1
|
Lin K, Wang S, Yu S, Si W, Yang M, Xu N, Liu Y, Zheng Y, Zhao S, Shi J, Yuan J. Porphyrin-based covalent organic framework with NIR absorption: Preparation, hyaluronic acid modification, and cascading a hypoxia-sensitive drug for synergistic therapy of cancer phototherapy/chemotherapy. Int J Biol Macromol 2025; 308:142645. [PMID: 40158586 DOI: 10.1016/j.ijbiomac.2025.142645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Porphyrins are popular photosensitizers for photodynamic therapy of diseases. However, the poor water solution and short absorption wavelengths of porphyrins limit their clinical application. In this work, a novel worm-like porphyrin covalent organic framework (Por-COF) with excellent dispersibility and near-infrared absorption was prepared via a facile method. First, a pH-responsive macromolecule was prepared using Schiff base bonds between porphyrin and terephthalaldehyde, and the spatial arrangement of macromolecules was controlled to prepare Por-COF. Second, the hypoxia-responsive drug tirapazamine (TPZ) and tumor-targeted hyaluronic acid (HA) were loaded to Por-COF through the electrostatic effect to prepare a multifunction nanomedicine (Por-COF@TPZ/HA) that could simultaneously produce abundant reactive oxygen species and high temperature via808 nm laser irradiation. TPZ was cascaded for the synergistic therapy of cancers. In vitro cytotoxicity showed that the inhibition rate of cell activity in the Por-COF@TPZ/HA + Laser group was 1.2 times higher than that in the Por-COF/HA + Laser group. In vivo experiments also demonstrated that the aggravated tumor hypoxia caused by photodynamic therapy could activate TPZ to achieve high-efficiency chemotherapy. Combined photodynamic-photothermal therapy and chemotherapy had an outstanding synergistic effect. This work provides a promising method for Por-COF preparation and a feasible strategy for the synergistic therapy of cancers.
Collapse
Affiliation(s)
- Kunpeng Lin
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; School of Life Science, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Shaochen Wang
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Shuling Yu
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, People's Republic of China.
| | - Wen Si
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Miaojie Yang
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Ningning Xu
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yu Liu
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yan Zheng
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Shuang Zhao
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, People's Republic of China.
| | - Jintao Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
2
|
Yi L, Gao Y, Luo S, Wang T, Deng H. Structure Evolution of 2D Covalent Organic Frameworks Unveiled by Single-Crystal X-ray Diffraction. J Am Chem Soc 2024; 146:19643-19648. [PMID: 38990177 DOI: 10.1021/jacs.4c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We report 9 crystal structures of a two-dimensional (2D) covalent organic framework (COF), including the parent Py-1P, 5 derivatives formed by chemical reactions, and 3 dynamic states by solvent exchange/loss. Structure details of these porous crystals, including stacking mode, interlayer distance, pore aperture, and incline angle, before, during, and after conversion processes in solution, were unveiled by single-crystal X-ray diffraction with resolutions up to 0.85 Å. The structure evolution is triggered by stepwise conformational transformation of the molecular building blocks in 2D COF, while their long-range ordering remained unsacrificed.
Collapse
Affiliation(s)
- Lezhi Yi
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yijun Gao
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shuming Luo
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Tianyu Wang
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Zhang X, Dou Y, Liu S, Chen P, Wen Y, Li J, Sun Y, Zhang R. Rationally Designed Benzobisthiadiazole-Based Covalent Organic Framework for High-Performance NIR-II Fluorescence Imaging-Guided Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2303842. [PMID: 38458147 DOI: 10.1002/adhm.202303842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Indexed: 03/10/2024]
Abstract
Although being applied as photosensitizers for photodynamic therapy, covalent organic frameworks (COFs) fail the precise fluorescence imaging in vivo and phototherapy in deep-tissue, due to short excitation/emission wavelengths. Herein, this work proposes the first example of NIR-II emissive and benzobisthiadiazole-based COF-980. Comparing to its ligands, the structure of COF-980 can more efficiently reducing the energy gap (ΔES1-T1) between the excited state and the triplet state to enhance photodynamic therapy efficiency. Importantly, COF-980 demonstrates high photostability, good anti-diffusion property, superior reactive oxygen species (ROS) generation efficiency, promising imaging ability, and ROS production in deep tissue (≈8 mm). Surprisingly, COF-980 combined with laser irradiation could trigger larger amount of intracellular ROS to high efficiently induce cancer cell death. Notably, COF-980 NPs precisely enable PDT guided by NIR-II fluorescence imaging that effectively inhibit the 4T1 tumor growth with negligible adverse effects. This study provides a universal approach to developing long-wavelength emissive COFs and exploits its applications for biomedicine.
