1
|
Li H, Goldfuss B, Dickschat JS. Enzyme-Catalysed Formation of Hydrocarbon Scaffolds from Geranylgeranyl Diphosphate Analogs with Shifted Double Bonds. Chemistry 2025; 31:e202500712. [PMID: 40067141 PMCID: PMC12015392 DOI: 10.1002/chem.202500712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Four analogs of geranylgeranyl diphosphate (GGPP) with shifted double bonds were synthesised and enzymatically converted with 14 diterpene synthases of previously reported function, including two newly characterised homologs of the benditerpe-2,6,15-triene synthase Bnd4 and the venezuelaene synthase VenA. In successful cases the products were isolated and structurally characterised by NMR spectroscopy, revealing the formation of various diterpenoids with skeletons that have not been reported from natural sources. Isotopic labelling experiments in conjunction with DFT calculations were performed to give insights into hydride migrations in the biosynthesis of the non-natural diterpenes benditerpe-2,7(19),15-triene and venezuelaxenene and their natural counterparts from GGPP.
Collapse
Affiliation(s)
- Heng Li
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Department for ChemistryUniversity of CologneGreinstraße 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
2
|
Li H, Goldfuss B, Dickschat JS. On the Role of Hydrogen Migrations in the Taxadiene System. Angew Chem Int Ed Engl 2025; 64:e202422788. [PMID: 39749413 PMCID: PMC11933516 DOI: 10.1002/anie.202422788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Taxa-4,11-diene is made by the taxa-4,11-diene synthase (TxS) from Taxus brevifolia. The unique reactivity of the taxane system is characterised by long distance hydrogen migrations in the biosynthesis. This study demonstrates that selective long range hydrogen migrations also play a role in the high energy process of the EI-MS fragmentation of taxa-4,11-diene. A TxS enzyme variant was generated that produces cyclophomactene, a compound that is formed through a concerted process involving a long range proton shift and a ring closure that can also be described as the addition of a methylcarbinyl cation to an olefin. Based on a previous computational study the cyclisation mechanism towards taxa-4,11-diene was suggested to involve two long distance proton migrations instead of one direct transfer. A substrate analog with a shifted double bond was converted with TxS to obtain experimental evidence for this proposal.
Collapse
Affiliation(s)
- Heng Li
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Department for ChemistryUniversity of CologneGreinstrasse 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
3
|
Xu H, Li H, Goldfuss B, Schnakenburg G, Dickschat JS. Biosynthesis of the Non-Canonical C 17 Sesquiterpenoids Chlororaphen A and B from Pseudomonas Chlororaphis. Angew Chem Int Ed Engl 2024; 63:e202412040. [PMID: 39023217 DOI: 10.1002/anie.202412040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Chlororaphens A and B are structurally unique non-canonical C17 sesquiterpenoids from Pseudomonas chlororaphis that are made by two SAM-dependent methyltransferases and a type I terpene synthase. This study addresses the mechanism of their formation in isotopic labelling experiments and DFT calculations. The results demonstrate an astonishing complexity with distribution of labellings within a cyclopentane core that is reversely connected to two acyclic fragments in chlororaphen A and B. In addition, the uptake of up to 14 deuterium atoms from D2O was observed. These findings are explainable by a repeated late stage multistep rearrangement sequence. The absolute configurations of the chlororaphens and their biosynthetic intermediates were elucidated in stereoselective labelling experiments.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Heng Li
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
4
|
Liu JY, Lin FL, Taizoumbe KA, Lv JM, Wang YH, Wang GQ, Chen GD, Yao XS, Hu D, Gao H, Dickschat JS. A Functional Switch Between Asperfumene and Fusicoccadiene Synthase and Entrance to Asperfumene Biosynthesis through a Vicinal Deprotonation-Reprotonation Process. Angew Chem Int Ed Engl 2024; 63:e202407895. [PMID: 38949843 DOI: 10.1002/anie.202407895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and-according to a structural model-active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.
