1
|
Sobieski J, Gorczyński A, Jazani AM, Yilmaz G, Matyjaszewski K. Better Together: Photoredox/Copper Dual Catalysis in Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2025; 64:e202415785. [PMID: 39611372 DOI: 10.1002/anie.202415785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Indexed: 11/30/2024]
Abstract
Photomediated Atom Transfer Radical Polymerization (photoATRP) is an activator regeneration method, which allows for the controlled synthesis of well-defined polymers via light irradiation. Traditional photoATRP is often limited by the need for high-energy ultraviolet or violet light. These could negatively affect the control and selectivity of the polymerization, promote side reactions, and may not be applicable to biologically relevant systems. This drawback can be circumvented by an introduction of the catalytic amount of photocatalysts, which absorb visible and/or NIR light and, therefore, controlled, regenerative ATRP can be performed with the dual-catalytic cycle. Herein, a critical summary of recent developments in the field of dual-catalysis concerning Cu-catalyzed ATRP is provided. Contributions of involved species are examined mechanistically, followed by challenges and future directions towards the next generation of advanced functional macromolecular materials.
Collapse
Affiliation(s)
- Julian Sobieski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| |
Collapse
|
2
|
Ramu A, Rajendrakumar K. Evaluation of the Role of [{Cu(PMDETA)} 2(O 2 2-)] 2+ in Open-Air Photo ATRP of Methyl Methacrylate. ACS OMEGA 2024; 9:44916-44930. [PMID: 39554403 PMCID: PMC11561604 DOI: 10.1021/acsomega.4c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
Herein, we report an open-air, photo accelerated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) without employing any deoxygenating agent. Under open-air photo ATRP conditions, oxygen reversibly binds with [{Cu (PMDETA)}2(O2 2-)]2+ (1) to form the required activator, which was demonstrated by simple benchtop oxygen/nitrogen purging experiments. The binding mode of oxygen in (1) (μ(η2-η2) peroxo dicopper(II)) was investigated using UV Visible-NIR, FT-Raman and X-ray photoelectron (XPS) spectroscopic techniques. DFT studies and electrochemical measurements further support the catalytic role of (1) in open-air photo ATRP. With the synergistic involvement of Cu (II)Br2, PMDETA ligand and the intensity of light (365 nm, 4.2 mW cm-2), a well-controlled rapid polymerization of MMA under open-air condition was achieved (1.25< Đ < 1.47, 94% conversion in 200 min). The bromo chain end fidelity was exemplified by chain extension experiment, block copolymerization and MALDI-ToF analysis. Other monomers such as methyl acrylate, glycidyl methacrylate, and benzyl methacrylate were also polymerized under open-air condition with reasonable control over molecular weight and Đ. An open-air photo polymerization methodology would be fruitful for applications like photocurable printing, dental, optoelectronics, stereolithography, and protective coatings where simple but rapid photopolymerizations are desirable.
Collapse
Affiliation(s)
- Arumugam Ramu
- Department
of chemistry, School of Advanced Sciences Vellore Institute of Technology, Chennai 600127, India
| | - Kannapiran Rajendrakumar
- Centre
for Advanced Materials and Innovative Technologies (CAMIT) Vellore Institute of Technology, Chennai 600127, India
| |
Collapse
|
3
|
Singh M, Lee SC, Won K. Lignin phenolation by graft copolymerization to boost its reactivity. Int J Biol Macromol 2024; 266:131258. [PMID: 38556229 DOI: 10.1016/j.ijbiomac.2024.131258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Lignin is the most abundant phenolic biopolymer and a renewable resource of aromatics. It can be used as a phenol substitute in the synthesis of phenolic resins. However, lignin is not as reactive as phenol, so phenolation is generally carried out to improve lignin reactivity. In this work, we suggest a solution to circumvent the limitations of traditional phenolation (e.g., high temperature, strong acids/bases, limited reactivity, and phenol toxicity). We first attempt new lignin phenolation by graft copolymerization in which polymeric phenol, instead of toxic phenol, is introduced to lignin. Organosolv lignin from hardwood was modified with 2-bromoisobutyryl bromide to act as a lignin macroinitiator (L-Br). A protected phenolic monomer, 4-acetoxystyrene, was graft copolymerized onto L-Br using CuBr2/tris[2-(dimethylamino)ethyl]amine as a catalyst/ligand, after which the resultant lignin copolymer was deacetylated to produce lignin grafted with poly(4-hydroxystyrene). This poly-phenolation process was conducted at room temperature without the strong acids/bases and toxic phenol required in conventional phenolation. The poly-phenolated lignin was analyzed using 1H-, 13C-, and 31P NMR spectroscopy and gel permeation chromatography. This novel phenolation process enhanced the reactive sites of lignin more than tenfold. It also reduced the dark color of technical lignins significantly, thereby overcoming a serious obstacle to their applicability.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Sang Cheon Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.
