1
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
2
|
Zhai J, Zhou B, Wu H, Jia S, Chu M, Han S, Xia W, He M, Han B. Photocatalytic Cleavage of C(sp 3 )-N Bond in Trialkylamines to Dialkylamines and Olefins. CHEMSUSCHEM 2022; 15:e202201119. [PMID: 35819857 DOI: 10.1002/cssc.202201119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Development of a new and green strategy for C(sp3 )-N bond cleavage is very interesting. Herein, photocatalytic cleavage of the C(sp3 )-N bond of trialkylamines was achieved, with concurrent formation of dialkylamines and olefins. It was found that a rationally designed 2D-Bi2 WO6 @1D-LaPO4 heterostructure was very efficient for the reaction due to its high light collection efficiency and unique catalytic properties. The strategy could be used for different trialkylamines, including triethylamine, tri-n-propylamine, and ethyl-di-isopropylamine. The mechanistic investigation indicated that the catalyst with heterostructure was not only favorable for charge carrier separation but also rendered excited electrons with high reduction capacity. This work opens a way for C(sp3 )-N bond cleavage of trialkylamines.
Collapse
Affiliation(s)
- Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Mengen Chu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Whalley DM, Seayad J, Greaney MF. Truce–Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal‐Free Arylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M. Whalley
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Michael F. Greaney
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
4
|
Tang S, Xu ZH, Liu T, Wang SW, Yu J, Liu J, Hong Y, Chen SL, He J, Li JH. Radical 1,4-Aryl Migration Enabled Remote Cross-Electrophile Coupling of α-Amino-β-Bromo Acid Esters with Aryl Bromides. Angew Chem Int Ed Engl 2021; 60:21360-21367. [PMID: 34291545 DOI: 10.1002/anie.202106273] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Indexed: 12/14/2022]
Abstract
We report an unprecedented, efficient nickel-catalysed radical relay for the remote cross-electrophile coupling of β-bromo-α-benzylamino acid esters with aryl bromides via 1,4-aryl migration/arylation cascades. β-Bromo-α-benzylamino acid esters are considered as unique molecular scaffolds allowing for aryl migration reactions, which are conceptually novel variants for the radical Truce-Smiles rearrangement. This reaction enables the formation of two new C(sp3 )-C(sp2 ) bonds using a bench-stable Ni/bipyridine/Zn system featuring a broad substrate scope and excellent diastereoselectivity, which provides an effective platform for the remote aryl group migration and arylation of amino acid esters via redox-neutral C(sp3 )-C(sp2 ) bond cleavage. Mechanistically, this cascade reaction is accomplished by combining two powerful catalytic cycles consisting of a cross-electrophile coupling and radical 1,4-aryl migration through the generation of C(sp3 )-centred radical intermediates from the homolysis of C(sp3 )-Br bonds and the switching of the transient alkyl radical into a robust α-aminoalkyl radical.
Collapse
Affiliation(s)
- Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Zhen-Hua Xu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Ting Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Shuo-Wen Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Jian Yu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Jian Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Yu Hong
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Jin He
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Tang S, Xu Z, Liu T, Wang S, Yu J, Liu J, Hong Y, Chen S, He J, Li J. Radical 1,4‐Aryl Migration Enabled Remote Cross‐Electrophile Coupling of α‐Amino‐β‐Bromo Acid Esters with Aryl Bromides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shi Tang
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Zhen‐Hua Xu
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Ting Liu
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Shuo‐Wen Wang
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Jian Yu
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Jian Liu
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Yu Hong
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Shi‐Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education Beijing Institute of Technology Beijing 100081 China
| | - Jin He
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
| |
Collapse
|
6
|
Whalley DM, Seayad J, Greaney MF. Truce-Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal-Free Arylation. Angew Chem Int Ed Engl 2021; 60:22219-22223. [PMID: 34370898 DOI: 10.1002/anie.202108240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/30/2023]
Abstract
The ring-opening of 3-aminocyclobutanone oximes enables easy generation of primary alkyl radicals, capable of undergoing an unprecedented strain-release, desulfonylative radical Truce-Smiles rearrangement, providing divergent access to valuable 1,3 diamines and unnatural β-amino acids. Characterized by mild conditions and wide scope of migrating species, this protocol allows the modular assembly of sp3 -aryls under transition metal-free, room-temperature conditions.