Collapse
Affiliation(s)
- Jing-Yuan Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Fu-Long Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Kizerbo A Taizoumbe
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
5
|
Tabekoueng GB, Li H, Goldfuss B, Schnakenburg G, Dickschat JS. Skeletal Rearrangements in the Enzyme-Catalysed Biosynthesis of Coral-Type Diterpenes from Chitinophaga pinensis. Angew Chem Int Ed Engl 2024:e202413860. [PMID: 39195349 DOI: 10.1002/anie.202413860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Two diterpene synthases from the bacterium Chitinophaga pinensis were characterised. The first enzyme mainly produced the rearranged diterpene palmatol, a compound known from octocorals, while the second enzyme made the new coral-type eunicellane chitinol. The mechanisms of both enzymes were deeply studied through isotopic labelling experiments, DFT calculations, and with a substrate analog containing a saturated double bond, resulting in the formation of derailment products that gave additional insights into the nature of the cyclisation cascade intermediates. The formation of coral-type diterpenes poses interesting questions on the functions of these compounds in organisms as different as bacteria and corals.
Collapse
Affiliation(s)
- Georges B Tabekoueng
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Heng Li
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
6
|
Xu M, Xu H, Lei Z, Xing B, Dickschat JS, Yang D, Ma M. Structural Insights Into the Terpene Cyclization Domains of Two Fungal Sesterterpene Synthases and Enzymatic Engineering for Sesterterpene Diversification. Angew Chem Int Ed Engl 2024; 63:e202405140. [PMID: 38584136 DOI: 10.1002/anie.202405140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Little is known about the structures and catalytic mechanisms of sesterterpene synthases (StTSs), which greatly hinders the structure-based engineering of StTSs for structural diversity expansion of sesterterpenes. We here report on the crystal structures of the terpene cyclization (TC) domains of two fungal StTSs: sesterfisherol synthase (NfSS) and sesterbrasiliatriene synthase (PbSS). Both TC structures contain benzyltriethylammonium chloride (BTAC), pyrophosphate (PPi), and magnesium ions (Mg2+), clearly defining the catalytic active sites. A combination of theory and experiments including carbocationic intermediates modeling, site-directed mutagenesis, and isotope labeling provided detailed insights into the structural basis for their catalytic mechanisms. Structure-based engineering of NfSS and PbSS resulted in the formation of 20 sesterterpenes including 13 new compounds and four pairs of epimers with different configurations at C18. These results expand the structural diversity of sesterterpenes and provide important insights for future synthetic biology research.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Houchao Xu
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Zhenyu Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
7
|
Gu B, Goldfuss B, Dickschat JS. Two Sesterterpene Synthases from Lentzea atacamensis Demonstrate the Role of Conformational Variability in Terpene Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401539. [PMID: 38372063 DOI: 10.1002/anie.202401539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1. Notably, for both enzymes the products cannot all be explained from one and the same starting conformation of geranylfarnesyl diphosphate, demonstrating the requirement of conformational flexibility of the substrate in the enzymes' active sites. For lentzeadiene an intriguing thermal [1,5]-sigmatropic rearrangement was discovered, reminiscent of the biosynthesis of vitamin D3. All enzyme reactions and the [1,5]-sigmatropic rearrangement were investigated through isotopic labeling experiments and DFT calculations. The results also emphasize the importance of conformational changes during terpene cyclizations.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
8
|
Xu H, Köllner TG, Chen F, Dickschat JS. Functional and Mechanistic Characterization of the 4,5-diepi-Isoishwarane Synthase from the Liverwort Radula lindenbergiana. Chembiochem 2024; 25:e202400104. [PMID: 38372483 DOI: 10.1002/cbic.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
The microbial type sesquiterpene synthase RlMTPSL4 from the liverwort Radula lindenbergiana was investigated for its products, showing the formation of several sesquiterpene hydrocarbons. The main product was structurally characterized as the new compound 4,5-diepi-isoishwarane, while the side products included the known hydrocarbons germacrene A, α-selinene, eremophilene and 4,5-diepi-aristolochene. The cyclization mechanism towards 4,5-diepi-isoishwarane catalyzed by RlMTPSL4 was investigated through isotopic labeling experiments, revealing the stereochemical course for the deprotonation step to the neutral intermediate germacrene A, a reprotonation for its further cyclization, and a 1,2-hydride shift along the cascade. The absolute configuration of 4,5-diepi-isoishwarane was determined using a stereoselective deuteration approach, revealing an absolute configuration typically observed for a microbial type sesquiterpene.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN, 37996-4561, USA
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
9
|
Li H, Dickschat JS. Enzymatic Synthesis of Diterpenoids from iso-GGPP III: A Geranylgeranyl Diphosphate Analog with a Shifted Double Bond. Chemistry 2024; 30:e202303560. [PMID: 37947363 DOI: 10.1002/chem.202303560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
The analog of the diterpene precursor geranylgeranyl diphosphate with a double bond shifted from C14=C15 to C15=C16 (named iso-GGPP III) has been synthesized and enzymatically converted with six bacterial diterpene synthases; this allowed the isolation of nine unnatural diterpenes. For some of the enzyme-substrate combinations, the different reactivity implemented in the substrate analog iso-GGPP III opened reaction pathways that are not observed with natural GGPP, resulting in the formation of diterpenes with novel skeletons. A stereoselective deuteration strategy was used to assign the absolute configurations of the isolated diterpenes.
