chem 2022; 21:11-23. [PMID: 36345987 DOI: 10.1039/d2ob01602h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review discusses the various types of noncovalent interactions in which sulfur atoms participate and their effects on protein stability, structure, folding and bioactivity. Current approaches and recommendations for modelling these noncovalent interactions (in terms of both geometries and interaction energies) are highlighted.
Collapse
Affiliation(s)
- Volga Kojasoy
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Yamada M, Kurihara Y, Koizumi M, Tsuji K, Maeda Y, Suzuki M. Understanding the Nature and Strength of Noncovalent Face‐to‐Face Arene–Fullerene Interactions. Angew Chem Int Ed Engl 2022; 61:e202212279. [DOI: 10.1002/anie.202212279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Michio Yamada
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Yukiyo Kurihara
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Masaaki Koizumi
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Kasumi Tsuji
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Yutaka Maeda
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Mitsuaki Suzuki
- Department of Chemistry Josai University Sakado Saitama 350-0295 Japan
| |
Collapse
|
6
|
Yamada M, Kurihara Y, Koizumi M, Tsuji K, Maeda Y, Suzuki M. Understanding the Nature and Strength of Noncovalent Face‐to‐Face Arene–Fullerene Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michio Yamada
- Tokyo Gakugei University Department of Chemistry 4-1-1 Nukuikitamachi 184-8501 Koganei, Tokyo JAPAN
| | - Yukiyo Kurihara
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Masaaki Koizumi
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Kasumi Tsuji
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Yutaka Maeda
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Mitsuaki Suzuki
- Josai University: Josai Daigaku Department of Chemistry JAPAN
| |
Collapse
|
7
|
Zhuang B, Vos MH. Photoswitching Behavior of Flavin-Inhibitor Complex in a Nonphotocatalytic Flavoenzyme. J Am Chem Soc 2022; 144:11569-11573. [PMID: 35727223 DOI: 10.1021/jacs.2c04763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An unprecedented photoswitching phenomenon of flavin-inhibitor complexes in a flavoenzyme was revealed by femtosecond transient absorption spectroscopy. The vast majority of flavoenzymes, including monomeric sarcosine oxidase (MSOX), perform non-light-driven physiological functions. Yet, the participation of flavin cofactors in photoinduced electron transfer reactions is widespread. MSOX catalyzes the oxidative demethylation of sarcosine; methylthioacetate (MTA) is a substrate analog inhibitor that forms a complex with MSOX exhibiting intense absorption bands over the whole visible range due to flavin-MTA charge transfer (CT) interactions. Here, we demonstrate that upon excitation, these CT interactions vanish during a barrierless high quantum yield reaction in ∼300 fs. The initial complex subsequently geminately re-forms in a few nanoseconds near room temperature in a thermally activated way with an activation energy of 28 kJ/mol. We attribute this hitherto undocumented process to a well-defined photoinduced isomerization of MTA in the active site, as corroborated by experiments with the heavier ligand methylselenoacetate. Photoisomerization phenomena involving CT transitions may be further explored in photocatalytic and photoswitching applications of flavoenzymes.
Collapse
Affiliation(s)
- Bo Zhuang
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
8
|
Jian J, Hammink R, Tinnemans P, Bickelhaupt FM, McKenzie CJ, Poater J, Mecinović J. Probing Noncovalent Interactions in [3,3]Metaparacyclophanes. J Org Chem 2022; 87:6087-6096. [PMID: 35471006 DOI: 10.1021/acs.joc.2c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arene-arene interactions are fundamentally important in molecular recognition. To precisely probe arene-arene interactions in cyclophanes, we designed and synthesized (2,6-phenol)paracyclophanes and (2,6-aniline)paracyclophanes that possess two aromatic rings in close proximity. Fine-tuning the aromatic character of one aromatic ring by fluorine substituents enables investigations on the intramolecular interactions between the electron-rich phenol and aniline with tetra-H- and tetra-F-substituted benzene. pKa measurements revealed that the tetra-F-template increases the acidity of the phenol (ΔpKa = 0.55). X-ray crystallography and computational analyses demonstrated that all [3,3]metaparacyclophanes adopt cofacial parallel conformations, implying the presence of π-π stacking interactions. Advanced quantum chemical analyses furthermore revealed that both electrostatic interactions and orbital interactions provide the key contribution to the structure and stability of [3,3]metaparacyclophanes.
