1
|
Luo X, Zhai Y, Wang P, Tian B, Liu S, Li J, Yang C, Strehmel V, Li S, Matyjaszewski K, Yilmaz G, Strehmel B, Chen Z. Light-Mediated Polymerization Catalyzed by Carbon Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202316431. [PMID: 38012084 DOI: 10.1002/anie.202316431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, Harbin, 150040, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Ping Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Chenhui Yang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| |
Collapse
|
2
|
Getachew G, Hsiao CH, Wibrianto A, Rasal AS, Batu Dirersa W, Huang CC, Vijayakameswara Rao N, Chen JH, Chang JY. High performance carbon dots based prodrug Platform: Image-Guided photodynamic and chemotherapy with On-Demand drug release upon laser irradiation. J Colloid Interface Sci 2023; 633:396-410. [PMID: 36459943 DOI: 10.1016/j.jcis.2022.11.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The design of therapeutic nanoplatforms based on fluorescent carbon dots (CDs) has become a viable strategy because of their aqueous solubility, biocompatibility, and ease of further functionalization. By doping various heteroatoms into pristine CDs structures, we synthesized N-, Cl-, and S-doped CDs (NClS/CDs), as well as Se-, N-, and Cl-doped CDs (NClSe/CDs) with superior optoelectronic properties using rapid and straightforward microwave heating. The quantum efficiencies of these NClS/CDs and NClSe/CDs were enhanced to 30.7 % and 42.9 %, respectively, compared to those of undoped CDs (0.66 %). Owing to their better light absorption properties, NClS/CDs efficiently produced reactive oxygen species (ROS) under 532 nm laser irradiation for photodynamic therapy (PDT). Considering the ROS generation and surface carrier abilities of NClS/CDs, we designed the loading of camptothecin (CPT) drug via a thioketal linker (TL), resulting in h/CDs@CPT nanovesicles (NVs) with a drug-loading efficiency of 46.5 %. Under laser irradiation in an acidic environment, ROS-triggered CPT release was observed, with 50.2 % of CPT released following the breakdown of the ROS-sensitive TL. In vitro cellular studies revealed that h/CDs@CPT NVs possessed minimal cytotoxicity toward HeLa and 4 T1 cancer cells, despite the high clinical efficacy of PDT and ROS-induced chemotherapeutic response under laser treatment. Confocal microscopy of HeLa and 4 T1 cells revealed that h/CDs@CPT NVs produced red-emissive photographs for potential cancer cell detection. Therefore, our study presents an image-guided PDT and chemotherapeutic platform based on h/CDs@CPT NVs, which will be an attractive candidate for future cancer treatment.
Collapse
Affiliation(s)
- Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Chien-Hua Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan, Republic of China
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Je-Hsin Chen
- Department of Applied Cosmetology, Hwa Hsia Institute of Technology, New Taipei City 23568, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China.
| |
Collapse
|
3
|
Campalani C, Bragato N, Morandini A, Selva M, Fiorani G, Perosa A. Carbon Dots as Green Photocatalysts for Atom Transfer Radical Polymerization of Methacrylates. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
4
|
Covalent Modification of Iron Phthalocyanine into Skeleton of Graphitic Carbon Nitride and Its Visible-Light-Driven Photocatalytic Reduction of Nitroaromatic Compounds. Catalysts 2022. [DOI: 10.3390/catal12070752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is of great urgency to eliminate nitroaromatic compounds (NACs) in wastewater due to their high residue and toxicity. Photocatalysis reduction is considered to be an efficient technology for converting NACs to their corresponding aromatic amines. In this work, a visible-light-driven hybrid photocatalyst was synthesized by covalently doping Fe phthalocyanine (FePc) into graphitic carbon nitride skeleton. Compared to the pristine gCN, the optimized gCN-FePc-1 photocatalyst showed enhanced absorption in visible light region, which promoted photogenerated charge transfer and separation. Using p-nitrophenol (p-NP) as the model pollutant, the CN-FePc-1 effectively reduced it to p-aminophenol (p-AP), with the photocatalytic reaction rate being 18 and 3 times higher, respectively, than those of the pristine gCN and the mechanically mixed photocatalyst of gCN/FePc. Moreover, excellent photocatalytic universality for other NACs, high stability, and good reusability also were confirmed. Based on the band structure of the gCN-FePc-1 photocatalyst, a plausible mechanism was proposed to illustrate the photocatalytic reduction process of p-NP to p-AP. This study demonstrates that the covalent modification of FePc into gCN skeleton is an effective strategy to modulate the electronic structure, and the hybrid gCN-FePc is a potential visible-light-driven photocatalyst that potentially can be used for eliminating NAC contamination in wastewater.