Collapse
Affiliation(s)
- Heng Li
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
10
|
Dickschat JS, Quan Z, Schnakenburg G. A Case of Convergent Evolution: The Bacterial Sesquiterpene Synthase for 1-epi-Cubenol from Nonomuraea coxensis. Chembiochem 2023; 24:e202300581. [PMID: 37748088 DOI: 10.1002/cbic.202300581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
A terpene synthase from Nonomuraea coxensis was identified as (+)-1-epi-cubenol synthase. The enzyme is phylogenetically unrelated to the known enzyme of the same function that is widespread in streptomycetes. Isotopic labelling experiments were performed to unambiguously assign the NMR data and to investigate hydrogen migrations during terpene cyclisations. Epoxidations of (+)-1-epi-cubenol and of the plant derived compounds (-)-cubenol and (-)-1-epi-cubenol confirmed the structure of a natural product isolated from the brown alga Dictyopteris divaricata and allowed to conclude on its absolute configuration. The crystal structures of the epoxides from (+)- and (-)-1-epi-cubenol and the acid catalysed conversion into an isomeric ketone are reported.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Gregor Schnakenburg
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
11
|
Taizoumbe KA, Steiner ST, Dickschat JS. Mechanistic Characterisation of Collinodiene Synthase, a Diterpene Synthase from Streptomyces collinus. Chemistry 2023; 29:e202302469. [PMID: 37579200 DOI: 10.1002/chem.202302469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Two homologs of the diterpene synthase CotB2 from Streptomyces collinus (ScCotB2) and Streptomyces iakyrus (SiCotB2) were investigated for their products by in vitro incubations of the recombinant enzymes with geranylgeranyl pyrophosphate, followed by compound isolation and structure elucidation by NMR. ScCotB2 produced the new compound collinodiene, besides the canonical CotB2 product cyclooctat-9-en-7-ol, dolabella-3,7,18-triene and dolabella-3,7,12-triene, while SiCotB2 gave mainly cyclooctat-9-en-7-ol and only traces of dolabella-3,7,18-triene. The cyclisation mechanism towards the ScCotB2 products and their absolute configurations were investigated through isotopic labelling experiments.
Collapse
Affiliation(s)
- Kizerbo A Taizoumbe
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Simon T Steiner
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
12
|
Gu B, Goldfuss B, Dickschat JS. Mechanistic Characterisation and Engineering of Sesterviolene Synthase from Streptomyces violens. Angew Chem Int Ed Engl 2023; 62:e202215688. [PMID: 36350768 PMCID: PMC10107272 DOI: 10.1002/anie.202215688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 11/10/2022]
Abstract
The sesterviolene synthase from Streptomyces violens was identified and represents the second known sesterterpene synthase from bacteria. Isotopic labelling experiments in conjunction with DFT calculations were performed that provided detailed insight into its complex cyclisation mechanism. Enzyme engineering through site-directed mutagenesis gave access to a high-yielding enzyme variant that provided six additional minor products and the main product in sufficient quantities to study its chemistry.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
13
|
Li H, Dickschat JS. Diterpene Biosynthesis from Geranylgeranyl Diphosphate Analogues with Changed Reactivities Expands Skeletal Diversity. Angew Chem Int Ed Engl 2022; 61:e202211054. [PMID: 36066489 PMCID: PMC9826473 DOI: 10.1002/anie.202211054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 01/11/2023]
Abstract
Two analogues of the diterpene precursor geranylgeranyl diphosphate with shifted double bonds, named iso-GGPP I and iso-GGPP II, were enzymatically converted with twelve diterpene synthases from bacteria, fungi and protists. The changed reactivity in the substrate analogues resulted in the formation of 28 new diterpenes, many of which exhibit novel skeletons.