Collapse
Affiliation(s)
- David M Whalley
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Michael F Greaney
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
7
|
Abrams R, Jesani MH, Browning A, Clayden J. Triarylmethanes and their Medium-Ring Analogues by Unactivated Truce-Smiles Rearrangement of Benzanilides. Angew Chem Int Ed Engl 2021; 60:11272-11277. [PMID: 33830592 PMCID: PMC8252078 DOI: 10.1002/anie.202102192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Intramolecular nucleophilic aromatic substitution (Truce–Smiles rearrangement) of the anions of 2‐benzyl benzanilides leads to triarylmethanes in an operationally simple manner. The reaction succeeds even without electronic activation of the ring that plays the role of electrophile in the SNAr reaction, being accelerated instead by the preferred conformation imposed by the tertiary amide tether. The amide substituent of the product may be removed or transformed into alternative functional groups. A ring‐expanding variant (n to n+4) of the reaction provided a route to doubly benzo‐fused medium ring lactams of 10 or 11 members. Hammett analysis returned a ρ value consistent with the operation of a partially concerted reaction mechanism.
Collapse
Affiliation(s)
- Roman Abrams
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Mehul H Jesani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Alex Browning
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
8
|
Abrams R, Jesani MH, Browning A, Clayden J. Triarylmethanes and their Medium‐Ring Analogues by Unactivated Truce–Smiles Rearrangement of Benzanilides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Mehul H. Jesani
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Alex Browning
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
9
|
Kalaitzakis D, Bosveli A, Sfakianaki K, Montagnon T, Vassilikogiannakis G. Multi-Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angew Chem Int Ed Engl 2021; 60:4335-4341. [PMID: 33119205 DOI: 10.1002/anie.202012379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The development of photocascades that rapidly transform simple and readily accessible furan substrates into polycyclic alkaloid frameworks or erythrina natural products is described. Each of the sequences developed makes use of photocatalyzed energy transfer processes, which generate singlet oxygen, to set up the substrates for the second photocatalyzed reaction, wherein electron transfer generates carbon-centered radicals for the cyclizations that give the final complex frameworks. A chemical switch has been developed that can "switch off" one photocatalyst; thus, allowing a second photocatalyst to take over control of the sequence. As a corollary, this strategy represents the first time it has been possible to use multiple photocatalysts in photocascades, and, as such, it expands significantly the reactions that can be included in such cascades and the order in which they can be initiated.
Collapse
Affiliation(s)
- Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Kalliopi Sfakianaki
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | | |
Collapse
|
10
|
Kalaitzakis D, Bosveli A, Sfakianaki K, Montagnon T, Vassilikogiannakis G. Multi‐Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dimitris Kalaitzakis
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Artemis Bosveli
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Kalliopi Sfakianaki
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Tamsyn Montagnon
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | | |
Collapse
|
11
|
Radhoff N, Studer A. Functionalization of α-C(sp 3 )-H Bonds in Amides Using Radical Translocating Arylating Groups. Angew Chem Int Ed Engl 2021; 60:3561-3565. [PMID: 33215815 PMCID: PMC7898318 DOI: 10.1002/anie.202013275] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Indexed: 01/09/2023]
Abstract
α-C-H arylation of N-alkylamides using 2-iodoarylsulfonyl radical translocating arylating (RTA) groups is reported. The method allows the construction of α-quaternary carbon centers in amides. Various mono- and disubstituted RTA-groups are applied to the arylation of primary, secondary, and tertiary α-C(sp3 )-H-bonds. These radical transformations proceed in good to excellent yields and the cascades comprise a 1,6-hydrogen atom transfer, followed by a 1,4-aryl migration with subsequent SO2 extrusion.