Collapse
|
5
|
Zhao M, Zhu S, Yang X, Wang Y, Zhou X, Xie X. A Porphyrinic Donor-Acceptor Conjugated Porous Polymer as Highly Efficient Photocatalyst for PET-RAFT Polymerization. Macromol Rapid Commun 2022; 43:e2200173. [PMID: 35481926 DOI: 10.1002/marc.202200173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Indexed: 12/28/2022]
Abstract
Heterogeneous catalysts offer a highly desirable platform for exploring environmental-benign transformation systems, yet, they typically suffer from significant loss of catalytic efficiency compared with their homogeneous counterparts. Here, the facile synthesis of a porphyrinic conjugated porous polymer incorporated with imidazolium bromide moieties by taking advantage of the Debus-Radziszewski reaction is reported. Owing to the unique donor-acceptor structure, this heterogeneous and metal-free photocatalyst exhibits much improved catalytic activity compared with its small molecular analogs in photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, producing polymers with narrow distribution (Đ = 1.06-1.18) and high degree of chain-end fidelity. Moreover, the heterogeneous catalyst can be easily separated at the end of polymerization by centrifugation and recycled for five independent PET-RAFT polymerizations without obvious decreases in catalytic efficiency.
Collapse
Affiliation(s)
- Maoji Zhao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuaishuai Zhu
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xue Yang
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yong Wang
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xingping Zhou
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaolin Xie
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
6
|
Bell K, Freeburne S, Wolford A, Pester CW. Reusable polymer brush-based photocatalysts for PET-RAFT polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00966h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fluorescein polymer-brush functionalized glass beads synthesize polymers via photoelectron reversible addition fragmentation chain transfer (PET-RAFT) polymerization. These shelf stable heterogeneous catalysts can be recycled after simple filtration.
Collapse
Affiliation(s)
- Kirsten Bell
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah Freeburne
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adam Wolford
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Zhang L, Ng G, Kapoor‐Kaushik N, Shi X, Corrigan N, Webster R, Jung K, Boyer C. 2D Porphyrinic Metal–Organic Framework Nanosheets as Multidimensional Photocatalysts for Functional Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Liwen Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Gervase Ng
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Natasha Kapoor‐Kaushik
- Electron Microscopy Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney New South Wales 2052 Australia
| | - Xiaobing Shi
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Nathaniel Corrigan
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Richard Webster
- Electron Microscopy Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney New South Wales 2052 Australia
| | - Kenward Jung
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| |
Collapse
|
8
|
Zhang L, Ng G, Kapoor-Kaushik N, Shi X, Corrigan N, Webster R, Jung K, Boyer C. 2D Porphyrinic Metal-Organic Framework Nanosheets as Multidimensional Photocatalysts for Functional Materials. Angew Chem Int Ed Engl 2021; 60:22664-22671. [PMID: 34322965 DOI: 10.1002/anie.202107457] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Ultrathin porphyrinic 2D MOFs, ZnTCPP nanosheets (TCPP: 5,10,15,20-(tetra-4-carboxyphenyl) porphyrin) were employed as heterogeneous photocatalysts to activate PET-RAFT polymerization under various wavelengths ranging from violet to orange light. High polymerization rates, oxygen tolerance, and precise temporal control were achieved. The polymers showed narrow molecular weight distributions and good chain-end fidelity. The 2D ZnTCPP nanosheets were applied as photocatalysts in stereolithographic 3D printing in an open-air environment under blue light to yield well-defined 3D printed objects. Apart from providing an efficient catalytic system, 2D ZnTCPP nanosheets reinforced the mechanical properties of the 3D printed materials. The presence of ZnTCPP embedded in the materials conferred effective antimicrobial activity under visible light by production of singlet oxygen, affording 98 % and 93 % anti-bacterial efficiency against Gram-positive and Gram-negative bacteria, respectively.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Gervase Ng
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Xiaobing Shi
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Nathaniel Corrigan
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Richard Webster
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kenward Jung
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
9
|
Kütahya C, Zhai Y, Li S, Liu S, Li J, Strehmel V, Chen Z, Strehmel B. Verschiedene nachhaltige Kohlenstoffnanopunkte für die freie radikalische Photopolymerisation, die Photo‐ATRP und die Photo‐CuACC Chemie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ceren Kütahya
- Fachbereich Chemie Institut für Lacke und Oberflächenchemie Hochschule Niederrhein Adlerstr. 1 47798 Krefeld Deutschland
| | - Yingxiang Zhai
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Shujun Li
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Shouxin Liu
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Jian Li
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Veronika Strehmel
