1
|
Chen J, Wu W, Peng Y, Fang Z, Hu Y, Guo K. Ene-Reductases-Catalyzed Non-Natural Reactions. Chemistry 2025; 31:e202500539. [PMID: 40105339 DOI: 10.1002/chem.202500539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/20/2025]
Abstract
Flavin-dependent ene-reductases (EREDs), members of the Old Yellow Enzyme (OYE) superfamily, are highly efficient biocatalysts primarily known for catalyzing the asymmetric reduction of activated alkenes. Beyond this native function, the chemical versatility of the flavin cofactor and the sophisticated architecture of their protein structures enable EREDs to exhibit catalytic multifunctionality. The catalytic promiscuity not only highlights the adaptability of these enzymes but also expands their potential to broaden the scope of enzyme-catalyzed reactions in organic synthesis. Given the inherent challenges associated with discovering novel enzyme activities, such catalytic promiscuity of EREDs offers a promising pathway for expanding their applications. This mini-review provides a comprehensive overview of the catalytic multifunctionality of flavin-dependent EREDs, with a particular focus on their "non-natural" functionalities in organic synthesis. This review is primarily divided into two main sections: hydride-dependent reactions and hydride-independent reactions. By highlighting these unconventional biocatalytic pathways, we aim to inspire further exploration into the untapped potential of EREDs and their role in advancing synthetic chemistry.
Collapse
Affiliation(s)
- Jie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Wenjing Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Yongzhen Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Institution, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| |
Collapse
|
2
|
Lonardi G, Parolin R, Licini G, Orlandi M. Catalytic Asymmetric Conjugate Reduction. Angew Chem Int Ed Engl 2023; 62:e202216649. [PMID: 36757599 DOI: 10.1002/anie.202216649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Enantioselective reduction reactions are privileged transformations for the construction of trisubstituted stereogenic centers. While these include established synthetic strategies, such as asymmetric hydrogenation, methods based on the enantioselective addition of hydridic reagents to electrophilic prochiral substrates have also gained importance. In this context, the asymmetric conjugate reduction (ACR) of α,β-unsaturated compounds has become a convenient approach for the synthesis of chiral compounds with trisubstituted stereocenters in α-, β-, or γ-position to electron-withdrawing functional groups. Because such activating groups are diverse and amenable of further derivatizations, ACRs provide a general and powerful synthetic entry towards a variety of valuable chiral building blocks. This Review provides a comprehensive collection of catalytic ACR methods involving transition-metal, organic, and enzymatic catalysis since its first versions dating back to the late 1970s.
Collapse
Affiliation(s)
- Giovanni Lonardi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Riccardo Parolin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Manuel Orlandi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| |
Collapse
|
3
|
Skourti E, Macheroux P. In conversation with Peter Macheroux. FEBS J 2022; 290:2208-2213. [PMID: 36308323 DOI: 10.1111/febs.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 01/23/2023]
Abstract
Peter Macheroux is Professor of Biochemistry and Head of the Institute of Biochemistry at Graz University of Technology in Austria. Peter's research spans a diverse selection of topics, and his work has contributed significantly towards advancing our understanding of bacterial enzymology, plant physiology and the molecular pathways that underlie human pathophysiology. Among Peter's many scientific achievements, he has led the team that recognised DPP3 as a biomarker for cardiovascular diseases, with the subsequent therapeutic implications of the development of DPP3 inhibitors. In this interview-based article, Peter provides an overview of his research focus and goals, recalls some of his great scientific breakthroughs and describes what the key current challenges in his research field are.
Collapse
Affiliation(s)
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
4
|
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022; 28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.
Collapse
Affiliation(s)
- Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Chemistry Department and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
5
|
Kunzendorf A, Xu G, Saifuddin M, Saravanan T, Poelarends GJ. Biocatalytic Asymmetric Cyclopropanations via Enzyme‐Bound Iminium Ion Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andreas Kunzendorf
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Guangcai Xu
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Mohammad Saifuddin
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Present address: Molecular Enzymology Group University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Present address: School of Chemistry University of Hyderabad P.O. Central University, Gachibowli Hyderabad 500046 India
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
6
|
Kunzendorf A, Xu G, Saifuddin M, Saravanan T, Poelarends GJ. Biocatalytic Asymmetric Cyclopropanations via Enzyme-Bound Iminium Ion Intermediates. Angew Chem Int Ed Engl 2021; 60:24059-24063. [PMID: 34490955 PMCID: PMC8596749 DOI: 10.1002/anie.202110719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/05/2021] [Indexed: 12/16/2022]
Abstract
Cyclopropane rings are an important structural motif frequently found in many natural products and pharmaceuticals. Commonly, biocatalytic methodologies for the asymmetric synthesis of cyclopropanes rely on repurposed or artificial heme enzymes. Here, we engineered an unusual cofactor‐independent cyclopropanation enzyme based on a promiscuous tautomerase for the enantioselective synthesis of various cyclopropanes via the nucleophilic addition of diethyl 2‐chloromalonate to α,β‐unsaturated aldehydes. The engineered enzyme promotes formation of the two new carbon‐carbon bonds with excellent stereocontrol over both stereocenters, affording the desired cyclopropanes with high diastereo‐ and enantiopurity (d.r. up to 25:1; e.r. up to 99:1). Our results highlight the usefulness of promiscuous enzymes for expanding the biocatalytic repertoire for non‐natural reactions.