Collapse
Affiliation(s)
- Jie Jian
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Roel Hammink
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Paul Tinnemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - F Matthias Bickelhaupt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jordi Poater
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.,Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
9
|
Jian J, Hammink R, McKenzie CJ, Bickelhaupt FM, Poater J, Mecinović J. Do Sulfonamides Interact with Aromatic Rings? Chemistry 2021; 27:5721-5729. [PMID: 33377554 DOI: 10.1002/chem.202004732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/07/2022]
Abstract
Aromatic rings form energetically favorable interactions with many polar groups in chemical and biological systems. Recent molecular studies have shown that sulfonamides can chelate metal ions and form hydrogen bonds, however, it is presently not established whether the polar sulfonamide functionality also interacts with aromatic rings. Here, synthetic, spectroscopic, structural, and quantum chemical analyses on 2,6-diarylbenzenesulfonamides are reported, in which two flanking aromatic rings are positioned close to the central sulfonamide moiety. Fine-tuning the aromatic character by substituents on the flanking rings leads to linear trends in acidity and proton affinity of sulfonamides. This physical-organic chemistry study demonstrates that aromatic rings have a capacity to stabilize sulfonamides via through-space NH-π interactions. These results have implications in rational drug design targeting electron-rich aromatic rings in proteins.
Collapse
Affiliation(s)
- Jie Jian
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej, 55, 5230, Odense, Denmark
| | - Roel Hammink
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA, Nijmegen, The Netherlands
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej, 55, 5230, Odense, Denmark
| | - F Matthias Bickelhaupt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Jordi Poater
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.,Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej, 55, 5230, Odense, Denmark
| |
Collapse
|
10
|
Yamada M, Narita H, Maeda Y. A Fullerene‐Based Molecular Torsion Balance for Investigating Noncovalent Interactions at the C
60
Surface. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Michio Yamada
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1 Koganei Tokyo 184-8501 Japan
| | - Haruna Narita
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1 Koganei Tokyo 184-8501 Japan
| | - Yutaka Maeda
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1 Koganei Tokyo 184-8501 Japan
| |
Collapse
|
11
|
Yamada M, Narita H, Maeda Y. A Fullerene-Based Molecular Torsion Balance for Investigating Noncovalent Interactions at the C 60 Surface. Angew Chem Int Ed Engl 2020; 59:16133-16140. [PMID: 32458522 DOI: 10.1002/anie.202005888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/12/2022]
Abstract
To investigate the nature and strength of noncovalent interactions at the fullerene surface, molecular torsion balances consisting of C60 and organic moieties connected through a biphenyl linkage were synthesized. NMR and computational studies show that the unimolecular system remains in equilibrium between well-defined folded and unfolded conformers owing to restricted rotation around the biphenyl C-C bond. The energy differences between the two conformers depend on the substituents and is ascribed to differences in the intramolecular noncovalent interactions between the organic moieties and the fullerene surface. Fullerenes favor interacting with the π-faces of benzenes bearing electron-donating substituents. The correlation between the folding free energies and corresponding Hammett constants of the substituents in the arene-containing torsion balances reflects the contributions of the electrostatic interactions and dispersion force to face-to-face arene-fullerene interactions.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo, 184-8501, Japan
| | - Haruna Narita
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo, 184-8501, Japan
| | - Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo, 184-8501, Japan
| |
Collapse
|
12
|
Mora Lagares L, Minovski N, Caballero Alfonso AY, Benfenati E, Wellens S, Culot M, Gosselet F, Novič M. Homology Modeling of the Human P-glycoprotein (ABCB1) and Insights into Ligand Binding through Molecular Docking Studies. Int J Mol Sci 2020; 21:ijms21114058. [PMID: 32517082 PMCID: PMC7312539 DOI: 10.3390/ijms21114058] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ABCB1 transporter also known as P-glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette super-family of transporters; it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping the compounds out of cells. P-gp contributes to a decrease of toxicity and possesses broad substrate specificity. It is involved in the failure of numerous anticancer and antiviral chemotherapies due to the multidrug resistance (MDR) phenomenon, where it removes the chemotherapeutics out of the targeted cells. Understanding the details of the ligand–P-gp interaction is therefore crucial for the development of drugs that might overcome the MRD phenomenon and for obtaining a more effective prediction of the toxicity of certain compounds. In this work, an in silico modeling was performed using homology modeling and molecular docking methods with the aim of better understanding the ligand–P-gp interactions. Based on different mouse P-gp structural templates from the PDB repository, a 3D model of the human P-gp (hP-gp) was constructed by means of protein homology modeling. The homology model was then used to perform molecular docking calculations on a set of thirteen compounds, including some well-known compounds that interact with P-gp as substrates, inhibitors, or both. The sum of ranking differences (SRD) was employed for the comparison of the different scoring functions used in the docking calculations. A consensus-ranking scheme was employed for the selection of the top-ranked pose for each docked ligand. The docking results showed that a high number of π interactions, mainly π–sigma, π–alkyl, and π–π type of interactions, together with the simultaneous presence of hydrogen bond interactions contribute to the stability of the ligand–protein complex in the binding site. It was also observed that some interacting residues in hP-gp are the same when compared to those observed in a co-crystallized ligand (PBDE-100) with mouse P-gp (PDB ID: 4XWK). Our in silico approach is consistent with available experimental results regarding P-gp efflux transport assay; therefore it could be useful in the prediction of the role of new compounds in systemic toxicity.