- Fachbereich Chemie Institut für Lacke und Oberflächenchemie Hochschule Niederrhein Adlerstr. 1 47798 Krefeld Deutschland
| | - Zhijun Chen
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Bernd Strehmel
- Fachbereich Chemie Institut für Lacke und Oberflächenchemie Hochschule Niederrhein Adlerstr. 1 47798 Krefeld Deutschland
| |
Collapse
|
10
|
Kütahya C, Zhai Y, Li S, Liu S, Li J, Strehmel V, Chen Z, Strehmel B. Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo-ATRP and Photo-CuAAC Chemistry. Angew Chem Int Ed Engl 2021; 60:10983-10991. [PMID: 33576086 PMCID: PMC8252733 DOI: 10.1002/anie.202015677] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Indexed: 01/18/2023]
Abstract
Carbon nanodots (CDs) originating from different biomass result in different activities to sensitize photo-ATRP and photo-CuAAC reaction protocols with visible light. Free radical polymerization of tri(propylene glycol)diacrylate also exhibited a good efficiency using CDs in combination with an iodonium salt employing LEDs emitting either at 405 nm, 525 nm or 660 nm. Photo-ATRP experiments confirmed controlled polymerization conditions using CuII at the ppm scale resulting in dispersities between 1.06 to 1.10. Chain end fidelity was successfully provided by chain extension and block copolymerization additionally approving the living feature of polymerization using a CD synthesized from lac dye comprising olefinic moieties in the originating biomass. By global analysis, time resolved fluorescence measurements indicated the appearance of several emitting species contributing to the reactivity of the excited states. Different cytotoxic response appeared following the answer of MCF-10A cells in a flow cytometry assay; that is 400 μg mL-1 . Thus, cell viability was greater 80 % in the case of CD-2-CD-5 while that of CD-1 was close to 70 %.
Collapse
Affiliation(s)
- Ceren Kütahya
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Yingxiang Zhai
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Shujun Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Shouxin Liu
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Jian Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Veronika Strehmel
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Zhijun Chen
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Bernd Strehmel
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| |
Collapse
|
11
|
Zhang L, Shi X, Zhang Z, Kuchel RP, Namivandi‐Zangeneh R, Corrigan N, Jung K, Liang K, Boyer C. Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PET‐RAFT Polymerization and Stereolithography. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Liwen Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Xiaobing Shi
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Zhiheng Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney New South Wales 2052 Australia
| | - Rashin Namivandi‐Zangeneh
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Nathaniel Corrigan
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Kenward Jung
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Kang Liang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
- Graduate School of Biomedical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| |
Collapse
|
12
|
Zhang L, Shi X, Zhang Z, Kuchel RP, Namivandi‐Zangeneh R, Corrigan N, Jung K, Liang K, Boyer C. Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PET‐RAFT Polymerization and Stereolithography. Angew Chem Int Ed Engl 2021; 60:5489-5496. [DOI: 10.1002/anie.202014208] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Liwen Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Xiaobing Shi
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Zhiheng Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney New South Wales 2052 Australia
| | - Rashin Namivandi‐Zangeneh
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Nathaniel Corrigan
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Kenward Jung
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Kang Liang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
- Graduate School of Biomedical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| |
Collapse
|
13
|
Du X, Wang C, Wu G, Chen S. The Rapid and Large‐Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiang‐Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| | - Cai‐Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
14
|
Du XY, Wang CF, Wu G, Chen S. The Rapid and Large-Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angew Chem Int Ed Engl 2020; 60:8585-8595. [PMID: 32410267 DOI: 10.1002/anie.202004109] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 12/17/2022]
Abstract
Carbon quantum dots (CDs) have inspired vast interest because of their excellent photoluminescence (PL) performances and their promising applications in optoelectronic, biomedical, and sensing fields. The development of effective approaches for the large-scale production of CDs may greatly promote the further advancement of their practical applications. In this Minireview, the newly emerging methods for the large-scale production of CDs are summarized, such as microwave, ultrasonic, plasma, magnetic hyperthermia, and microfluidic techniques. The use of the available strategies for constructing CD/polymer composites with intriguing solid-state PL is then described. Particularly, the multiple roles of CDs are emphasized, including as fillers, monomers, and initiators. Moreover, typical applications of CD/polymer composites in light-emitting diodes, fluorescent printing, and biomedicine are outlined. Finally, we discuss current problems and speculate on their future development.
