1
|
Yue B, Jia X, Baryshnikov GV, Jin X, Feng X, Lu Y, Luo M, Zhang M, Shen S, Ågren H, Zhu L. Photoexcitation‐Based Supramolecular Access to Full‐Scale Phase‐Diagram Structures through in situ Phase‐Volume Ratio Phototuning. Angew Chem Int Ed Engl 2022; 61:e202209777. [DOI: 10.1002/anie.202209777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bingbing Yue
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xiaoyong Jia
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
- Henan Center for Outstanding Overseas Scientists College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 China
| | - Glib V. Baryshnikov
- Laboratory of Organic Electronics Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Xin Jin
- Institute of Lasers and Biophotonics School of Biomedical Engineering Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Xicheng Feng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yunle Lu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Hans Ågren
- Henan Center for Outstanding Overseas Scientists College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 China
- Department of Physics and Astronomy Uppsala University 75120 Uppsala Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
2
|
Yue B, Jia X, Baryshnikov GV, Jin X, Feng X, Lu Y, Luo M, Zhang M, Shen S, Ågren H, Zhu L. Photoexcitation‐based Supramolecular Access to Full‐scale Phase‐diagram Structures through in situ Phase‐volume Ratio Phototuning. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingbing Yue
- Fudan University Department of Macromolecular Science CHINA
| | - Xiaoyong Jia
- Fudan University Department of Macromolecular Science CHINA
| | | | - Xin Jin
- Wenzhou Medical College - Chashan Campus: Wenzhou Medical University School of Biomedical Engineering CHINA
| | - Xicheng Feng
- USST: University of Shanghai for Science and Technology School of Materials and Chemistry CHINA
| | - Yunle Lu
- Fudan University Department of Macromolecular Science CHINA
| | - Mengkai Luo
- Fudan University Department of Macromolecular Science CHINA
| | - Man Zhang
- Fudan University Department of Macromolecular Science CHINA
| | - Shen Shen
- Fudan University Department of Macromolecular Science CHINA
| | - Hans Ågren
- Uppsala Universitet Department of Physics and Astronomy Roslagstullsbacken 15 10691 Stockholm SWEDEN
| | - Liangliang Zhu
- Fudan University Department of Macromolecular Science 220 Handan RoadYangpu District 200433 Shanghai CHINA
| |
Collapse
|
3
|
Mao W, Chi W, He X, Wang C, Wang X, Yang H, Liu X, Wu H. Overcoming Spectral Dependence: A General Strategy for Developing Far-Red and Near-Infrared Ultra-Fluorogenic Tetrazine Bioorthogonal Probes. Angew Chem Int Ed Engl 2022; 61:e202117386. [PMID: 35167188 DOI: 10.1002/anie.202117386] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 02/05/2023]
Abstract
Bioorthogonal fluorogenic dyes are indispensable tools in wash-free bioimaging of specific biological targets. However, the fluorogenicity of existing tetrazine-based bioorthogonal probes deteriorates as the emission wavelength shifts towards the NIR window, greatly limiting their applications in live cells and tissues. Herein, we report a generalizable molecular design strategy to construct ultra-fluorogenic dyes via a simple substitution at the meso-positions of various far-red and NIR fluorophores. Our probes demonstrate significant fluorescence turn-on ratios (102 -103 -fold) in the range 586-806 nm. These results will greatly expand the applications of bioorthogonal chemistry in NIR bioimaging and biosensing.
