1
|
Zaker A, Auclair K. Impact of Ball Milling on the Microstructure of Polyethylene Terephthalate. CHEMSUSCHEM 2025; 18:e202401506. [PMID: 39374337 PMCID: PMC11826142 DOI: 10.1002/cssc.202401506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Polyethylene terephthalate (PET) is a semi-crystalline polymer that finds broad use. Consequently, it contributes to the accumulation of plastics in the environment, warranting PET recycling technologies. Ball milling is a commonly used technique for the micronization of plastics before transformation. It has also recently been reported as an efficient mixing strategy for the enzymatic hydrolysis of plastics in moist-solid mixtures. However, the effect of milling on the microstructure of PET has not been systematically investigated. Thus, the primary objective of this study is to characterize the changes to the PET microstructure caused by various ball milling conditions. PET of different forms was examined, including pre- and post-consumer PET, as well as textiles. The material was treated to a range of milling frequencies and duration, before analysis of particle size, crystallinity by differential scanning calorimetry and powder X-ray diffraction, and morphology by scanning electron microscopy. Interestingly, our results suggest the convergence of crystallinity to ~30 % within 15 minutes of milling at 30 Hz. These results are consistent with an equilibrium between amorphous and crystalline regions of the polymer being established during ball milling. The combined data constitutes a reference guide for PET milling and recycling research.
Collapse
Affiliation(s)
- Ali Zaker
- Department of ChemistryMcGill UniversityMontréal, QCH3A 0B8Canada
| | - Karine Auclair
- Department of ChemistryMcGill UniversityMontréal, QCH3A 0B8Canada
| |
Collapse
|
2
|
Anglou E, Chang Y, Bradley W, Sievers C, Boukouvala F. Modeling Mechanochemical Depolymerization of PET in Ball-Mill Reactors Using DEM Simulations. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:9003-9017. [PMID: 38903749 PMCID: PMC11187622 DOI: 10.1021/acssuschemeng.3c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Developing efficient and sustainable chemical recycling pathways for consumer plastics is critical for mitigating the negative environmental implications associated with their end-of-life management. Mechanochemical depolymerization reactions have recently garnered great attention, as they are recognized as a promising solution for solvent-free transformation of polymers to monomers in the solid state. To this end, physics-based models that accurately describe the phenomena within ball mills are necessary to facilitate the exploration of operating conditions that would lead to optimal performance. Motivated by this, in this paper we develop a mathematical model that couples results from discrete element method (DEM) simulations and experiments to study mechanically-induced depolymerization. The DEM model was calibrated and validated via video experimental data and computer vision algorithms. A systematic study on the influence of the ball-mill operating parameters revealed a direct relationship between the operating conditions of the vibrating milling vessel and the total energy supplied to the system. Moreover, we propose a linear correlation between the high-fidelity DEM simulation results and experimental monomer yield data for poly(ethylene terephthalate) depolymerization, linking mechanical and energetic variables. Finally, we train a reduced-order model to address the high computational cost associated with DEM simulations. The predicted working variables are used as inputs to the proposed mathematical expression which allows for the fast estimation of monomer yields.
Collapse
Affiliation(s)
- Elisavet Anglou
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta , Georgia 30332, United States
| | - Yuchen Chang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta , Georgia 30332, United States
| | - William Bradley
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta , Georgia 30332, United States
| | - Carsten Sievers
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta , Georgia 30332, United States
- Renewable
Bioproducts Institute, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Fani Boukouvala
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta , Georgia 30332, United States
| |
Collapse
|
3
|
Kaabel S, Arciszewski J, Borchers TH, Therien JPD, Friščić T, Auclair K. Solid-State Enzymatic Hydrolysis of Mixed PET/Cotton Textiles. CHEMSUSCHEM 2023; 16:e202201613. [PMID: 36165763 DOI: 10.1002/cssc.202201613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Waste polyester textiles are not recycled due to separation challenges and partial structural degradation during use and recycling. Chemical recycling of polyethylene terephthalate (PET) textiles through depolymerization can provide a feedstock of recycled monomers to make "as-new" polymers. While enzymatic PET recycling is a more selective and more sustainable approach, methods in development, however, have thus far been limited to clean, high-quality PET feedstocks, and require an energy-intensive melt-amorphization step ahead of enzymatic treatment. Here, high-crystallinity PET in mixed PET/cotton textiles could be directly and selectively depolymerized to terephthalic acid (TPA) by using a commercial cutinase from Humicola insolens under moist-solid reaction conditions, affording up to 30±2 % yield of TPA. The process was readily combined with cotton depolymerization through simultaneous or sequential application of the cellulase enzymes CTec2®, providing up to 83±4 % yield of glucose without any negative influence on the TPA yield.