| |
Collapse
|
4
|
Parkatzidis K, Truong NP, Whitfield R, Campi CE, Grimm-Lebsanft B, Buchenau S, Rübhausen MA, Harrisson S, Konkolewicz D, Schindler S, Anastasaki A. Oxygen-Enhanced Atom Transfer Radical Polymerization through the Formation of a Copper Superoxido Complex. J Am Chem Soc 2023; 145:1906-1915. [PMID: 36626247 DOI: 10.1021/jacs.2c11757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In controlled radical polymerization, oxygen is typically regarded as an undesirable component resulting in terminated polymer chains, deactivated catalysts, and subsequent cessation of the polymerization. Here, we report an unusual atom transfer radical polymerization whereby oxygen favors the polymerization by triggering the in situ transformation of CuBr/L to reactive superoxido species at room temperature. Through a superoxido ARGET-ATRP mechanism, an order of magnitude faster polymerization rate and a rapid and complete initiator consumption can be achieved as opposed to when unoxidized CuBr/L was instead employed. Very high end-group fidelity has been demonstrated by mass-spectrometry and one-pot synthesis of block and multiblock copolymers while pushing the reactions to reach near-quantitative conversions in all steps. A high molecular weight polymer could also be targeted (DPn = 6400) without compromising the control over the molar mass distributions (Đ < 1.20), even at an extremely low copper concentration (4.5 ppm). The versatility of the technique was demonstrated by the polymerization of various monomers in a controlled fashion. Notably, the efficiency of our methodology is unaffected by the purity of the starting CuBr, and even a brown highly-oxidized 15-year-old CuBr reagent enabled a rapid and controlled polymerization with a final dispersity of 1.07, thus not only reducing associated costs but also omitting the need for rigorous catalyst purification prior to polymerization.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Chiara E Campi
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig University of Gießen, Heinrich-Buff Ring 17, D-35392, Gießen, Hessen 35392, Germany
| | - Benjamin Grimm-Lebsanft
- Center For Free Electron Laser Science, University of Hamburg, Institut für Nanostruktur und Festkörperphysik, Gebäude 99, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Sören Buchenau
- Center For Free Electron Laser Science, University of Hamburg, Institut für Nanostruktur und Festkörperphysik, Gebäude 99, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Michael A Rübhausen
- Center For Free Electron Laser Science, University of Hamburg, Institut für Nanostruktur und Festkörperphysik, Gebäude 99, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Simon Harrisson
- Laboratoire de Chimie des Polymères Organiques, University of Bordeaux/ENSCBP/CNRS UMR5629, Pessac 33600, France
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Siegfried Schindler
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig University of Gießen, Heinrich-Buff Ring 17, D-35392, Gießen, Hessen 35392, Germany
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| |
Collapse
|
5
|
Dau H, Jones GR, Tsogtgerel E, Nguyen D, Keyes A, Liu YS, Rauf H, Ordonez E, Puchelle V, Basbug Alhan H, Zhao C, Harth E. Linear Block Copolymer Synthesis. Chem Rev 2022; 122:14471-14553. [PMID: 35960550 DOI: 10.1021/acs.chemrev.2c00189] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Block copolymers form the basis of the most ubiquitous materials such as thermoplastic elastomers, bridge interphases in polymer blends, and are fundamental for the development of high-performance materials. The driving force to further advance these materials is the accessibility of block copolymers, which have a wide variety in composition, functional group content, and precision of their structure. To advance and broaden the application of block copolymers will depend on the nature of combined segmented blocks, guided through the combination of polymerization techniques to reach a high versatility in block copolymer architecture and function. This review provides the most comprehensive overview of techniques to prepare linear block copolymers and is intended to serve as a guideline on how polymerization techniques can work together to result in desired block combinations. As the review will give an account of the relevant procedures and access areas, the sections will include orthogonal approaches or sequentially combined polymerization techniques, which increases the synthetic options for these materials.