Collapse
Affiliation(s)
- Heng Li
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
14
|
Li H, Dickschat JS. Diterpene Biosynthesis from Geranylgeranyl Diphosphate Analogues with Changed Reactivities Expands Skeletal Diversity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heng Li
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé-Institute for Organic Chemistry and Biochemistry GERMANY
| | - Jeroen S. Dickschat
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institute for Organic Chemistry and Biochemistry Gerhard-Domagk-Straße 1 53121 Bonn GERMANY
| |
Collapse
|
15
|
Xing B, Xu H, Li A, Lou T, Xu M, Wang K, Xu Z, Dickschat JS, Yang D, Ma M. Crystal Structure Based Mutagenesis of Cattleyene Synthase Leads to the Generation of Rearranged Polycyclic Diterpenes. Angew Chem Int Ed Engl 2022; 61:e202209785. [PMID: 35819825 PMCID: PMC9543850 DOI: 10.1002/anie.202209785] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/08/2022]
Abstract
The crystal structures of cattleyene synthase (apo-CyS), and CyS complexed with geranylgeranyl pyrophosphate (GGPP) were solved. The CySC59A variant exhibited an increased production of cattleyene and other diterpenes with diverse skeletons. Its structure showed a widened active site cavity explaining the relaxed selectivity. Isotopic labeling experiments revealed a remarkable cyclization mechanism involving several skeletal rearrangements for one of the novel diterpenes.
Collapse
Affiliation(s)
- Baiying Xing
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Houchao Xu
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Annan Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Tingting Lou
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Meng Xu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Kaibiao Wang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| |
Collapse
|
16
|
Xing B, Xu H, Li A, Lou T, Xu M, Wang K, Xu Z, Dickschat JS, Yang D, Ma M. Crystal Structure Based Mutagenesis of Cattleyene Synthase Leads to the Generation of Rearranged Polycyclic Diterpenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baiying Xing
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Houchao Xu
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Organic chemistry and biochemistry GERMANY
| | - Annan Li
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Tingting Lou
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Meng Xu
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Kaibiao Wang
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Zhengren Xu
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Jeroen S. Dickschat
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Organic chemistry and biochemistry GERMANY
| | - Donghui Yang
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Ming Ma
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines 38 Xueyuan Road, Haidian District 100191 Beijing CHINA
| |
Collapse
|
17
|
Quan Z, Hou A, Goldfuss B, Dickschat JS. Mechanism of the Bifunctional Multiple Product Sesterterpene Synthase AcAS from Aspergillus calidoustus. Angew Chem Int Ed Engl 2022; 61:e202117273. [PMID: 35072966 PMCID: PMC9303889 DOI: 10.1002/anie.202117273] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 01/06/2023]
Abstract
The multiproduct chimeric sesterterpene synthase AcAS from Aspergillus calidoustus yielded spirocyclic calidoustene, which exhibits a novel skeleton, besides five known sesterterpenes. The complex cyclisation mechanism to all six compounds was investigated by isotopic labelling experiments in combination with DFT calculations. Chemically synthesised 8-hydroxyfarnesyl diphosphate was converted with isopentenyl diphosphate and AcAS into four oxygenated sesterterpenoids that structurally resemble cytochrome P450 oxidation products of the sesterterpene hydrocarbons. Protein engineering of AcAS broadened the substrate scope and gave significantly improved enzyme yields.
Collapse
Affiliation(s)
- Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Anwei Hou
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Department of ChemistryUniversity of CologneGreinstraße 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
18
|
Abstract
Five analogs of dimethylallyl diphosphate (DMAPP) with additional or shifted Me groups were converted with isopentenyl diphosphate (IPP) and the fungal variediene synthase from Aspergillus brasiliensis (AbVS). These enzymatic reactions resulted in the formation of several new terpene analogs that were isolated and structurally characterised by NMR spectroscopy. Several DMAPP analogs showed a changed reactivity giving access to compounds with unusual skeletons. Their formation is mechanistically rationalised and the absolute configurations of all obtained compounds were determined through a stereoselective deuteration strategy, revealing absolute configurations that are analogous to that of the natural enzyme product variediene.