Collapse
Affiliation(s)
- Xian Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - You Dou
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Yating Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Junrong Li
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Yao Sun
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
| |
Collapse
|
4
|
Chen Y, Feng T, Zhu X, Tang Y, Xiao Y, Zhang X, Wang SF, Wang D, Wen W, Liang J, Xiong H. Ambient Synthesis of Porphyrin-Based Fe-Covalent Organic Frameworks for Efficient Infected Skin Wound Healing. Biomacromolecules 2024; 25:3671-3684. [PMID: 38720431 DOI: 10.1021/acs.biomac.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Reactive oxygen species (ROS) have emerged as a promising treatment option for antibacterial and biofilm eradication. However, their therapeutic efficacy is significantly hampered by the unique microenvironments of diabetic wounds. In this study, we designed and synthesized porphyrin-based Fe covalent organic frameworks (Fe-COF) through a Schiff base condensation reaction. Subsequently, Fe-COF were encapsulated with hyaluronic acid (HA) through electrostatic adsorption, resulting in a novel formulation named HA-Fe-COF for diabetic wound healing. HA-Fe-COF were engineered to respond to hyaluronidase in the infected wound, leading to the controlled release of Fe-COF. Those released Fe-COF served a dual role as photosensitizers, generating singlet oxygen and localized heating when exposed to dual light sources. Additionally, they acted as peroxidase-like nanozymes, facilitating the production of ROS through enzymatic reactions. This innovative approach enabled a synergistic therapeutic effect combining photodynamic, photothermal, and chemodynamic modalities. Furthermore, the sustained release of HA from HA-Fe-COF promoted angiogenesis, collagen deposition, and re-epithelialization during the diabetic wound healing process. This "all-in-one" strategy offers a novel approach for the development of antimicrobial and biofilm eradication strategies that minimize damage to healthy tissues in vivo.
Collapse
Affiliation(s)
- Yidan Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tiantian Feng
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xiaohong Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuting Tang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yao Xiao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Sheng-Fu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Dong Wang
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jichao Liang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Huayu Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
5
|
Zhong Y, Dong W, Ren S, Li L. Oligo(phenylenevinylene)-Based Covalent Organic Frameworks with Kagome Lattice for Boosting Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308251. [PMID: 37781857 DOI: 10.1002/adma.202308251] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Covalent organic frameworks (COFs) have shown great advantages as photocatalysts for hydrogen evolution. However, the effect of linkage geometry and type of linkage on the extent of π-electron conjugation in the plane of the framework and photocatalytic properties of COFs remains a significant challenge. Herein, two Kagome (kgm) topologic oligo(phenylenevinylene)-based COFs are designed and synthesized for boosting photocatalytic hydrogen evolution via a "two in one" strategy. Under visible light irradiation, COF-954 with 5 wt% Pt as cocatalyst exhibits high hydrogen evolution rate (HER) of 137.23 mmol g-1 h-1 , outperforming most reported COF-based photocatalysts. More importantly, even in natural seawater, COF-954 shows an average HER of 191.70 mmol g-1 h-1 under ultraviolet-visible (UV-vis) light irradiation. Additionally, the water-drainage experiments indoors and outdoors demonstrate that 25 and 8 mL hydrogen gas could be produced in 80 min under UV-vis light and natural sunlight, respectively, corresponding to a high HER of 167.41 and 53.57 mmol h-1 g-1 . This work not only demonstrates an effective design strategy toward highly efficient COF-based photocatalysts, but also shows the great potential of using the COF-based photocatalysts for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Yuelin Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenbo Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
6
|
Cao F, Wang H, Lu N, Zhang P, Huang H. A Photoisomerizable Zinc (II) Complex Inhibits Microtubule Polymerization for Photoactive Therapy. Angew Chem Int Ed Engl 2023; 62:e202301344. [PMID: 36749111 DOI: 10.1002/anie.202301344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