Collapse
Affiliation(s)
- Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia;
- Correspondence: (L.M.L.); (M.N.); Tel.: +386-01-476-0253 (L.M.L. & M.N.)
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | - Ana Yisel Caballero Alfonso
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia;
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche “Mario Negri”—IRCCS, 20156 Milano, Italy;
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche “Mario Negri”—IRCCS, 20156 Milano, Italy;
| | - Sara Wellens
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (S.W.); (M.C.); (F.G.)
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (S.W.); (M.C.); (F.G.)
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (S.W.); (M.C.); (F.G.)
| | - Marjana Novič
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
- Correspondence: (L.M.L.); (M.N.); Tel.: +386-01-476-0253 (L.M.L. & M.N.)
| |
Collapse
|
13
|
Theoretical study on the M-H···π interactions between metal hydrides and inorganic benzene B3X3H3(X = O, S, Se). Struct Chem 2019. [DOI: 10.1007/s11224-019-01474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Savastano M, García-Gallarín C, López de la Torre MD, Bazzicalupi C, Bianchi A, Melguizo M. Anion-π and lone pair-π interactions with s-tetrazine-based ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Aliev AE, Motherwell WB. Some Recent Advances in the Design and Use of Molecular Balances for the Experimental Quantification of Intramolecular Noncovalent Interactions of π Systems. Chemistry 2019; 25:10516-10530. [DOI: 10.1002/chem.201900854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/09/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Abil E. Aliev
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - William B. Motherwell
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
16
|
Wang Y, Pigeon P, Top S, Sanz García J, Troufflard C, Ciofini I, McGlinchey MJ, Jaouen G. Atypical Lone Pair–π Interaction with Quinone Methides in a Series of Imido‐Ferrociphenol Anticancer Drug Candidates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Wang
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| | - Pascal Pigeon
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| | - Siden Top
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| | - Juan Sanz García
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
| | - Claire Troufflard
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| | - Ilaria Ciofini
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
| | | | - Gérard Jaouen
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| |
Collapse
|
17
|
Wang Y, Pigeon P, Top S, Sanz García J, Troufflard C, Ciofini I, McGlinchey MJ, Jaouen G. Atypical Lone Pair-π Interaction with Quinone Methides in a Series of Imido-Ferrociphenol Anticancer Drug Candidates. Angew Chem Int Ed Engl 2019; 58:8421-8425. [PMID: 30977944 DOI: 10.1002/anie.201902456] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/29/2019] [Indexed: 11/10/2022]
Abstract
Ferrociphenols, especially those possessing a heterocycle at the terminus of an aliphatic chain, display strong anticancer activity through a novel redox mechanism that generates active metabolites such as quinone methides (QMs). X-ray crystallography and UV/Vis spectroscopy reveal that the specific lone pair (lp)-π interaction between a carbonyl group of the imide and the quinone motif of the QM plays an important role in the exceptional cytotoxic behaviour of their imido-ferrociphenol precursors. This intramolecular lp-π interaction markedly enhanced the stability of the QMs and lowered the pKa values of the corresponding phenol/phenolate couples. As the first example of such a non-covalent interaction that stabilizes QMs remotely, it not only expands the scope of the lp-π interaction in supramolecular chemistry, but also represents a new mode of stabilization of a QM. This unprecedented application of lp-π interactions in imido-ferrociphenol anticancer drug candidates may also have great potential in drug discovery and organocatalyst design.
Collapse
Affiliation(s)
- Yong Wang
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France.,Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| | - Pascal Pigeon
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France.,Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| | - Siden Top
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| | - Juan Sanz García
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Claire Troufflard
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| | - Ilaria Ciofini
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | | | - Gérard Jaouen
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France.,Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| |
Collapse
|
18
|
Lopes AB, Wagner P, Gulea M. Synthesis of Benzimidazole-Fused Medium-Sized N,S
-Heterocycles via Palladium-Catalyzed Cyclizations. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandra Basilio Lopes
- Laboratoire d'Innovation Thérapeutique (LIT) UMR 7200; Faculté de Pharmacie; Université de Strasbourg, CNRS; route du Rhin 67401 Illkirch France
| | - Patrick Wagner
- Laboratoire d'Innovation Thérapeutique (LIT) UMR 7200; Faculté de Pharmacie; Université de Strasbourg, CNRS; route du Rhin 67401 Illkirch France
| | - Mihaela Gulea
- Laboratoire d'Innovation Thérapeutique (LIT) UMR 7200; Faculté de Pharmacie; Université de Strasbourg, CNRS; route du Rhin 67401 Illkirch France
| |
Collapse
|