Collapse
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Xinyu He
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Xueyi Wang
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Haojie Yang
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| |
Collapse
|
4
|
Mao W, Chi W, He X, Wang C, Wang X, Yang H, Liu X, Wu H. Overcoming Spectral Dependence: A General Strategy for Developing Far‐Red and Near‐Infrared Ultra‐Fluorogenic Tetrazine Bioorthogonal Probes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Weijie Chi
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road 487372 Singapore Singapore
| | - Xinyu He
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Chao Wang
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road 487372 Singapore Singapore
| | - Xueyi Wang
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Haojie Yang
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Xiaogang Liu
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road 487372 Singapore Singapore
| | - Haoxing Wu
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| |
Collapse
|
5
|
Su Y, Hu Q, Zhang D, Shen Y, Li S, Li R, Jiang XD, Du J. 1,7-Di-tert-butyl-Substituted aza-BODIPYs by Low-Barrier Rotation to Enhance a Photothermal-Photodynamic Effect. Chemistry 2021; 28:e202103571. [PMID: 34757667 DOI: 10.1002/chem.202103571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 01/10/2023]
Abstract
1,7-Di-tert-butyl-substituted aza-BODIPYs (tBu-azaBDP) were successfully obtained for the first time. The structures of tBu-azaBDP and Ph-azaBDP were confirmed by X-ray crystal analysis, and tBu-azaBDP 2 is more twisted than Ph-azaBDP 5. tBu-azaBDPs have significant photo-stability and enhanced water solubility. tBu-azaBDPs possess excellent optical properties, such as high molar extinction coefficients, broad full width half maxima, and large Stokes shifts, which is comparable to those of the parent dye Ph-azaBDP. Although the low-barrier rotation of the distal -tBu groups in tBu-azaBDPs results in low quantum yield, photothermal conversion efficiency and singlet oxygen generation ability of tBu-azaBDPs are more effective than those of Ph-azaBDP, which is highly desirable for a photothermal-photodynamic therapy agent.
Collapse
Affiliation(s)
- Yajun Su
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Dongxiang Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Yue Shen
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Sicheng Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Ran Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Xin-Dong Jiang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
6
|
Liu YY, Zhang X, Li K, Peng QC, Qin YJ, Hou HW, Zang SQ, Tang BZ. Restriction of Intramolecular Vibration in Aggregation‐Induced Emission Luminogens: Applications in Multifunctional Luminescent Metal–Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yuan Liu
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Xin Zhang
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Kai Li
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Qiu Chen Peng
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Yu Jing Qin
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Hong Wei Hou
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Shuang Quan Zang
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
7
|
Liu YY, Zhang X, Li K, Peng Q, Qin Y, Hou H, Zang SQ, Tang BZ. A New Kind of RIV-type AIEgens and Their Applications for the Construction of Multifunctional Luminescent MOFs. Angew Chem Int Ed Engl 2021; 60:22417-22423. [PMID: 34343403 DOI: 10.1002/anie.202108326] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Indexed: 11/07/2022]
Abstract
In this work, a new kind of butterfly-like molecules of oxacalix[2]arene[2]pyrazine (OAP) are reported, which exhibit typical characteristics of aggregation-induced emission (AIE) via the restriction of intramolecular vibration (RIV) mechanism. Unlike any of the reported RIV-type AIE molecules, the synthetic procedures of which are complicated and associated high costs, OAP AIEgens can be synthesized in a facile manner by a one-step catalyst-free reaction using commercially available materials. Notably, OAP AIEgens are ideal ligands for constructing metal-organic frameworks (MOFs) due to their built-in coordination sites of pyrazine groups. OAP-based MOFs exhibit multiple potential applications in reversible gas response, encrypted information storage, and construction of white light-emitting devices. This work enriches limited kinds of RIV-type AIEgens, offers additional selections of bridging ligands for constructing luminescent MOFs and provides a visualized prototype to understand the effect of RIV process on the luminescence property of MOFs.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Xin Zhang
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Kai Li
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Qiuchen Peng
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Yujing Qin
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Hongwei Hou
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Shuang-Quan Zang
- Zhengzhou University, No 100. Kexue Avenue, 450001, Zhengzhou, CHINA
| | - Ben Zhong Tang
- The Chinese University of Hong Kong - Shenzhen, School of Science and Engineering, 518172, Shenzhen, CHINA
| |
Collapse
|
8
|