Collapse
Affiliation(s)
- Lin‐Fu Liang
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
19
|
Quan Z, Hou A, Goldfuss B, Dickschat JS. Mechanism of the Bifunctional Multiple Product Sesterterpene Synthase AcldAS from Aspergillus calidoustus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiyang Quan
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Organic Chemistry GERMANY
| | - Anwei Hou
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Organic Chemistry GERMANY
| | - Bernd Goldfuss
- University of Cologne: Universitat zu Koln Organic Chemistry GERMANY
| | - Jeroen S. Dickschat
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institute for Organic Chemistry and Biochemistry Gerhard-Domagk-Straße 1 53121 Bonn GERMANY
| |
Collapse
|
20
|
Hou A, Goldfuss B, Dickschat JS. Functional Switch and Ethyl Group Formation in the Bacterial Polytrichastrene Synthase from Chryseobacterium polytrichastri. Angew Chem Int Ed Engl 2021; 60:20781-20785. [PMID: 34318977 PMCID: PMC8518897 DOI: 10.1002/anie.202109465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Indexed: 12/19/2022]
Abstract
A reinvestigation of the linalool synthase from Chryseobacterium polytrichastri uncovered its diterpene synthase activity, yielding polytrichastrene A and polytrichastrol A with new skeletons, besides known wanju-2,5-diene and thunbergol. The enzyme mechanism was investigated by isotopic labeling experiments and DFT calculations to explain an unusual ethyl group formation. Rationally designed exchanges of active site residues showed major functional switches, resulting for I66F in the production of five more new compounds, including polytrichastrene B and polytrichastrol B, while A87T, A192V and the double exchange A87T, A192V gave a product shift towards wanju-2,5-diene.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Department of ChemistryUniversity of CologneGreinstraße 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
21
|
Hou A, Goldfuss B, Dickschat JS. Funktionaler Schalter und Ethylgruppenbildung der Bakteriellen Polytrichastrensynthase aus
Chryseobacterium polytrichastri. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anwei Hou
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Bernd Goldfuss
- Department Chemie Universität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
22
|
Lauterbach L, Hou A, Dickschat JS. Rerouting and Improving Dauc-8-en-11-ol Synthase from Streptomyces venezuelae to a High Yielding Biocatalyst. Chemistry 2021; 27:7923-7929. [PMID: 33769623 PMCID: PMC8252471 DOI: 10.1002/chem.202100962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/21/2022]
Abstract
The dauc-8-en-11-ol synthase from Streptomyces venezuelae was investigated for its catalytic activity towards alternative terpene precursors, specifically designed to enable new cyclisation pathways. Exchange of aromatic amino acid residues at the enzyme surface by site-directed mutagenesis led to a 4-fold increase of the yield in preparative scale incubations, which likely results from an increased enzyme stability instead of improved enzyme kinetics.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms Universität BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Anwei Hou
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms Universität BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms Universität BonnGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|
23
|
Xu H, Dickschat JS. Germacrene A-A Central Intermediate in Sesquiterpene Biosynthesis. Chemistry 2020; 26:17318-17341. [PMID: 32442350 PMCID: PMC7821278 DOI: 10.1002/chem.202002163] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Indexed: 01/17/2023]
Abstract
This review summarises known sesquiterpenes whose biosyntheses proceed through the intermediate germacrene A. First, the occurrence and biosynthesis of germacrene A in Nature and its peculiar chemistry will be highlighted, followed by a discussion of 6-6 and 5-7 bicyclic compounds and their more complex derivatives. For each compound the absolute configuration, if it is known, and the reasoning for its assignment is presented.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
24
|
Li G, Guo Y, Dickschat JS. Diterpen‐Biosynthese in
Catenulispora acidiphila
: Über den Mechanismus der Catenul‐14‐en‐6‐ol‐Synthase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Geng Li
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park 201203 Shanghai China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Yue‐Wei Guo
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park 201203 Shanghai China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
25
|
Li G, Guo YW, Dickschat JS. Diterpene Biosynthesis in Catenulispora acidiphila: On the Mechanism of Catenul-14-en-6-ol Synthase. Angew Chem Int Ed Engl 2020; 60:1488-1492. [PMID: 33169911 PMCID: PMC7839432 DOI: 10.1002/anie.202014180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Indexed: 11/15/2022]
Abstract
A new diterpene synthase from the actinomycete Catenulispora acidiphila was identified and the structures of its products were elucidated, including the absolute configurations by an enantioselective deuteration approach. The mechanism of the cationic terpene cyclisation cascade was deeply studied through the use of isotopically labelled substrates and of substrate analogues with partially blocked reactivity, resulting in derailment products that gave further insights into the intermediates along the cascade. Their chemistry was studied, leading to the biomimetic synthesis of a diterpenoid analogue of a brominated sesquiterpene known from the red seaweed Laurencia microcladia.