Collapse
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
15
|
Li R, An Z. Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygen-Tolerant Photoenzymatic RAFT Polymerization. Angew Chem Int Ed Engl 2020; 59:22258-22264. [PMID: 32844514 DOI: 10.1002/anie.202010722] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Indexed: 12/15/2022]
Abstract
Achieving well-defined polymers with ultrahigh molecular weight (UHMW) is an enduring pursuit in the field of reversible deactivation radical polymerization. Synthetic protocols have been successfully developed to achieve UHMWs with low dispersities exclusively from conjugated monomers while no polymerization of unconjugated monomers has provided the same level of control. Herein, an oxygen-tolerant photoenzymatic RAFT (reversible addition-fragmentation chain transfer) polymerization was exploited to tackle this challenge for unconjugated monomers at 10 °C, enabling facile synthesis of well-defined, linear and star polymers with near-quantitative conversions, unprecedented UHMWs and low dispersities. The exquisite level of control over composition, MW and architecture, coupled with operational ease, mild conditions and environmental friendliness, broadens the monomer scope to include unconjugated monomers, and to achieve previously inaccessible low-dispersity UHMWs.
Collapse
Affiliation(s)
- Ruoyu Li
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
16
|
Huo Z, Xia L, Li G, Xiao X. A "Polymer Template" Strategy for Carbonized Polymer Dots with Controllable Properties. Chemistry 2020; 26:14754-14764. [PMID: 32841406 DOI: 10.1002/chem.202003379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 01/07/2023]
Abstract
Limited avenues are available for property control of carbonized polymer dots (PDs) owing to the unsatisfactory understanding of PDs" formation. Herein, a de novo "polymer template" strategy is presented for PDs with customizable functional surface groups (FSG), size, and underlying fluorescence, with a detailed mechanism. The strategy relies on novel di-active site polymers (DASPs) prepared from alkenyl azides via [3+2] cycloaddition and guanidino hydrolysis. Benefiting from these specific reactions, the DASPs were convenient for mass production and stable for storage, and could be transformed to PDs upon addition of nucleophilic agents through nucleophilic addition and substitution at 70 °C. By regulating the types of alkenyl azides, nucleophilic agents, and reaction conditions, the as-prepare PDs could be tailored with controlled types of core, FSG, and particle size, as well as fluorescence properties of quantum yield from 8.2-55.6 %, and emission maximum from 380-500 nm. These specialties make this "polymer template" strategy a promising start for building PDs-based sensor platforms. Moreover, the strategy could further our understanding towards PDs' formation, and open up a new way to customize PDs for specific needs in the fields of analysis, catalysis, images, etc.
Collapse
Affiliation(s)
- Zhiming Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
17
|
Li R, An Z. Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygen‐Tolerant Photoenzymatic RAFT Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruoyu Li
- Institute of Nanochemistry and Nanobiology College of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun 130012 China
| |
Collapse
|
18
|
Kütahya C, Wang P, Li S, Liu S, Li J, Chen Z, Strehmel B. Carbon Dots as a Promising Green Photocatalyst for Free Radical and ATRP-Based Radical Photopolymerization with Blue LEDs. Angew Chem Int Ed Engl 2020; 59:3166-3171. [PMID: 31724298 PMCID: PMC7027833 DOI: 10.1002/anie.201912343] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 11/08/2022]
Abstract
Carbon dots (CDs) have been used for the first time as a sensitizer to initiate and activate free radical and controlled radical polymerization, respectively, based on an ATRP protocol with blue LEDs. Consideration of diverse heteroatom-doped CDs indicated that N-doped CDs could serve as an effective photocatalyst and photosensitizer in combination with LEDs emitting either at 405 nm or 470 nm. Free radical polymerization was initiated by combining the CDs with an iodonium or sulfonium salt in tri(propylene glycol) diacrylate. Polymerization of methyl methacrylate (MMA) by photo-induced ATRP was achieved with CDs and ethyl α-bromophenylacetate using CuII as catalyst in the ppm range. The polymers obtained showed temporal control, narrower dispersity ≲1.5, and chain-end fidelity. The first-order kinetics and ON/OFF experiments additionally gave evidence of the constant concentration of polymer radicals. No remarkable cytotoxic activity was observed for the CDs, underlining their biocompatibility.