Collapse
Affiliation(s)
- Huong Dau
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Glen R Jones
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Enkhjargal Tsogtgerel
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Dung Nguyen
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Anthony Keyes
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Yu-Sheng Liu
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hasaan Rauf
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Estela Ordonez
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Valentin Puchelle
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hatice Basbug Alhan
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Chenying Zhao
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Eva Harth
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| |
Collapse
|
6
|
Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: A Mechanistic Perspective. J Am Chem Soc 2022; 144:15413-15430. [PMID: 35882005 DOI: 10.1021/jacs.2c05364] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception, atom transfer radical polymerization (ATRP) has seen continuous evolution in terms of the design of the catalyst and reaction conditions; today, it is one of the most useful techniques to prepare well-defined polymers as well as one of the most notable examples of catalysis in polymer chemistry. This Perspective highlights fundamental advances in the design of ATRP reactions and catalysts, focusing on the crucial role that mechanistic studies play in understanding, rationalizing, and predicting polymerization outcomes. A critical summary of traditional ATRP systems is provided first; we then focus on the most recent developments to improve catalyst selectivity, control polymerizations via external stimuli, and employ new photochemical or dual catalytic systems with an outlook to future research directions and open challenges.
Collapse
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Fromel M, Benetti EM, Pester CW. Oxygen Tolerance in Surface-Initiated Reversible Deactivation Radical Polymerizations: Are Polymer Brushes Turning into Technology? ACS Macro Lett 2022; 11:415-421. [PMID: 35575317 DOI: 10.1021/acsmacrolett.2c00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past three decades, the development of reversible deactivation radical polymerizations (RDRP), and advancements toward more user-friendly and accessible experimental setups have opened the door for nonexperts to design complex macromolecules with well-defined properties. External mediation, improved tolerance to oxygen, and increased reaction volumes for higher synthetic output are some of the many noteworthy technical improvements. The development of RDRPs in solution was paralleled by their application on solid substrates to synthesize surface-grafted "polymer brushes" via surface-initiated RDRP (SI-RDRP). This Viewpoint paper provides a current perspective on recent developments in SI-RDRP methods that are tolerant to oxygen, especially highlighting those that could potentially enable scaling up of the synthesis of brushes for the functionalization of technologically relevant materials.
Collapse
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edmondo M. Benetti
- Dipartimento di Scienze Chimiche, University of Padua, 35122 Padova, Italy
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Whitfield R, Parkatzidis K, Bradford KG, Truong NP, Konkolewicz D, Anastasaki A. Low ppm CuBr-Triggered Atom Transfer Radical Polymerization under Mild Conditions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Kate G.E. Bradford
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| |
Collapse
|
9
|
Ng G, Jung K, Li J, Wu C, Zhang L, Boyer C. Screening RAFT agents and photocatalysts to mediate PET-RAFT polymerization using a high throughput approach. Polym Chem 2021. [DOI: 10.1039/d1py01258d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a high throughput approach for the screening of RAFT agents and photocatalysts to mediate photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization.
Collapse
Affiliation(s)
- Gervase Ng
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kenward Jung
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chenyu Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Liwen Zhang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Liu Q, Liu J, Yang H, Wang X, Kong J, Zhang X. Highly sensitive lung cancer DNA detection via GO enhancing eATRP signal amplification. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Li R, An Z. Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygen-Tolerant Photoenzymatic RAFT Polymerization. Angew Chem Int Ed Engl 2020; 59:22258-22264. [PMID: 32844514 DOI: 10.1002/anie.202010722] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Indexed: 12/15/2022]
Abstract
Achieving well-defined polymers with ultrahigh molecular weight (UHMW) is an enduring pursuit in the field of reversible deactivation radical polymerization. Synthetic protocols have been successfully developed to achieve UHMWs with low dispersities exclusively from conjugated monomers while no polymerization of unconjugated monomers has provided the same level of control. Herein, an oxygen-tolerant photoenzymatic RAFT (reversible addition-fragmentation chain transfer) polymerization was exploited to tackle this challenge for unconjugated monomers at 10 °C, enabling facile synthesis of well-defined, linear and star polymers with near-quantitative conversions, unprecedented UHMWs and low dispersities. The exquisite level of control over composition, MW and architecture, coupled with operational ease, mild conditions and environmental friendliness, broadens the monomer scope to include unconjugated monomers, and to achieve previously inaccessible low-dispersity UHMWs.