Collapse
Affiliation(s)
- Geng Li
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.,State Key Laboratory of Drug Research Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
26
|
Hou A, Dickschat JS. The Biosynthetic Gene Cluster for Sestermobaraenes-Discovery of a Geranylfarnesyl Diphosphate Synthase and a Multiproduct Sesterterpene Synthase from Streptomyces mobaraensis. Angew Chem Int Ed Engl 2020; 59:19961-19965. [PMID: 32749032 PMCID: PMC7693059 DOI: 10.1002/anie.202010084] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 01/23/2023]
Abstract
A biosynthetic gene cluster from Streptomyces mobaraensis encoding the first cases of a bacterial geranylfarnesyl diphosphate synthase and a type I sesterterpene synthase was identified. The structures of seven sesterterpenes produced by these enzymes were elucidated, including their absolute configurations. The enzyme mechanism of the sesterterpene synthase was investigated by extensive isotope labeling experiments.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
27
|
Hou A, Dickschat JS. Biosynthesegencluster für Sestermobaraene – Entdeckung einer Geranylfarnesyldiphosphatsynthase und einer Multiprodukt‐Sesterterpensynthase aus
Streptomyces mobaraensis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anwei Hou
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Deutschland
| |
Collapse
|
28
|
Lauterbach L, Goldfuss B, Dickschat JS. Two Diterpene Synthases from Chryseobacterium: Chryseodiene Synthase and Wanjudiene Synthase. Angew Chem Int Ed Engl 2020; 59:11943-11947. [PMID: 32342621 PMCID: PMC7383580 DOI: 10.1002/anie.202004691] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 01/11/2023]
Abstract
Two bacterial diterpene synthases (DTSs) from Chryseobacterium were characterised. The first enzyme yielded the new compound chryseodiene that closely resembles the known fusicoccane diterpenes from fungi, but its experimentally and computationally studied cyclisation mechanism is fundamentally different to the mechanism of fusicoccadiene synthase. The second enzyme produced wanjudiene, a diterpene hydrocarbon with a new skeleton, besides traces of the enantiomer of bonnadiene that was recently discovered from Allokutzneria albata.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Institute for Organic ChemistryUniversity of CologneGreinstraße 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
29
|
Lauterbach L, Goldfuss B, Dickschat JS. Zwei Diterpensynthasen aus
Chryseobacterium
: Chryseodien‐Synthase und Wanjudien‐Synthase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Bernd Goldfuss
- Institut für Organische Chemie, Universität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
30
|
Rinkel J, Dickschat JS. Mechanistic Studies on Trichoacorenol Synthase from Amycolatopsis benzoatilytica. Chembiochem 2020; 21:807-810. [PMID: 31553510 PMCID: PMC7155024 DOI: 10.1002/cbic.201900584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 01/17/2023]
Abstract
Isotopic labeling experiments performed with a newly identified bacterial trichoacorenol synthase established a 1,5-hydride shift occurring in the cyclization mechanism. During EI-MS analysis, major fragments of the sesquiterpenoid were shown to arise via cryptic hydrogen movements. Therefore, the interpretation of earlier results regarding the cyclization mechanism obtained by feeding experiments in Trichoderma is revised.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