Collapse
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
- Department of Bioproducts and Biosystems, Aalto University, 02150, Espoo, Finland
| | - Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Tristan H Borchers
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - J P Daniel Therien
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| |
Collapse
|
4
|
Penneru SK, Saharay M, Krishnan M. CelS-Catalyzed Processive Cellulose Degradation and Cellobiose Extraction for the Production of Bioethanol. J Chem Inf Model 2022; 62:6628-6638. [PMID: 35649216 DOI: 10.1021/acs.jcim.2c00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial cellulase enzymes are potent candidates for the efficient production of bioethanol, a promising alternative to fossil fuels, from cellulosic biomass. These enzymes catalyze the breakdown of cellulose in plant biomass into simple sugars and then to bioethanol. In the absence of the enzyme, the cellulosic biomass is recalcitrant to decomposition due to fermentation-resistant lignin and pectin coatings on the cellulose surface, which make them inaccessible for hydrolysis. Cellobiohydrolase CelS is a microbial enzyme that binds to cellulose fiber and efficiently cleaves it into a simple sugar (cellobiose) by a repeated processive chopping mechanism. The two contributing factors to the catalytic reaction rate and the yield of cellobiose are the efficient product expulsion from the product binding site of CelS and the movement of the substrate or cellulose chain into the active site. Despite progress in understanding product expulsion in other cellulases, much remains to be understood about the molecular mechanism of processive action of these enzymes. Here, nonequilibrium molecular dynamics simulations using suitable reaction coordinates are carried out to investigate the energetics and mechanism of the substrate dynamics and product expulsion in CelS. The calculated free energy barrier for the product expulsion is three times lower than that for the processive action indicating that product removal is relatively easier and faster than the sliding of the substrate to the catalytic active site. The water traffic near the active site in response to the product expulsion and the processive action is also explored.
Collapse
Affiliation(s)
- Sree Kavya Penneru
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996-1939, United States
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
5
|
Arciszewski J, Auclair K. Mechanoenzymatic Reactions Involving Polymeric Substrates or Products. CHEMSUSCHEM 2022; 15:e202102084. [PMID: 35104019 DOI: 10.1002/cssc.202102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mechanoenzymology is an emerging field in which mechanical mixing is used to sustain enzymatic reactions in low-solvent or solvent-free mixtures. Many enzymes have been reported that thrive under such conditions. Considering the central role of biopolymers and synthetic polymers in our society, this minireview highlights the use of mechanoenzymology for the synthesis or depolymerization of oligomeric or polymeric materials. In contrast to traditional in-solution reactions, solvent-free mechanoenzymology has the advantages of avoiding solubility issues, proceeding in a minimal volume, and reducing solvent waste while potentially improving the reaction efficiency and accessing new reactivity. It is expected that this strategy will continue to gain popularity and find more applications.
Collapse
Affiliation(s)
- Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
6
|
Pfennig VS, Villella RC, Nikodemus J, Bolm C. Mechanochemical Grignard Reactions with Gaseous CO 2 and Sodium Methyl Carbonate. Angew Chem Int Ed Engl 2022; 61:e202116514. [PMID: 34942056 PMCID: PMC9306648 DOI: 10.1002/anie.202116514] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/10/2022]
Abstract
A one-pot, three-step protocol for the preparation of Grignard reagents from organobromides in a ball mill and their subsequent reactions with gaseous carbon dioxide (CO2 ) or sodium methyl carbonate providing aryl and alkyl carboxylic acids in up to 82 % yield is reported. Noteworthy are the short reaction times and the significantly reduced solvent amounts [2.0 equiv. for liquid assisted grinding (LAG) conditions]. Unexpectedly, aryl bromides with methoxy substituents lead to symmetric ketones as major products.