Kumar R, Aggarwal H, Srivastava A. Of Twists and Curves: Electronics, Photophysics, and Upcoming Applications of Non-Planar Conjugated Organic Molecules. Chemistry 2020; 26:10653-10675. [PMID: 32118325 DOI: 10.1002/chem.201905071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/02/2020] [Indexed: 01/02/2023]
Abstract
Non-planar conjugated organic molecules (NPCOMs) contain π-conjugation across their length and also exhibit asymmetry in their conformation. In other words, certain molecular fragments in NPCOMs are either twisted or curved out of planarity. This conformational asymmetry in NPCOMs leads to non-uniform charge-distribution across the molecule, with important photophysical and electronic consequences such as altered thermodynamic stability, chemical reactivity, as well as materials properties. Majorly, NPCOMs can be classified as having either Fused or Rotatable architectures. NPCOMs have been the focus of significant scientific attention in the recent past due to their exciting photophysical behavior that includes intramolecular charge-transfer (ICT), thermally activated delayed fluorescence (TADF) and long-lived charge-separated states. In addition, they also have many useful materials characteristics such as biradical character, semi-conductivity, dynamic conformations, and mechanochromism. As a result, rational design of NPCOMs and mapping their structure-property correlations has become imperative. Researchers have executed conformational changes in NPCOMs through a variety of external stimuli such as pH, temperature, anions-cations, solvent, electric potential, and mechanical force in order to tailor their photophysical, optoelectronic and magnetic properties. Converging to these points, this review highlights the lucrative electronic features, photophysical traits and upcoming applications of NPCOMs by a selective survey of the recent scientific literature.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Himanshu Aggarwal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| |
Collapse
|
9
|
Nguyen V, Yim Y, Kim S, Ryu B, Swamy KMK, Kim G, Kwon N, Kim C, Park S, Yoon J. Molecular Design of Highly Efficient Heavy‐Atom‐Free Triplet BODIPY Derivatives for Photodynamic Therapy and Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Van‐Nghia Nguyen
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| | - Yubin Yim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| | - Sangin Kim
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine College of Veterinary Medicine Seoul National University Seoul 08826 Republic of Korea
| | - K. M. K. Swamy
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
- Department of Pharmaceutical Chemistry V.L. College of Pharmacy Raichur 584103 India
| | - Gyoungmi Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| | - Nahyun Kwon
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| | - C‐Yoon Kim
- Department of Stem Cell Biology School of Medicine Konkuk University Seoul 05029 Republic of Korea
| | - Sungnam Park
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
10
|
Nguyen VN, Yim Y, Kim S, Ryu B, Swamy KMK, Kim G, Kwon N, Kim CY, Park S, Yoon J. Molecular Design of Highly Efficient Heavy-Atom-Free Triplet BODIPY Derivatives for Photodynamic Therapy and Bioimaging. Angew Chem Int Ed Engl 2020; 59:8957-8962. [PMID: 32125064 DOI: 10.1002/anie.202002843] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Novel BODIPY photosensitizers were developed for imaging-guided photodynamic therapy. The introduction of a strong electron donor to the BODIPY core through a phenyl linker combined with the twisted arrangement between the donor and the BODIPY acceptor is essential for reducing the energy gap between the lowest singlet excited state and the lowest triplet state (ΔEST ), leading to a significant enhancement in the intersystem crossing (ISC) of the BODIPYs. Remarkably, the BDP-5 with the smallest ΔEST (ca. 0.44 eV) exhibited excellent singlet oxygen generation capabilities in both organic and aqueous solutions. BDP-5 also displayed bright emission in the far-red/near-infrared region in the condensed states. More importantly, both in vitro and in vivo studies demonstrated that BDP-5 NPs displayed a high potential for photodynamic cancer therapy and bioimaging.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yubin Yim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sangin Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - K M K Swamy
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Pharmaceutical Chemistry, V.L. College of Pharmacy, Raichur, 584103, India
| | - Gyoungmi Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Nahyun Kwon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
11
|
Zhang Y, Yan C, Wang C, Guo Z, Liu X, Zhu W. A Sequential Dual‐Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angew Chem Int Ed Engl 2020; 59:9059-9066. [DOI: 10.1002/anie.202000165] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Yutao Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chao Wang
- Fluorescence Research Group Science and Math Cluster Singapore University of Technology and Design Singapore 487372 Singapore
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Xiaogang Liu
- Fluorescence Research Group Science and Math Cluster Singapore University of Technology and Design Singapore 487372 Singapore
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
12
|