The photoisomerization-induced cytotoxicity in photopharmacology provides a unique pathway for phototherapy because it is independent of endogenous oxygen. In this study, we developed a biosafe photoisomerizable zinc(II) complex (Zn1), which releases its trans ligand (trans-L1) after being irradiated with blue light. This causes the complex to undergo photoisomerization and produce the toxic cis product (cis-L1) and generate singlet oxygen (1 O2 ). The resulting series of events caused impressive phototoxicity in hypoxic A431 skin cancer cells, as well as in a tumor model in vivo. Interestingly, Zn1 was able to inhibit tumor microtubule polymerization, while still showing good biocompatibility and biosafety in vivo. This photoisomerizable zinc(II) complex provides a novel strategy for addressing the oxygen-dependent limitation of traditional photodynamic therapy.
Collapse
Affiliation(s)
- Fengshu Cao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Nong Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
7
|
El-Mahdy AFM, Omr HAE, ALOthman ZA, Lee H. Design and synthesis of metal-free ethene-based covalent organic framework photocatalysts for efficient, selective, and long-term stable CO 2 conversion into methane. J Colloid Interface Sci 2023; 633:775-785. [PMID: 36493742 DOI: 10.1016/j.jcis.2022.11.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
The efficient and selective photocatalytic CO2 conversion into higher-valued hydrocarbon products (e.g., methane and ethane) over covalent organic frameworks (COFs) remains a challenge, with all previously reported attempts producing carbon monoxide as the dominant product. Herein, we report a new ethene-based COF, through polycondensation of electron-rich (E)-1,2‑diphenylethene and 1,3,6,8‑tetraphenylpyrene units. The synthesized ethene-based COF functioned as an efficient metal-free photocatalyst for the conversion of CO2 into methane under visible light irradiation, with a selectivity of 100 %, a production rate of 14.7 µmol g-1h-1, and an apparent quantum yield of c.a. 0.99 % at 489.5 nm, which are the most promising values reported for CO2 conversion by a metal-free COF photocatalyst, without any support from a co-catalyst. The carbon origin of CH4 product is confirmed by isotope tracer 13CO2 experiment. Moreover, the photocatalytic system consistently produces methane for > 14 h with recyclability.
Collapse
Affiliation(s)
- Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Hossam A E Omr
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; International Research Center for Materials Nanoarchitechtonics (WPI-MANA) and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hyeonseok Lee
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
8
|
Heravifard Z, Akbarzadeh AR, Tayebi L, Rahimi R. Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zahra Heravifard
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Leila Tayebi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Rahmatollah Rahimi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| |
Collapse
|
9
|
Yazdani H, Shahbazi MA, Varma RS. 2D and 3D Covalent Organic Frameworks: Cutting-Edge Applications in Biomedical Sciences. ACS APPLIED BIO MATERIALS 2022; 5:40-58. [PMID: 35014828 DOI: 10.1021/acsabm.1c01015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline porous organic structures with two- or three-dimensional (2D or 3D) features and composed of building blocks being connected via covalent bonds. The manifold applications of COFs in optoelectronic devices, energy conversion and storage, adsorption, separation, sensing, organocatalysis, photocatalysis, electrocatalytic reactions, and biomedicine are increasing because of their notable intrinsic features such as large surface area, porosity, designable structure, low density, crystallinity, biocompatibility, and high chemical stability. These properties have rendered 2D and 3D COF-based materials as desirable entities for drug delivery, gene delivery, photothermal therapy, photodynamic therapy, combination therapy, biosensing, bioimaging, and anticancer activities. Herein, different reactions and methods for the synthesis of 2D and 3D COFs are reviewed with special emphasis on the construction and state-of-the-art progress pertaining to the biomedical applications of 2D and 3D COFs of varying shapes, sizes, and structures. Specifically, stimuli-responsive COFs-based systems and targeted drug delivery approaches are summarized.