Collapse
Affiliation(s)
- Andreas Kunzendorf
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Guangcai Xu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Mohammad Saifuddin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Present address: Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Present address: School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad, 500046, India
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
7
|
Abstract
The Pd-catalyzed carbon-carbon bond formation pioneered by Heck in 1969 has dominated medicinal chemistry development for the ensuing fifty years. As the demand for more complex three-dimensional active pharmaceuticals continues to increase, preparative enzyme-mediated assembly, by virtue of its exquisite selectivity and sustainable nature, is poised to provide a practical and affordable alternative for accessing such compounds. In this minireview, we summarize recent state-of-the-art developments in practical enzyme-mediated assembly of carbocycles. When appropriate, background information on the enzymatic transformation is provided and challenges and/or limitations are also highlighted.
Collapse
Affiliation(s)
- Weijin Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Douglass F Taber
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Hans Renata
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Mantel M, Giesler M, Guder M, Rüthlein E, Hartmann L, Pietruszka J. Lewis‐Base‐Brønsted‐Säure‐Enzym‐Katalyse in enantioselektiven mehrstufigen Eintopf‐Synthesen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marvin Mantel
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Deutschland
| | - Markus Giesler
- Institut für Organische und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Marian Guder
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) Forschungszentrum Jülich GmbH 52428 Jülich Deutschland
| | - Elisabeth Rüthlein
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Deutschland
| | - Laura Hartmann
- Institut für Organische und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Deutschland
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) Forschungszentrum Jülich GmbH 52428 Jülich Deutschland
| |
Collapse
|
9
|
Mantel M, Giesler M, Guder M, Rüthlein E, Hartmann L, Pietruszka J. Lewis Base-Brønsted Acid-Enzyme Catalysis in Enantioselective Multistep One-Pot Syntheses. Angew Chem Int Ed Engl 2021; 60:16700-16706. [PMID: 33856095 PMCID: PMC8360128 DOI: 10.1002/anie.202103406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/08/2021] [Indexed: 12/23/2022]
Abstract
Establishing one-pot, multi-step protocols combining different types of catalysts is one important goal for increasing efficiency in modern organic synthesis. In particular, the high potential of biocatalysts still needs to be harvested. Based on an in-depth mechanistic investigation of a new organocatalytic protocol employing two catalysts {1,4-diazabicyclo[2.2.2]octane (DABCO); benzoic acid (BzOH)}, a sequence was established providing starting materials for enzymatic refinement (ene reductase; alcohol dehydrogenase): A gram-scale access to a variety of enantiopure key building blocks for natural product syntheses was enabled utilizing up to six catalytic steps within the same reaction vessel.
Collapse
Affiliation(s)
- Marvin Mantel
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
| | - Markus Giesler
- Institut für Organische und Makromolekulare ChemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Marian Guder
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1)Forschungszentrum Jülich GmbH52428JülichGermany
| | - Elisabeth Rüthlein
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
| | - Laura Hartmann
- Institut für Organische und Makromolekulare ChemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Jörg Pietruszka
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1)Forschungszentrum Jülich GmbH52428JülichGermany
| |
Collapse
|
10
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
11
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
12
|
Li H, Chen H, Zhou Y, Huang J, Yi J, Zhao H, Wang W, Jing L. Selective Synthesis of Z-Cinnamyl Ethers and Cinnamyl Alcohols through Visible Light-Promoted Photocatalytic E to Z Isomerization. Chem Asian J 2020; 15:555-559. [PMID: 31901002 DOI: 10.1002/asia.201901778] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/19/2022]
Abstract
A photocatalytic E to Z isomerization of alkenes using an iridium photosensitizer under mild reaction conditions is disclosed. This method provides scalable and efficient access to Z-cinnamyl ether and allylic alcohol derivatives in high yields with excellent stereoselectivity. Importantly, this method also provides a powerful strategy for the selective synthesis of Z-magnolol and honokiol derivatives possessing potential biological activity.
Collapse
Affiliation(s)
- Hengchao Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Hang Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Yang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Jin Huang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Jundan Yi
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Hongcai Zhao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Wei Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| |
Collapse
|
13
|
Peters C, Frasson D, Sievers M, Buller R. Novel Old Yellow Enzyme Subclasses. Chembiochem 2019; 20:1569-1577. [DOI: 10.1002/cbic.201800770] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/12/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Christin Peters
- Competence Center for BiocatalysisInstitute of Chemistry and BiotechnologySchool of Life Sciences and Facility ManagementZurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - David Frasson
- Molecular BiologyInstitute of Chemistry and BiotechnologySchool of Life Sciences and Facility ManagementZurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Martin Sievers
- Molecular BiologyInstitute of Chemistry and BiotechnologySchool of Life Sciences and Facility ManagementZurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Rebecca Buller
- Competence Center for BiocatalysisInstitute of Chemistry and BiotechnologySchool of Life Sciences and Facility ManagementZurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|