Collapse
Affiliation(s)
- Ceren Kütahya
- Niederrhein University of Applied SciencesChemistry DepartmentInstitute for Coatings and Surface ChemistryAdlerstraße 147798KrefeldGermany
| | - Ping Wang
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Shujun Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Shouxin Liu
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Jian Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Zhijun Chen
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Bernd Strehmel
- Niederrhein University of Applied SciencesChemistry DepartmentInstitute for Coatings and Surface ChemistryAdlerstraße 147798KrefeldGermany
| |
Collapse
|
19
|
Kütahya C, Wang P, Li S, Liu S, Li J, Chen Z, Strehmel B. Kohlenstoff‐Nanopunkte als Photokatalysatoren für die freie radikalische und ATRP‐basierte radikalische Photopolymerisation mit blauen LEDs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ceren Kütahya
- Hochschule Niederrhein Fachbereich Chemie Institut für Lacke und Oberflächenchemie Adlerstraße 1 47798 Krefeld Deutschland
| | - Ping Wang
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Shujun Li
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Shouxin Liu
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Jian Li
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Zhijun Chen
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Bernd Strehmel
- Hochschule Niederrhein Fachbereich Chemie Institut für Lacke und Oberflächenchemie Adlerstraße 1 47798 Krefeld Deutschland
| |
Collapse
|
20
|
Zhang L, Wu C, Jung K, Ng YH, Boyer C. An Oxygen Paradox: Catalytic Use of Oxygen in Radical Photopolymerization. Angew Chem Int Ed Engl 2019; 58:16811-16814. [PMID: 31478286 DOI: 10.1002/anie.201909014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Indexed: 12/28/2022]
Abstract
A peculiar radical polymerization reaction is presented in which oxygen serves as a cocatalyst, alongside triethylamine, to provide activation with light in the far-red (690 nm, 3 mW cm-2 ) of the PET-RAFT process in the presence of zinc(II) (2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin) as photocatalyst. Apart from the ability to exert temporal control by switching the light on or off, this system possesses the exciting capability of inducing temporal control by removal or reintroduction of oxygen. Furthermore, this multicomponent catalytic system was typified by controlled polymerizations of various acrylate and acrylamide monomers, which all resulted in well-defined polymers with low dispersity (<1.2). The process displayed excellent living characteristics that were demonstrated through chain extensions and a range of degrees of polymerization (200-1600).
Collapse
Affiliation(s)
- Liwen Zhang
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chenyu Wu
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
21
|
Zhang L, Wu C, Jung K, Ng YH, Boyer C. An Oxygen Paradox: Catalytic Use of Oxygen in Radical Photopolymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liwen Zhang
- Centre for Advanced Macromolecular Design Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Chenyu Wu
- Centre for Advanced Macromolecular Design Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Yun Hau Ng
- School of Energy and Environment City University of Hong Kong Kowloon Hong Kong SAR
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
22
|
Jiang J, Ye G, Lorandi F, Liu Z, Liu Y, Hu T, Chen J, Lu Y, Matyjaszewski K. Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light‐Regulated Macromolecular Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jingjie Jiang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Zeyu Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Yanqi Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Tongyang Hu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Yuexiang Lu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
23
|
Jiang J, Ye G, Lorandi F, Liu Z, Liu Y, Hu T, Chen J, Lu Y, Matyjaszewski K. Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light-Regulated Macromolecular Synthesis. Angew Chem Int Ed Engl 2019; 58:12096-12101. [PMID: 31246340 DOI: 10.1002/anie.201906194] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/21/2019] [Indexed: 11/08/2022]
Abstract
The photophysical process of localized surface plasmon resonance (LSPR) is, for the first time, exploited for broadband photon harvesting in photo-regulated controlled/living radical polymerization. Efficient macromolecular synthesis was achieved under illumination with light wavelengths extending from the visible to the near-infrared regions. Plasmonic Ag nanostructures were in situ generated on Ag3 PO4 photocatalysts in a reversible addition-fragmentation chain transfer (RAFT) system, thereby promoting polymerization of various monomers following a LSPR-mediated electron transfer mechanism. Owing to the LSPR-enhanced broadband photon harvesting, high monomer conversion (>99 %) was achieved under natural sunlight within 0.8 h. The deep penetration of NIR light enabled successful polymerization with reaction vessels screened by opaque barriers. Moreover, by trapping active oxygen species generated in the photocatalytic process, polymerization could be implemented without pre-deoxygenation.