Collapse
Affiliation(s)
- Hossein Yazdani
- Department of Organic Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-46184 Zanjan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
10
|
Zhang H, Yu D, Liu S, Liu C, Liu Z, Ren J, Qu X. NIR-II Hydrogen-Bonded Organic Frameworks (HOFs) Used for Target-Specific Amyloid-β Photooxygenation in an Alzheimer's Disease Model. Angew Chem Int Ed Engl 2022; 61:e202109068. [PMID: 34735035 DOI: 10.1002/anie.202109068] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/12/2022]
Abstract
Phototherapy has emerged as a powerful approach for interrupting β-amyloid (Aβ) self-assembly. However, deeper tissue penetration and safer photosensitizers are urgent to be exploited for avoiding damaging nearby normal tissues and improving therapeutic effectiveness. A hydrogen-bonded organic framework (HOF)-based NIR-II photooxygenation catalyst is presented here to settle the abovementioned challenges. By encapsulating the pyridinium hemicyanine dye DSM with a large two-photon absorption (TPA) cross-section in NIR-II window into the porphyrin-based HOF, the resultant DSM@n-HOF-6 exhibits significant two-photon NIR-II-excited Fluorescence Resonance Energy Transfer (FRET) to generate singlet oxygen (1 O2 ) for Aβ oxidation. Further, the target peptides of KLVFFAED (KD8) are covalently grafted on DSM@n-HOF-6 to enhance the blood-brain barrier (BBB) permeability and Aβ selectivity. The HOF-based photooxygenation catalyst shows an outstanding inhibitory effect of Aβ aggregation upon the NIR-II irradiation. Further in vivo studies demonstrate the obvious decrease of craniocerebral Aβ plaques and recovery of memory deficits in triple-transgenic AD (3×Tg-AD) model mice.
Collapse
Affiliation(s)
- Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuting Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
11
|
Zhang H, Yu D, Liu S, Liu C, Liu Z, Ren J, Qu X. NIR‐II Hydrogen‐Bonded Organic Frameworks (HOFs) Used for Target‐Specific Amyloid‐β Photooxygenation in an Alzheimer's Disease Model. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shuting Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
12
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Su Y, Chen Z, Tang X, Xu H, Zhang Y, Gu C. Design of Persistent and Stable Porous Radical Polymers by Electronic Isolation Strategy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Zhongxin Chen
- State Key Laboratory of Luminescent Materials and Devices Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Xiaohui Tang
- State Key Laboratory of Luminescent Materials and Devices Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry Huzhou University Huzhou 313000 P. R. China
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
14
|
Su Y, Chen Z, Tang X, Xu H, Zhang Y, Gu C. Design of Persistent and Stable Porous Radical Polymers by Electronic Isolation Strategy. Angew Chem Int Ed Engl 2021; 60:24424-24429. [PMID: 34523773 DOI: 10.1002/anie.202108318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Indexed: 11/11/2022]
Abstract
Conjugated organic radical polymers with stable radical features are difficult to design because the π conjugation in the polymer backbones makes the radicals readily delocalize and tend to undergo covalent bonding processes. In this work, we report an electronic isolation strategy to design stable porous radical polymers by homocoupling reaction from a meta-position active monomer. The meta linkage ensures less conjugation in the polymer skeletons, localizes the resonant radicals, and prevents them from recombination. The resulting porous radical polymer exhibits exceptional radical characters with ultralow band gap of 0.68 eV, strong yet extended UV/Vis-NIR absorption up to 1800 nm, and high spin density. The above features make the polymer very promising in the photothermal conversion with record-high photothermal temperature increment of ≈∼240 °C and striking solar-driven water evaporation efficiency of 96.8 %. Our results demonstrate the feasibility of electronic isolation of radicals for producing outstanding photothermal materials.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhongxin Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaohui Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