Zhang Y, Yan C, Wang C, Guo Z, Liu X, Zhu W. A Sequential Dual‐Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yutao Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chao Wang
- Fluorescence Research Group Science and Math Cluster Singapore University of Technology and Design Singapore 487372 Singapore
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Xiaogang Liu
- Fluorescence Research Group Science and Math Cluster Singapore University of Technology and Design Singapore 487372 Singapore
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
13
|
Wang C, Qiao Q, Chi W, Chen J, Liu W, Tan D, McKechnie S, Lyu D, Jiang X, Zhou W, Xu N, Zhang Q, Xu Z, Liu X. Quantitative Design of Bright Fluorophores and AIEgens by the Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chao Wang
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Weijie Chi
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Davin Tan
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Scott McKechnie
- Department of PhysicsKings College London London WC2R 2LS UK
| | - Da Lyu
- Department of ChemistryNational University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| | - Xiao‐Fang Jiang
- School of Physics and Telecommunication EngineeringSouth China Normal University Guangzhou 510006 China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiaogang Liu
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
14
|
Wang C, Qiao Q, Chi W, Chen J, Liu W, Tan D, McKechnie S, Lyu D, Jiang XF, Zhou W, Xu N, Zhang Q, Xu Z, Liu X. Quantitative Design of Bright Fluorophores and AIEgens by the Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT). Angew Chem Int Ed Engl 2020; 59:10160-10172. [PMID: 31943591 DOI: 10.1002/anie.201916357] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 01/10/2023]
Abstract
Inhibition of TICT can significantly increase the brightness of fluorescent materials. Accurate prediction of TICT is thus critical for the quantitative design of high-performance fluorophores and AIEgens. TICT of 14 types of popular organic fluorophores were modeled with time-dependent density functional theory (TD-DFT). A reliable and generalizable computational approach for modeling TICT formations was established. To demonstrate the prediction power of our approach, we quantitatively designed a boron dipyrromethene (BODIPY)-based AIEgen which exhibits (almost) barrierless TICT rotations in monomers. Subsequent experiments validated our molecular design and showed that the aggregation of this compound turns on bright emissions with ca. 27-fold fluorescence enhancement, as TICT formation is inhibited in molecular aggregates.
Collapse
Affiliation(s)
- Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Scott McKechnie
- Department of Physics, Kings College London, London, WC2R 2LS, UK
| | - Da Lyu
- Department of Chemistry, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - Xiao-Fang Jiang
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
15
|
Chi C, Pan S, Jin J, Meng L, Luo M, Zhao L, Zhou M, Frenking G. Octacarbonyl Ion Complexes of Actinides [An(CO) 8 ] +/- (An=Th, U) and the Role of f Orbitals in Metal-Ligand Bonding. Chemistry 2019; 25:11772-11784. [PMID: 31276242 PMCID: PMC6772027 DOI: 10.1002/chem.201902625] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Indexed: 11/11/2022]
Abstract
The octacarbonyl cation and anion complexes of actinide metals [An(CO)8 ]+/- (An=Th, U) are prepared in the gas phase and are studied by mass-selected infrared photodissociation spectroscopy. Both the octacarbonyl cations and anions have been characterized to be saturated coordinated complexes. Quantum chemical calculations by using density functional theory show that the [Th(CO)8 ]+ and [Th(CO)8 ]- complexes have a distorted octahedral (D4h ) equilibrium geometry and a doublet electronic ground state. Both the [U(CO)8 ]+ cation and the [U(CO)8 ]- anion exhibit cubic structures (Oh ) with a 6 A1g ground state for the cation and a 4 A1g ground state for the anion. The neutral species [Th(CO)8 ] (Oh ; 1 A1g ) and [U(CO)8 ] (D4h ; 5 B1u ) have also been calculated. Analysis of their electronic structures with the help on an energy decomposition method reveals that, along with the dominating 6d valence orbitals, there are significant 5f orbital participation in both the [An]←CO σ donation and [An]→CO π back donation interactions in the cations and anions, for which the electronic reference state of An has both occupied and vacant 5f AOs. The trend of the valence orbital contribution to the metal-CO bonds has the order of 6d≫5f>7s≈7p, with the 5f orbitals of uranium being more important than the 5f orbitals of thorium.
Collapse
Affiliation(s)
- Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular, Engineering, Jiangsu National Synergetic Innovation Center for, Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Jiaye Jin
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Luyan Meng
- School of Chemistry, Biological and Materials Sciences, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Mingbiao Luo
- School of Chemistry, Biological and Materials Sciences, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular, Engineering, Jiangsu National Synergetic Innovation Center for, Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular, Engineering, Jiangsu National Synergetic Innovation Center for, Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.,Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| |
Collapse
|