Collapse
Affiliation(s)
- Jingjie Jiang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Zeyu Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yanqi Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Tongyang Hu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yuexiang Lu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
24
|
Nie H, Li S, Qian S, Han Z, Zhang W. Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Zhongqiang Han
- State Key Laboratory of Special Functional Waterproof MaterialsBeijing Oriental Yuhong Waterproof Technology Co., Ltd. 100123 Beijing China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai University 300071 Tianjin China
| |
Collapse
|
25
|
Nie H, Li S, Qian S, Han Z, Zhang W. Switchable Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angew Chem Int Ed Engl 2019; 58:11449-11453. [PMID: 31190462 DOI: 10.1002/anie.201904991] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Indexed: 12/31/2022]
Abstract
Modulating controlled radical polymerization is an interesting and important issue. Herein, modulating RAFT polymerization employing photosensitive azobenzenes is achieved. In the presence of azobenzenes and with visible light off, RAFT polymerization runs smoothly and follows a pseudo-first-order kinetics. In contrast, with light on, RAFT polymerization is greatly decelerated or quenched depending on the type and concentration of azobenzenes. Switchable RAFT polymerization of different (meth)acrylate monomers alternatively with light off and on is demonstrated. A mechanism of photoregulating RAFT polymerization involving radical quenching by azobenzenes is proposed.
Collapse
Affiliation(s)
- Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhongqiang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., 100123, Beijing, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| |
Collapse
|
26
|
Pal A, Ahmad K, Dutta D, Chattopadhyay A. Boron Doped Carbon Dots with Unusually High Photoluminescence Quantum Yield for Ratiometric Intracellular pH Sensing. Chemphyschem 2019; 20:1018-1027. [DOI: 10.1002/cphc.201900140] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/13/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Ayan Pal
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039, Assam India
| | - Kafeel Ahmad
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039, Assam India
| | - Deepanjalee Dutta
- Centre for NanotechnologyIndian Institute of Technology Guwahati Guwahati- 781039, Assam India
| | - Arun Chattopadhyay
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039, Assam India
- Centre for NanotechnologyIndian Institute of Technology Guwahati Guwahati- 781039, Assam India
| |
Collapse
|
27
|
Hakobyan K, Gegenhuber T, McErlean CSP, Müllner M. Photoinduzierte MADIX‐Polymerisation im sichtbaren Spektrum durch wiederverwendbares, preiswertes und ungiftiges Bismutoxid als Photokatalysator. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids School of Chemistry The University of Sydney Sydney 2006 NSW Australien
- School of Chemistry The University of Sydney Sydney 2006 NSW Australien
| | - Thomas Gegenhuber
- Key Centre for Polymers and Colloids School of Chemistry The University of Sydney Sydney 2006 NSW Australien
| | | | - Markus Müllner
- Key Centre for Polymers and Colloids School of Chemistry The University of Sydney Sydney 2006 NSW Australien
- The University of Sydney Nano Institute (Sydney Nano) Sydney 2006 NSW Australien
| |
Collapse
|
28
|
Hakobyan K, Gegenhuber T, McErlean CSP, Müllner M. Visible-Light-Driven MADIX Polymerisation via a Reusable, Low-Cost, and Non-Toxic Bismuth Oxide Photocatalyst. Angew Chem Int Ed Engl 2019; 58:1828-1832. [PMID: 30511413 DOI: 10.1002/anie.201811721] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/02/2018] [Indexed: 12/28/2022]
Abstract
The continuous amalgamation of photocatalysis into existing reversible deactivation radical polymerisation (RDRP) processes has initiated a rapidly propagating area of polymer research in recent years. We introduce bismuth oxide (Bi2 O3 ) as a heterogeneous photocatalyst for polymerisations, operating at room temperature with visible light. We demonstrate formidable control over degenerative chain-transfer polymerisations, such as macromolecular design by interchange of xanthate (MADIX) and reversible addition-fragmentation chain-transfer (RAFT) polymerisation. We achieved narrow molecular weight distributions and attribute the excellent temporal control of a photo-induced electron transfer (PET) process. This methodology was employed to synthesise diblock copolymers combining differently activated monomers. The Bi2 O3 catalyst system has the additional benefits of low toxicity, reusability, low-cost, and ease of removal from the reaction mixture.
Collapse
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, 2006, NSW, Australia.,School of Chemistry, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Thomas Gegenhuber
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, 2006, NSW, Australia
| | | | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, 2006, NSW, Australia.,The University of Sydney Nano Institute (Sydney Nano), Sydney, 2006, NSW, Australia
| |
Collapse
|