15
|
Zhang C, Guo J, Zou X, Guo S, Guo Y, Shi R, Yan F. Acridine-Based Covalent Organic Framework Photosensitizer with Broad-Spectrum Light Absorption for Antibacterial Photocatalytic Therapy. Adv Healthc Mater 2021; 10:e2100775. [PMID: 34165250 DOI: 10.1002/adhm.202100775] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance is considered as one of the serious public health issues. Antibacterial photocatalytic therapy, a clinically proven antibacterial therapy, is gaining increasing attention in recent years owing to its high efficacy. Here, an acridine-based covalent organic framework (COF) photosensitizer, named TPDA, with multiple active sites is synthesized via Schiff base condensation between 2,4,6-triformylphloroglucinol (TFP) and 3,6-diaminoacridine (DAA). Owing to the increased conjugation effect of the COF skeleton and outstanding light harvesting ability of DAA, TPDA exhibits a narrow optical band gap (1.6 eV), enhancing light energy transformation and conferring a wide optical absorption spectrum (intensity arbitrary unit > 0.8) ranging from the UV to near-infrared region. Moreover, TPDA shows high antibacterial activities against both gram-negative and gram-positive bacteria within a short time (10 min) of light irradiation and is found to efficiently protect fish from skin infections. Molecular dynamics simulation data show that the introduction of DAA and TFP facilitates the interaction between TPDA and bacteria and is conducive to reactive oxygen species migration, which further improves the antimicrobial performance. These findings indicate the potential of TPDA as a novel photosensitive material for photodynamic therapy.
Collapse
Affiliation(s)
- Cuiping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Rongwei Shi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Sun B, Ye Z, Zhang M, Song Q, Chu X, Gao S, Zhang Q, Jiang C, Zhou N, Yao C, Shen J. Light-Activated Biodegradable Covalent Organic Framework-Integrated Heterojunction for Photodynamic, Photothermal, and Gaseous Therapy of Chronic Wound Infection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42396-42410. [PMID: 34472332 DOI: 10.1021/acsami.1c10031] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic wound healing, impeded by bacterial infections and drug resistance, poses a threat to global human health. Antibacterial phototherapy is an effective way to fight microbial infection without causing drug resistance. Covalent organic frameworks (COFs) are a class of highly crystalline functional porous carbon-based materials composed of light atoms (e.g., carbon, nitrogen, oxygen, and borane), showing potential applications in the biomedical field. Herein, we constructed porphyrin-based COF nanosheets (TP-Por CON) for synergizing photodynamic and photothermal therapy under red light irradiation (e.g., 635 nm). Moreover, a nitric oxide (NO) donor molecule, BNN6, was encapsulated into the pore volume of the crystalline porous framework structure to moderately release NO triggered by red light irradiation for realizing gaseous therapy. Therefore, we successfully synthesized a novel TP-Por CON@BNN6-integrated heterojunction for thoroughly killing Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus in vitro. Our research identified that TP-Por CON@BNN6 has favorable biocompatibility and biodegradability, low phototoxicity, anti-inflammatory properties, and excellent mice wound healing ability in vivo. This study indicates that the TP-Por CON@BNN6-integrated heterojunction with multifunctional properties provides a potential strategy for COF-based gaseous therapy and microorganism-infected chronic wound healing.