Collapse
Affiliation(s)
- Victoria S. Pfennig
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Romina C. Villella
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Julia Nikodemus
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
7
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mingyuan He
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Research Institute of Petrochem Processing, SINOPEC Beijing 100083 China
| | - Yuhan Sun
- Low Carbon Energy Conversion Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 China
- Shanghai Low Carbon Technology Innovation Platform Shanghai 210620 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
8
|
Separation of Lignocellulose and Preparation of Xylose from Miscanthus lutarioriparius with a Formic Acid Method. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efficient component separation technology is one of the key ways to improve the efficiency of lignocellulose bioconversion. In this study, the formic acid method was used to separate the components of lignocellulose from Miscanthus lutarioriparius, hemicellulose was degraded into xylose simultaneously, and the composition and structure of the separated components were analyzed. Then, xylose was further purified with activated carbon for decolorization and resins for the removal of formic acid and other monosaccharide impurities. The results showed that formic acid could effectively separate the cellulose, hemicellulose, and lignin of lignocellulose with recoveries of 91.7%, 80.2%, and 85.3%, respectively. Structural analyses revealed that the cellulose and lignin underwent different degrees of formylation during the formic acid treatment, yet their primary structures remained intact, and the crystallinity of cellulose increased significantly. By GC–MS and HPLC analysis, xylose was the main component of hemicellulose extract, accounting for 74.90%. The activated carbon treatment decolorized the xylose extract more than 93.66% and gave a xylose recovery of 88.58%. D301 resin could effectively remove more than 99% of the formic acid residue in xylose. The xylose extract was further purified by removing arabinose and other monosaccharide impurities with Dowex 50wx4 resin, which increased the purity to 95%. The results demonstrated that the formic acid method is an effective method to separate lignocellulose and prepare xylose, and it has broad application prospects in the field of bio-refining lignocellulose resources such as Miscanthus lutarioriparius
Collapse
|
9
|
Pfennig VS, Villella RC, Nikodemus J, Bolm C. Mechanochemical Grignard Reactions with Gaseous CO
2
and Sodium Methyl Carbonate**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Victoria S. Pfennig
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Romina C. Villella
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Julia Nikodemus
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
10
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling Towards Carbon Neutrality. Angew Chem Int Ed Engl 2021; 61:e202112835. [PMID: 34919305 DOI: 10.1002/anie.202112835] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/10/2022]
Abstract
Green carbon science is defined as "Study and optimization of the transformation of carbon containing compounds and the relevant processes involved in the entire carbon cycle from carbon resource processing, carbon energy utilization, and carbon recycling to use carbon resources efficiently and minimize the net CO2 emission." [1] Green carbon science is related closely to carbon neutrality, and the relevant fields have developed quickly in the last decade. In this Minireview, we proposed the concept of carbon energy index, and the recent progresses in petroleum refining, production of liquid fuels, chemicals, and materials using coal, methane, CO2, biomass, and waste plastics are highlighted in combination with green carbon science, and an outlook for these important fields is provided in the final section.
Collapse
Affiliation(s)
- Mingyuan He
- East China Normal University, Department of Chemistry, 200062, Shanghai, CHINA
| | - Yuhan Sun
- Chinese Academy of Sciences, Shanghai Advanced Research Institute, 201203, Shanghai, CHINA
| | - Buxing Han
- Chinese Academy of Sciences, Institute of Chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA
| |
Collapse
|
11
|
Pérez-Venegas M, Juaristi E. Mechanoenzymology: State of the Art and Challenges towards Highly Sustainable Biocatalysis. CHEMSUSCHEM 2021; 14:2682-2688. [PMID: 33882180 DOI: 10.1002/cssc.202100624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Global awareness of the importance of developing environmentally friendlier and more sustainable methods for the synthesis of valuable chemical compounds has led to the design of novel synthetic strategies, involving bio- and organocatalysis as well as the application of novel efficient and ground-breaking technologies such as present-day solvent-free mechanochemistry. In this regard, the evaluation of biocatalytic protocols mediated by the combination of mechanical activation and enzymatic catalysis has recently attracted the attention of the chemical community. Such mechanoenzymatic strategy represents an innovative and promising "green" approach in chemical synthesis that poses nevertheless new paradigms regarding the relative resilience of biomolecules to the mechanochemical stress and to the apparent high energy, at least in so-called hot-spots, during the milling process. Herein, relevant comments on the conceptualization of such mechanoenzymatic approach as a sustainable option in chemical synthesis, recent progress in the area, and associated challenges are discussed.