31
|
Rinkel J, Steiner ST, Bian G, Chen R, Liu T, Dickschat JS. A Family of Related Fungal and Bacterial Di- and Sesterterpenes: Studies on Fusaterpenol and Variediene. Chembiochem 2020; 21:486-491. [PMID: 31476106 PMCID: PMC7065159 DOI: 10.1002/cbic.201900462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 01/28/2023]
Abstract
The absolute configuration of fusaterpenol (GJ1012E) has been revised by an enantioselective deuteration strategy. A bifunctional enzyme with a terpene synthase and a prenyltransferase domain from Aspergillus brasiliensis was characterised as variediene synthase, and the absolute configuration of its product was elucidated. The uniform absolute configurations of these and structurally related di- and sesterterpenes together with a common stereochemical course for the geminal methyl groups of GGPP unravel a similar conformational fold of the substrate in the active sites of the terpene synthases. For variediene, a thermal reaction observed during GC/MS analysis was studied in detail for which a surprising mechanism was uncovered.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Simon T. Steiner
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education andWuhan University School of Pharmaceutical Sciences185 Dunghu RoadWuhan430071P. R. China
| | - Rong Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education andWuhan University School of Pharmaceutical Sciences185 Dunghu RoadWuhan430071P. R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education andWuhan University School of Pharmaceutical Sciences185 Dunghu RoadWuhan430071P. R. China
| | - Jeroen S. Dickschat
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
32
|
Rinkel J, Dickschat JS. Characterization of Micromonocyclol Synthase from the Marine Actinomycete Micromonospora marina. Org Lett 2019; 21:9442-9445. [DOI: 10.1021/acs.orglett.9b03654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
33
|
Murai K, Lauterbach L, Teramoto K, Quan Z, Barra L, Yamamoto T, Nonaka K, Shiomi K, Nishiyama M, Kuzuyama T, Dickschat JS. An Unusual Skeletal Rearrangement in the Biosynthesis of the Sesquiterpene Trichobrasilenol from Trichoderma. Angew Chem Int Ed Engl 2019; 58:15046-15050. [PMID: 31418991 PMCID: PMC7687074 DOI: 10.1002/anie.201907964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Indexed: 11/08/2022]
Abstract
The skeletons of some classes of terpenoids are unusual in that they contain a larger number of Me groups (or their biosynthetic equivalents such as olefinic methylene groups, hydroxymethyl groups, aldehydes, or carboxylic acids and their derivatives) than provided by their oligoprenyl diphosphate precursor. This is sometimes the result of an oxidative ring-opening reaction at a terpene-cyclase-derived molecule containing the regular number of Me group equivalents, as observed for picrotoxan sesquiterpenes. In this study a sesquiterpene cyclase from Trichoderma spp. is described that can convert farnesyl diphosphate (FPP) directly via a remarkable skeletal rearrangement into trichobrasilenol, a new brasilane sesquiterpene with one additional Me group equivalent compared to FPP. A mechanistic hypothesis for the formation of the brasilane skeleton is supported by extensive isotopic labelling studies.