Collapse
Affiliation(s)
- Ruoyu Li
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
12
|
Li R, An Z. Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygen‐Tolerant Photoenzymatic RAFT Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruoyu Li
- Institute of Nanochemistry and Nanobiology College of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun 130012 China
| |
Collapse
|
13
|
Bright Science Award:M. Hillmyer / Hanwha‐Total IUPAC Awards:A. Anastasaki und C. Chen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Bright Science Award: M. Hillmyer / Hanwha‐Total IUPAC Awards: A. Anastasaki and C. Chen. Angew Chem Int Ed Engl 2020; 59:9227. [DOI: 10.1002/anie.202004951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Parkatzidis K, Truong NP, Antonopoulou MN, Whitfield R, Konkolewicz D, Anastasaki A. Tailoring polymer dispersity by mixing chain transfer agents in PET-RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00823k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we report a simple and versatile batch methodology to tailor polymer dispersity utilizing PET-RAFT polymerization.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| | | | - Richard Whitfield
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| | | | - Athina Anastasaki
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| |
Collapse
|
16
|
Zhang L, Wu C, Jung K, Ng YH, Boyer C. An Oxygen Paradox: Catalytic Use of Oxygen in Radical Photopolymerization. Angew Chem Int Ed Engl 2019; 58:16811-16814. [PMID: 31478286 DOI: 10.1002/anie.201909014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Indexed: 12/28/2022]
Abstract
A peculiar radical polymerization reaction is presented in which oxygen serves as a cocatalyst, alongside triethylamine, to provide activation with light in the far-red (690 nm, 3 mW cm-2 ) of the PET-RAFT process in the presence of zinc(II) (2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin) as photocatalyst. Apart from the ability to exert temporal control by switching the light on or off, this system possesses the exciting capability of inducing temporal control by removal or reintroduction of oxygen. Furthermore, this multicomponent catalytic system was typified by controlled polymerizations of various acrylate and acrylamide monomers, which all resulted in well-defined polymers with low dispersity (<1.2). The process displayed excellent living characteristics that were demonstrated through chain extensions and a range of degrees of polymerization (200-1600).
Collapse
Affiliation(s)
- Liwen Zhang
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chenyu Wu
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
17
|
Zhang L, Wu C, Jung K, Ng YH, Boyer C. An Oxygen Paradox: Catalytic Use of Oxygen in Radical Photopolymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liwen Zhang
- Centre for Advanced Macromolecular Design Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Chenyu Wu
- Centre for Advanced Macromolecular Design Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Yun Hau Ng
- School of Energy and Environment City University of Hong Kong Kowloon Hong Kong SAR
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
18
|
Whitfield R, Parkatzidis K, Rolland M, Truong NP, Anastasaki A. Tuning Dispersity by Photoinduced Atom Transfer Radical Polymerisation: Monomodal Distributions with ppm Copper Concentration. Angew Chem Int Ed Engl 2019; 58:13323-13328. [PMID: 31291503 DOI: 10.1002/anie.201906471] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Dispersity significantly affects the properties of polymers. However, current methods for controlling the polymer dispersity are limited to bimodal molecular weight distributions, adulterated polymer chains, or low end-group fidelity and rely on feeding reagents, flow-based, or multicomponent systems. To overcome these limitations, we report a simple batch system whereby photoinduced atom transfer radical polymerisation is exploited as a convenient and versatile technique to control dispersity of both homopolymers and block copolymers. By varying the concentration of the copper complex, a wide range of monomodal molecular weight distributions can be obtained (Đ=1.05-1.75). In all cases, high end-group fidelity was confirmed by MALDI-ToF-MS and exemplified by efficient block copolymer formation (monomodal, Đ=1.1-1.5). Importantly, our approach utilises ppm levels of copper (as low as 4 ppm), can be tolerant to oxygen and exhibits perfect temporal control, representing a major step forward in tuning polymer dispersity for various applications.