Collapse
Affiliation(s)
- Mario Pérez-Venegas
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Eusebio Juaristi
- Chemistry Department Centro de Investigación y de Estudios Avanzados, 07360, Ciudad de México, Mexico
- El Colegio Nacional, Luis González Obregón # 23, Centro Histórico, 06020, Ciudad de México, Mexico
| |
Collapse
|
12
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
13
|
Štrukil V. Highly Efficient Solid-State Hydrolysis of Waste Polyethylene Terephthalate by Mechanochemical Milling and Vapor-Assisted Aging. CHEMSUSCHEM 2021; 14:330-338. [PMID: 32986929 DOI: 10.1002/cssc.202002124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Despite significant methodological and technological advancements in chemical recycling of synthetic polymers, an efficient and quantitative conversion of post-consumer polyethylene terephthalate (PET) into terephthalic acid (TPA) under ambient conditions of temperature and pressure still remains a challenge. In this respect, the application of mechanochemistry and multiple advantages offered by solid-state ball milling and vapor-assisted aging have remained insufficiently explored. To further expand their potential, the implementation of organic solvent-free milling as a superior methodology for successful alkaline depolymerization of waste PET (e. g., bottles and textile) into TPA monomer in near-quantitative yields was reported herein. The solid-state alkaline PET hydrolysis was also shown to proceed in excellent yields under aging conditions in humid environment or in the presence of alcohol vapors. Moreover, the performance of mechanochemical ball milling and aging in the gram-scale depolymerization of PET into TPA was demonstrated.
Collapse
Affiliation(s)
- Vjekoslav Štrukil
- Laboratory for Physical Organic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
14
|
Pérez‐Venegas M, Rodríguez‐Treviño AM, Juaristi E. Dual Mechanoenzymatic Kinetic Resolution of (±)‐Ketorolac. ChemCatChem 2020. [DOI: 10.1002/cctc.201902292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mario Pérez‐Venegas
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | | | - Eusebio Juaristi
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
- El Colegio Nacional Donceles 104 Ciudad de México 06020 Mexico
| |
Collapse
|
15
|
Hammerer F, Ostadjoo S, Friščić T, Auclair K. Towards Controlling the Reactivity of Enzymes in Mechanochemistry: Inert Surfaces Protect β-Glucosidase Activity During Ball Milling. CHEMSUSCHEM 2020; 13:106-110. [PMID: 31593363 DOI: 10.1002/cssc.201902752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The activity of β-glucosidases-the enzymes responsible for the final step in the enzymatic conversion of cellulose to glucose-can be maintained and manipulated under mechanochemical conditions in the absence of bulk solvent, either through an unexpected stabilization effect of inert surfaces, or by altering the enzymatic equilibrium. The reported results illustrate unique aspects of mechanoenzymatic reactions that are not observable in conventional aqueous solutions. They also represent the first reported strategies to enhance activity and favor either direction of the reaction under mechanochemical conditions.