Collapse
Affiliation(s)
- Keiichi Murai
- Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Kazuya Teramoto
- Biotechnology Research CenterThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Lena Barra
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Tsuyoshi Yamamoto
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Makoto Nishiyama
- Biotechnology Research CenterThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
34
|
Murai K, Lauterbach L, Teramoto K, Quan Z, Barra L, Yamamoto T, Nonaka K, Shiomi K, Nishiyama M, Kuzuyama T, Dickschat JS. Eine ungewöhnliche Gerüstumlagerung in der Biosynthese des Sesquiterpens Trichobrasilenol aus Trichoderma. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Keiichi Murai
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Kazuya Teramoto
- Biotechnology Research Center The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Lena Barra
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Tsuyoshi Yamamoto
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Makoto Nishiyama
- Biotechnology Research Center The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
35
|
Affiliation(s)
- Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
36
|
Abstract
This Minireview summarises recent developments in the biosynthesis of diterpenes by diterpene synthases in bacteria. It is structured by the class of enzyme involved in the first committed step towards diterpenes, starting with type I diterpene synthases, followed by type II enzymes and the more recently discovered UbiA-related diterpene synthases. A special emphasis lies on the reaction mechanisms of diterpene synthases that convert simple linear precursors through cationic cascades into structurally complex, usually polycyclic carbon skeletons with multiple stereogenic centres. A further main focus of this Minireview is a discussion of how these mechanisms can be unravelled. Downstream modifications to bioactive molecules are also covered.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
37
|
Rinkel J, Steiner ST, Dickschat JS. Diterpenbiosynthese in Actinomyceten: Studien an Cattleyensynthase und Phomopsensynthase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und BiochemieUniversität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Simon T. Steiner
- Kekulé-Institut für Organische Chemie und BiochemieUniversität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und BiochemieUniversität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
38
|
Rinkel J, Steiner ST, Dickschat JS. Diterpene Biosynthesis in Actinomycetes: Studies on Cattleyene Synthase and Phomopsene Synthase. Angew Chem Int Ed Engl 2019; 58:9230-9233. [PMID: 31034729 DOI: 10.1002/anie.201902950] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Three diterpene synthases from actinomycetes have been studied. The first enzyme from Streptomyces cattleya produced the novel compound cattleyene. The other two enzymes from Nocardia testacea and Nocardia rhamnosiphila were identified as phomopsene synthases. The cyclisation mechanism of cattleyene synthase and the EIMS fragmentation mechanism of its product were extensively studied by incubation experiments with isotopically labelled precursors. Oxidative transformations expanded the chemical space of these unique diterpenes.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Simon T Steiner
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
39
|
Rinkel J, Dickschat JS. Addressing the Chemistry of Germacrene A by Isotope Labeling Experiments. Org Lett 2019; 21:2426-2429. [PMID: 30859837 DOI: 10.1021/acs.orglett.9b00725] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the central role of germacrene A in sesquiterpene biosynthesis and its widespread occurrence in nature, its complete NMR characterization is still pending. This problem was solved through enzymatic preparation of germacrene A isotopomers that allowed for a full signal assignment to all three conformers. The obtained materials gave insights into the stereochemical course of the Cope rearrangement to β-elemene and uncovered the Cope rearrangement as a new EI-MS fragmentation reaction.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute for Organic Chemistry and Biochemistry , University of Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry , University of Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| |
Collapse
|
40
|
Rinkel J, Lauterbach L, Dickschat JS. Eine verzweigte Diterpenkaskade: der Mechanismus der Spinodien-Synthase aus Saccharopolyspora spinosa. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
41
|
Rinkel J, Lauterbach L, Dickschat JS. A Branched Diterpene Cascade: The Mechanism of Spinodiene Synthase from Saccharopolyspora spinosa. Angew Chem Int Ed Engl 2018; 58:452-455. [DOI: 10.1002/anie.201812216] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| |
Collapse
|
42
|
Bian G, Rinkel J, Wang Z, Lauterbach L, Hou A, Yuan Y, Deng Z, Liu T, Dickschat JS. Eine chimäre pilzliche Diterpensynthase der Klade II-D aus Colletotrichum gloeosporioides
produziert Dolasta-1(15),8-dien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Zhangqian Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Anwei Hou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
| | - Yujie Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan 430075 China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan 430075 China
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
43
|
Bian G, Rinkel J, Wang Z, Lauterbach L, Hou A, Yuan Y, Deng Z, Liu T, Dickschat JS. A Clade II-D Fungal Chimeric Diterpene Synthase from Colletotrichum gloeosporioides Produces Dolasta-1(15),8-diene. Angew Chem Int Ed Engl 2018; 57:15887-15890. [PMID: 30277637 DOI: 10.1002/anie.201809954] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 01/28/2023]
Abstract
Based on a terpenoid overproduction platform in yeast for genome mining, a chimeric diterpene synthase from the endophytic fungus Colletotrichum gloeosporioides ES026 was characterized as the (5R,12R,14S)-dolasta-1(15),8-diene synthase. The absolute configuration was independently verified through the use of enantioselectively deuterated terpene precursors, which unequivocally established the predicted C1-III-IV cyclization mode for this first characterized clade II-D enzyme. Extensive isotopic labeling experiments and isolation of the intermediate (1R)-δ-araneosene supported the proposed cyclization mechanism.
Collapse
Affiliation(s)
- Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Zhangqian Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Anwei Hou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yujie Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, China
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|