Collapse
Affiliation(s)
- Baohong Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziqiu Ye
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiuxian Song
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shurui Gao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chen Jiang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
17
|
Gao P, Tang K, Lou R, Liu X, Wei R, Li N, Tang B. Covalent Organic Framework-Based Spherical Nucleic Acid Probe with a Bonding Defect-Amplified Modification Strategy. Anal Chem 2021; 93:12096-12102. [PMID: 34432421 DOI: 10.1021/acs.analchem.1c02602] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing spherical nucleic acids with new structures holds great promise for nanomedicine and bioanalytical fields. Covalent organic frameworks (COFs) are emerging promising materials with unique properties for a wide range of applications. However, devising COF-based spherical nucleic acid is challenging because methods for the preparation of functionalized COFs are still limited. We report here a bonding defect-amplified modification (BDAM) strategy for the facile preparation of functionalized COFs. Poly(acrylic acid) was employed as the defect amplifier to modify the surface of COF nanoparticles by the formation of amide bonds with amino residues, which successfully converted and amplified the residues into abundant reactive carboxyl groups. Then, amino terminal-decorated hairpin DNA was densely grafted onto the surface of COF nanoparticles (NPs) to give rise to a spherical nucleic acid probe (SNAP). A series of experiments and characterizations proved the successful preparation of the COF-based SNAP, and its application in specifically lighting up RNA biomarkers in living cells for cancer diagnostic imaging was demonstrated. Therefore, the COF-based SNAP is a promising candidate for biomedical applications and the proposed BDAM represents a useful strategy for the preparation of functionalized COFs for diverse fields.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Ruxin Lou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
18
|
Zhao J, Ren J, Zhang G, Zhao Z, Liu S, Zhang W, Chen L. Donor-Acceptor Type Covalent Organic Frameworks. Chemistry 2021; 27:10781-10797. [PMID: 34002911 DOI: 10.1002/chem.202101135] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Intermolecular charge transfer (ICT) effect has been widely studied in both small molecules and linear polymers. Covalently-bonded donor-acceptor pairs with tunable bandgaps and photoelectric properties endow these materials with potential applications in optoelectronics, fluorescent bioimaging, and sensors, etc. However, owing to the lack of charge transfer pathway or effective separation of charge carriers, unfavorable charge recombination gives rise to inevitable energy loss. Covalent organic frameworks (COFs) can be mediated with various geometry- and property-tailored building blocks, where donor (D) and acceptor (A) segments are connected by covalent bonds and can be finely arranged to form highly ordered networks (namely D-A COFs). The unique structural features of D-A COFs render the formation of segregated D-A stacks, thus provides pathways and channels for effective charge carriers transport. This review highlights the significant progress on D-A COFs over the past decade with emphasis on design principles, growing structural diversities, and promising application potentials.
Collapse
Affiliation(s)
- Jinwei Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Junyu Ren
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Guang Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ziqiang Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China.,Institute of Molecules Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyong Liu
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Wandong Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
19
|
Chen W, Sun Z, Jiang C, Sun W, Yu B, Wang W, Lu L. An All‐in‐One Organic Semiconductor for Targeted Photoxidation Catalysis in Hypoxic Tumor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Wenbo Sun
- College of Materials Science and Engineering College of Chemistry and Chemical Engineering Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials Instrumental Analysis Center of Qingdao University Qingdao University Qingdao 266071 China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Wei Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| |
Collapse
|
20
|
Chen W, Sun Z, Jiang C, Sun W, Yu B, Wang W, Lu L. An All-in-One Organic Semiconductor for Targeted Photoxidation Catalysis in Hypoxic Tumor. Angew Chem Int Ed Engl 2021; 60:16641-16648. [PMID: 33880849 DOI: 10.1002/anie.202105206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Tumor hypoxia severely limits the therapeutic effects of photodynamic therapy (PDT). Although many methods for oxygen generation exist, substantial safety concerns, spatiotenporal uncontrollability, limited efficacy, and complicated procedures have compromised their practical application. Here, we demonstrate a biocompatiable all-in-one organic semiconductor to provide a photoxidation catalysis mechanism of action. A facile method is developed to produce gram-level C5 N2 nanoparticles (NPs)-based organic semiconductor. Under 650 nm laser irradiation, the semiconductor split water to generate O2 and simultaneously produce singlet oxygen (1 O2 ), showing that the photocatalyst for O2 evolution and the photosensitizer (PS) for 1 O2 generation could be synchronously achieved in one organic semiconductor. The inherent nucleus targeting capacity endows it with direct and efficient DNA photocleavage. These findings pave the way for developing organic semiconductor-based cancer therapeutic agents.