Collapse
Affiliation(s)
- Fabien Hammerer
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal (QC), H3A 0B8, Canada
| | - Shaghayegh Ostadjoo
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal (QC), H3A 0B8, Canada
| | - Tomislav Friščić
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal (QC), H3A 0B8, Canada
| | - Karine Auclair
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal (QC), H3A 0B8, Canada
| |
Collapse
|
16
|
Kaabel S, Friščić T, Auclair K. Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. Chembiochem 2019; 21:742-758. [PMID: 31651073 DOI: 10.1002/cbic.201900567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sandra Kaabel
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
17
|
Pérez‐Venegas M, Tellez‐Cruz MM, Solorza‐Feria O, López‐Munguía A, Castillo E, Juaristi E. Thermal and Mechanical Stability of Immobilized
Candida antarctica
Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mario Pérez‐Venegas
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | - Miriam M. Tellez‐Cruz
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | - Omar Solorza‐Feria
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | - Agustín López‐Munguía
- Department of cellular engineering and biocatalysisUniversidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa 62210 Cuernavaca Mexico
| | - Edmundo Castillo
- Department of cellular engineering and biocatalysisUniversidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa 62210 Cuernavaca Mexico
| | - Eusebio Juaristi
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
- El Colegio Nacional Luis Gonzáles Obregón 23 Ciudad de México 06020 Mexico
| |
Collapse
|
18
|
Efficient Enzymatic Hydrolysis of Biomass Hemicellulose in the Absence of Bulk Water. Molecules 2019; 24:molecules24234206. [PMID: 31756935 PMCID: PMC6930478 DOI: 10.3390/molecules24234206] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/20/2023] Open
Abstract
Current enzymatic methods for hemicellulosic biomass depolymerization are solution-based, typically require a harsh chemical pre-treatment of the material and large volumes of water, yet lack in efficiency. In our study, xylanase (E.C. 3.2.1.8) from Thermomyces lanuginosus is used to hydrolyze xylans from different sources. We report an innovative enzymatic process which avoids the use of bulk aqueous, organic or inorganic solvent, and enables hydrolysis of hemicellulose directly from chemically untreated biomass, to low-weight, soluble oligoxylosaccharides in >70% yields.
Collapse
|
19
|
Affiliation(s)
- Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Laboratoire SPCMIB, CNRS UMR 5068 Université de Toulouse UPS 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Cristina Mottillo
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
20
|
Friščić T, Mottillo C, Titi HM. Mechanochemistry for Synthesis. Angew Chem Int Ed Engl 2019; 59:1018-1029. [DOI: 10.1002/anie.201906755] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Laboratoire SPCMIB, CNRS UMR 5068 Université de Toulouse UPS 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Cristina Mottillo
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
21
|
Therien JPD, Hammerer F, Friščić T, Auclair K. Mechanoenzymatic Breakdown of Chitinous Material to N-Acetylglucosamine: The Benefits of a Solventless Environment. CHEMSUSCHEM 2019; 12:3481-3490. [PMID: 31211476 DOI: 10.1002/cssc.201901310] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Chitin is not only the most abundant nitrogen-containing biopolymer on the planet, but also a renewable feedstock that is often treated as a waste. Current chemical methods to break down chitin typically employ harsh conditions, large volumes of solvent, and generate a mixture of products. Although enzymatic methods have been reported, they require a harsh chemical pretreatment of the chitinous substrate and rely on dilute solution conditions that are remote from the natural environment of microbial chitinase enzymes, which typically consists of surfaces exposed to air and moisture. We report an innovative and efficient mechanoenzymatic method to hydrolyze chitin to the N-acetylglucosamine monomer by using chitinases under the recently developed reactive aging (RAging) methodology, based on repeating cycles of brief ball-milling followed by aging, in the absence of bulk solvent. Our results demonstrate that the activity of chitinases increases several times by switching from traditional solution-based conditions of enzymatic catalysis to solventless RAging, which operates on moist solid substrates. Importantly, RAging is also highly efficient for the production of N-acetylglucosamine directly from shrimp and crab shell biomass without any other processing except for a gentle wash with aqueous acetic acid.
Collapse
Affiliation(s)
- J P Daniel Therien
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Fabien Hammerer
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
22
|
CSC and CIC Awards 2019. Angew Chem Int Ed Engl 2019; 58:5801-5802. [DOI: 10.1002/anie.201903119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Preise von CSC und CIC 2019. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Xing H, Yaylayan V. Mechanochemically Induced Controlled Glycation of Lysozyme and Its Effect on Enzymatic Activity and Conformational Changes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3249-3255. [PMID: 30811194 DOI: 10.1021/acs.jafc.9b00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein glycation through heating of a mixture of protein and reducing sugars is one of the most commonly used methods of protein modification; however, in most cases, this approach can lead to uncontrolled glycation. The hypothesis that mechanical energy supplied through ball milling can induce glycation of proteins was tested using a well-characterized enzyme lysozyme. The Q-TOF/MS analysis of the milled samples has indicated that the milling of sugar-protein mixtures in stainless steel jars for 30 min and at a frequency of 30 Hz generated mainly monoglycated proteins even with the highly reactive ribose. Increasing the sugar concentration or the milling time did not influence the overall yield or generate more glycoforms. Enzymatic activity measurements, FTIR, and fluorescence spectroscopic studies have indicated that milling of lysozyme alone leads to a significant loss in enzymatic activity and structural integrity in contrast to milling in the presence of sugars.