Collapse
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Manon Rolland
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| |
Collapse
|
19
|
Whitfield R, Parkatzidis K, Rolland M, Truong NP, Anastasaki A. Tuning Dispersity by Photoinduced Atom Transfer Radical Polymerisation: Monomodal Distributions with ppm Copper Concentration. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906471] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Manon Rolland
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| |
Collapse
|
20
|
Zhang T, Yeow J, Boyer C. A cocktail of vitamins for aqueous RAFT polymerization in an open-to-air microtiter plate. Polym Chem 2019. [DOI: 10.1039/c9py00898e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a highly biocompatible photoinitiation strategy based on Vitamin B2 and Vitamin C. This two-component photoinitiator enables RAFT polymerization to be conducted in high throughput in an open-to-air microtiter plate.
Collapse
Affiliation(s)
- Tong Zhang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
21
|
Li R, Lian X, Wang Z, Wang Y. Radical Cation Initiated Surface Polymerization on Photothermal Rubber for Smart Antifouling Coatings. Chemistry 2018; 25:183-188. [PMID: 30325541 DOI: 10.1002/chem.201804526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/13/2022]
Abstract
Biofouling on surfaces of various materials has attracted considerable attention in biomedical and marine industries. Surface grafting based on covalent surface-initiated polymerization offers a popular route to address this problem by providing diverse robust polymer coatings capable of preventing the biofouling in complex environments. However, the existing methods for synthesizing polymer coatings are complicated and rigorous, or require special catalysts, greatly limiting their practical applications. In this work, a radical-cation-based surface-initiated polymerization protocol to graft the surface of darkened trans-polyisoprene (TPI) rubber with a thermo-responsive smart polymer, poly(N-isopropylacrylamide) (PNIPAM), through a simple iodine doping process is reported. A series of characterizations were performed to provide adequate evidence to confirm the successful grafting. Combining the thermal sensitivity of PNIPAM with the photothermal conversion ability of the darkened rubber, efficient bacteria-killing and antifouling capabilities were successfully achieved as a result of temperature-controlled iodine release and switchable amphiphilicity of PNIPAM.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xiaodong Lian
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhen Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
22
|
Enciso AE, Fu L, Lathwal S, Olszewski M, Wang Z, Das SR, Russell AJ, Matyjaszewski K. Biocatalytic “Oxygen‐Fueled” Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alan E. Enciso
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Liye Fu
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Sushil Lathwal
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Mateusz Olszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Zhenhua Wang
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Subha R. Das
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Alan J. Russell
- Department of Chemical Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
23
|
Enciso AE, Fu L, Lathwal S, Olszewski M, Wang Z, Das SR, Russell AJ, Matyjaszewski K. Biocatalytic "Oxygen-Fueled" Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2018; 57:16157-16161. [PMID: 30329207 DOI: 10.1002/anie.201809018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/25/2018] [Indexed: 01/06/2023]
Abstract
Atom transfer radical polymerization (ATRP) can be carried out in a flask completely open to air using a biocatalytic system composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) with an active copper catalyst complex. Nanomolar concentrations of the enzymes and ppm amounts of Cu provided excellent control over the polymerization of oligo(ethylene oxide) methyl ether methacrylate (OEOMA500 ), generating polymers with high molecular weight (Mn >70 000) and low dispersities (1.13≤Đ≤1.27) in less than an hour. The continuous oxygen supply was necessary for the generation of radicals and polymer chain growth as demonstrated by temporal control and by inducing hypoxic conditions. In addition, the enzymatic cascade polymerization triggered by oxygen was used for a protein and DNA functionalized with initiators to form protein-b-POEOMA and DNA-b-POEOMA bioconjugates, respectively.
Collapse
Affiliation(s)
- Alan E Enciso
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Zhenhua Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Alan J Russell
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
24
|
Ng G, Yeow J, Chapman R, Isahak N, Wolvetang E, Cooper-White JJ, Boyer C. Pushing the Limits of High Throughput PET-RAFT Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01600] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|