Collapse
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Wenbo Sun
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Wei Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| |
Collapse
|
21
|
Lee K, Wan Y, Li X, Cui X, Li S, Lee C. Recent Progress of Alkyl Radicals Generation-Based Agents for Biomedical Applications. Adv Healthc Mater 2021; 10:e2100055. [PMID: 33738983 DOI: 10.1002/adhm.202100055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is extensively explored for anticancer and antibacterial applications. It typically relies on oxygen-dependent generation of reactive oxygen species (ROS) to realize its killing effect. This type of therapy modality shows compromised therapeutic results for treating hypoxic tumors or bacteria-infected wounds. Recently, alkyl radicals attracted much attention as they can be generated from some azo-based initiators only under mild heat stimulus without oxygen participation. Many nanocarriers or hydrogel systems have been developed to load and deliver these radical initiators to lesion sites for theranostics. These systems show good anticancer or antimicrobial effect in hypoxic environment and some of them possess specific imaging abilities providing precise guidance for treatment. This review summarizes the developed materials that aim at treating hypoxic cancer and bacteria-infected wound by using this kind of oxygen-irrelevant alkyl radicals. Based on the carrier components, these agents are divided into three groups: inorganic, organic, as well as inorganic and organic hybrid carrier-based therapeutic systems. The construction of these agents and their specific advantages in biomedical field are highlighted. Finally, the existing problems and future promising development directions are discussed.
Collapse
Affiliation(s)
- Ka‐Wai Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Yingpeng Wan
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiaozhen Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiao Cui
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Shengliang Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| |
Collapse
|
22
|
An S, Xu Q, Ni Z, Hu J, Peng C, Zhai L, Guo Y, Liu H. Construction of Covalent Organic Frameworks with Crown Ether Struts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shuhao An
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute (SARI) Chinese Academy of Sciences (CAS) Shanghai 201210 P. R. China
| | - Zhihui Ni
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Jun Hu
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Yu Guo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute (SARI) Chinese Academy of Sciences (CAS) Shanghai 201210 P. R. China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
23
|
An S, Xu Q, Ni Z, Hu J, Peng C, Zhai L, Guo Y, Liu H. Construction of Covalent Organic Frameworks with Crown Ether Struts. Angew Chem Int Ed Engl 2021; 60:9959-9963. [PMID: 33599380 DOI: 10.1002/anie.202101163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Crown ethers are a class of macrocyclic molecules with unique flexible structures but they are rarely integrated in covalent organic frameworks (COFs). To date, employing flexible organic units such as crown ethers to construct COFs with high crystallinity and surface area are still a challenge. In this work, two new COFs with different flexible crown ethers as backbone rather than side chains are synthesized and further employed for alkali metal ions separation. Both of COFs possess high surface areas, good crystallinity, and excellent chemical stability. Interestingly, these two new COFs with 18-crown-6 or 24-crown-8 units showed remarkable binding ability of K+ or Cs+ owing to the size-fit effect. This work demonstrated that the unique structural features of crown ethers will lead to increase interest in fabricating COFs with crown ethers.
Collapse
Affiliation(s)
- Shuhao An
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Zhihui Ni
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Jun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Yu Guo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
24
|
Zhang L, Liu Z, Deng Q, Sang Y, Dong K, Ren J, Qu X. Nature‐Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia‐Like Surface for Enhanced Bacterial Inhibition. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Zhengwei Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Qingqing Deng
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanjuan Sang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Kai Dong
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
25
|
Zhang L, Liu Z, Deng Q, Sang Y, Dong K, Ren J, Qu X. Nature‐Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia‐Like Surface for Enhanced Bacterial Inhibition. Angew Chem Int Ed Engl 2020; 60:3469-3474. [DOI: 10.1002/anie.202012487] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Zhengwei Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Qingqing Deng
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanjuan Sang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Kai Dong
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
26
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Beyond Frameworks: Structuring Reticular Materials across Nano-, Meso-, and Bulk Regimes. Angew Chem Int Ed Engl 2020; 59:22350-22370. [PMID: 32449245 PMCID: PMC7756821 DOI: 10.1002/anie.201914461] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal-structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano-, meso-, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self-assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society.