Collapse
Affiliation(s)
- Haoran Xing
- Department of Food Science & Agricultural Chemistry , McGill University , 21111 Lakeshore , Ste Anne de Bellevue , Quebec Canada , H9X 3 V9
| | - Varoujan Yaylayan
- Department of Food Science & Agricultural Chemistry , McGill University , 21111 Lakeshore , Ste Anne de Bellevue , Quebec Canada , H9X 3 V9
| |
Collapse
|
25
|
Zhang ZY, Ji D, Mao W, Cui Y, Wang Q, Han L, Zhong H, Wei Z, Zhao Y, Nørgaard K, Li T. Dry Chemistry of Ferrate(VI): A Solvent-Free Mechanochemical Way for Versatile Green Oxidation. Angew Chem Int Ed Engl 2018; 57:10949-10953. [DOI: 10.1002/anie.201805998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| | - Deyang Ji
- Center for Nanotechnology; Heisenbergstraße 11 48149 Münster Germany
| | - Wenting Mao
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yu Cui
- State Key Laboratory of Superlattices and Microstructures; Institute of Semiconductors; Chinese Academy of Sciences; Beijing 100083 China
| | - Qing Wang
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| | - Lu Han
- School of Chemical Science and Engineering; Tongji University; Shanghai 200092 China
| | - Hongliang Zhong
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures; Institute of Semiconductors; Chinese Academy of Sciences; Beijing 100083 China
| | - Yixin Zhao
- School of Environmental Science and Engineering; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Kasper Nørgaard
- Nano-Science Center & Department of Chemistry; University of Copenhagen; Universitetsparken 5 Copenhagen 2100 Denmark
| | - Tao Li
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
26
|
Zhang ZY, Ji D, Mao W, Cui Y, Wang Q, Han L, Zhong H, Wei Z, Zhao Y, Nørgaard K, Li T. Dry Chemistry of Ferrate(VI): A Solvent-Free Mechanochemical Way for Versatile Green Oxidation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| | - Deyang Ji
- Center for Nanotechnology; Heisenbergstraße 11 48149 Münster Germany
| | - Wenting Mao
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yu Cui
- State Key Laboratory of Superlattices and Microstructures; Institute of Semiconductors; Chinese Academy of Sciences; Beijing 100083 China
| | - Qing Wang
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| | - Lu Han
- School of Chemical Science and Engineering; Tongji University; Shanghai 200092 China
| | - Hongliang Zhong
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures; Institute of Semiconductors; Chinese Academy of Sciences; Beijing 100083 China
| | - Yixin Zhao
- School of Environmental Science and Engineering; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Kasper Nørgaard
- Nano-Science Center & Department of Chemistry; University of Copenhagen; Universitetsparken 5 Copenhagen 2100 Denmark
| | - Tao Li
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication, (Ministry of Education); Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
27
|
Bolm C, Hernández JG. From Synthesis of Amino Acids and Peptides to Enzymatic Catalysis: A Bottom-Up Approach in Mechanochemistry. CHEMSUSCHEM 2018; 11:1410-1420. [PMID: 29436773 DOI: 10.1002/cssc.201800113] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Recently, chemical reactions induced or facilitated by mechanical energy have gained recognition in diverse areas of chemical synthesis. In particular, mechanosyntheses of amino acids and short peptides, along with their applications in catalysis, have revealed the high degree of stability of peptide bonds in environments of harsh mechanical stress. These observations quickly led to the recent interest in developing mechanochemical enzymatic reactions. Experimentally, manual grinding, ball-milling techniques, and twin-screw extrusion technology have proven valuable to convey mechanical forces into a chemical synthesis. These practices have enabled the establishment of more sustainable alternatives for chemical synthesis by reducing the use of organic solvents and waste production, thereby having a direct impact on the E-factor of the chemical process. In this Minireview, the series of events that allowed the development of mechanochemical enzymatic reactions are described from a bottom-up perspective.
Collapse
Affiliation(s)
- Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|