Collapse
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
12
|
Huynh M, De Abreu M, Belmont P, Brachet E. Spotlight on Photoinduced Aryl Migration Reactions. Chemistry 2020; 27:3581-3607. [DOI: 10.1002/chem.202003507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Marie Huynh
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| | - Maxime De Abreu
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| | - Philippe Belmont
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| | - Etienne Brachet
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| |
Collapse
|
13
|
Radhoff N, Studer A. Radikalische Funktionalisierung von α‐C(sp
3
)‐H‐Bindungen in Amiden durch Translokations‐induzierende arylierende Gruppen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
14
|
Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angew Chem Int Ed Engl 2020; 59:18646-18654. [PMID: 32621297 DOI: 10.1002/anie.202006720] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/18/2022]
Abstract
We report a new visible-light-mediated carbonylative amidation of aryl, heteroaryl, and alkyl halides. A tandem catalytic cycle of [Ir(ppy)2 (dtb-bpy)]+ generates a potent iridium photoreductant through a second catalytic cycle in the presence of DIPEA, which productively engages aryl bromides, iodides, and even chlorides as well as primary, secondary, and tertiary alkyl iodides. The versatile in situ generated catalyst is compatible with aliphatic and aromatic amines, shows high functional-group tolerance, and enables the late-stage amidation of complex natural products.
Collapse
Affiliation(s)
- José A Forni
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nenad Micic
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Timothy U Connell
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Geethika Weragoda
- CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia.,CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| |
Collapse
|
15
|
Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- José A. Forni
- School of Chemistry The University of Melbourne Melbourne Victoria 3010 Australia
| | - Nenad Micic
- School of Chemistry The University of Melbourne Melbourne Victoria 3010 Australia
| | | | | | - Anastasios Polyzos
- School of Chemistry The University of Melbourne Melbourne Victoria 3010 Australia
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| |
Collapse
|
16
|
Abrams R, Clayden J. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angew Chem Int Ed Engl 2020; 59:11600-11606. [DOI: 10.1002/anie.202003632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
17
|
Abrams R, Clayden J. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
18
|
Ruzi R, Ma J, Yuan X, Wang W, Wang S, Zhang M, Dai J, Xie J, Zhu C. Deoxygenative Arylation of Carboxylic Acids by Aryl Migration. Chemistry 2019; 25:12724-12729. [DOI: 10.1002/chem.201903816] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Rehanguli Ruzi
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Junyang Ma
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Xiang‐Ai Yuan
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 P. R. China
| | - Wenliang Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Shanshan Wang
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 P. R. China
| | - Muliang Zhang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Jie Dai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Jin Xie
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Chengjian Zhu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
- State Key Laboratory of Organometallic ChemistryInstitute of Organic Chemistry Shanghai 200032 P. R. China
| |
Collapse
|
19
|
Zhao B, Li Z, Wu Y, Wang Y, Qian J, Yuan Y, Shi Z. An Olefinic 1,2‐Boryl‐Migration Enabled by Radical Addition: Construction of
gem
‐Bis(boryl)alkanes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903721] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Binlin Zhao
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Zexian Li
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yixiao Wu
- College of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Yandong Wang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jiasheng Qian
- College of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Yu Yuan
- College of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
20
|
Zhao B, Li Z, Wu Y, Wang Y, Qian J, Yuan Y, Shi Z. An Olefinic 1,2-Boryl-Migration Enabled by Radical Addition: Construction of gem-Bis(boryl)alkanes. Angew Chem Int Ed Engl 2019; 58:9448-9452. [PMID: 31058401 DOI: 10.1002/anie.201903721] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/20/2019] [Indexed: 12/11/2022]
Abstract
A series of in situ formed alkenyl diboronate complexes from alkenyl Grignard reagents (commercially available or prepared from alkenyl bromides and Mg) with B2 Pin2 (bis(pinacolato)diboron) react with diverse alkyl halides by a Ru photocatalyst to give various gem-bis(boryl)alkanes. Alkyl radicals add efficiently to the alkenyl diboronate complexes, and the adduct radical anions undergo radical-polar crossover, specifically, a 1,2-boryl-anion shift from boron to the α-carbon sp2 center. This transformation shows good functional-group compatibility and can serve as a powerful synthetic tool for late-stage functionalization in complex compounds. Measurements of the quantum yield reveal that a radical-chain mechanism is operative in which the alkenyl diboronates acts as reductive quencher for the excited state of the photocatalyst.
Collapse
Affiliation(s)
- Binlin Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zexian Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yixiao Wu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yandong Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiasheng Qian
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
21
|
Alkene Carboarylation through Catalyst‐Free, Visible Light‐Mediated Smiles Rearrangement. Chemistry 2019; 25:1927-1930. [DOI: 10.1002/chem.201805712] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Indexed: 11/07/2022]
|