Collapse
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Zhe Ji
- Department of ChemistryStanford UniversityStanfordCalifornia94305-5012USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
- BCMaterialsBasque Center for MaterialsUPV/EHU Science Park48940LeioaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
27
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Mehr als nur ein Netzwerk: Strukturierung retikulärer Materialien im Nano‐, Meso‐ und Volumenbereich. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Zhe Ji
- Department of Chemistry Stanford University Stanford Kalifornien 94305-5012 USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
- BCMaterials Basque Center for Materials UPV/EHU Science Park 48940 Leioa Spanien
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spanien
| |
Collapse
|
28
|
Zeng JY, Wang XS, Zhang XZ. Research Progress in Covalent Organic Frameworks for Photoluminescent Materials. Chemistry 2020; 26:16568-16581. [PMID: 32320099 DOI: 10.1002/chem.202001105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Covalent organic frameworks (COFs) are an emerging kind of crystalline porous polymers that present the precise integration of organic building blocks into extensible structures with regular pores and periodic skeletons. The diversity of organic units and covalent linkages makes COFs a rising materials platform for the design of structure and functionality. Herein, recent research progress in developing COFs for photoluminescent materials is summarised. Structural and functional design strategies are highlighted and fundamental problems that need to be solved are identified, in conjunction with potential applications from perspectives of photoluminescent materials.
Collapse
Affiliation(s)
- Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Xiao-Shuang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China.,The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P.R. China
| |
Collapse
|
29
|
Guo X, Mao T, Wang Z, Cheng P, Chen Y, Ma S, Zhang Z. Fabrication of Photoresponsive Crystalline Artificial Muscles Based on PEGylated Covalent Organic Framework Membranes. ACS CENTRAL SCIENCE 2020; 6:787-794. [PMID: 32490195 PMCID: PMC7256951 DOI: 10.1021/acscentsci.0c00260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 05/09/2023]
Abstract
Seeking new photoresponsive materials with high energy conversion efficiency, good mechanical properties, as well as well-defined photoactuation mechanisms is of paramount significance. To address these challenges, we first introduced crystalline covalent organic frameworks (COFs) into the photoactuator field and created a facile fabrication strategy to directly install photoresponsive functional groups (i.e., acylhydrazone) on the skeletons of COFs. Herein, an approach to use polyethylene glycol (PEG) cross-linked dimers as the building blocks of the COF-42 platform was developed and afforded a series of uniform and freestanding membranes (PEG-COF-42) with outstanding mechanical properties (e.g., high flexibility and mechanical strength). Notably, these membranes possessed a fast mechanical response (e.g., bending) to UV light and good reversibility upon blue light or heating. After an in-depth investigation of the photoactuation mechanism via various techniques, we proposed a mechanism for the photoresponsive performance of PEG-COF-42: configurational change of acylhydrazone (i.e., E ↔ Z isomerization) accompanied by an excited-state intramolecular proton transfer (ESIPT) process intramolecularly transferring hydrogens from hydrogen donors (N-H) to hydrogen acceptors (oxygen in PEG). Moreover, attributed to the PEG moieties, PEG-COF-42 also demonstrated a vapor-responsive performance. This study not only broadens the application scopes of COFs but also provides new opportunities for the construction of multi-stimuli-responsive materials.
Collapse
Affiliation(s)
- Xiuxiu Guo
- State
Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianhui Mao
- State
Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- State
Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable
Energy Conversion and Storage Center, Nankai
University, Tianjin 300071, China
- Key
Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- State
Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable
Energy Conversion and Storage Center, Nankai
University, Tianjin 300071, China
- Key
Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State
Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shengqian Ma
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Zhenjie Zhang
- State
Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable
Energy Conversion and Storage Center, Nankai
University, Tianjin 300071, China
- Key
Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Xiang MH, Li N, Liu JW, Yu RQ, Jiang JH. A tumour mRNA-triggered nanoassembly for enhanced fluorescence imaging-guided photodynamic therapy. NANOSCALE 2020; 12:8727-8731. [PMID: 32296802 DOI: 10.1039/d0nr00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A multifunctional theranostic nanoplatform, which integrates diagnostic and therapeutic functions in a single nanosystem, holds great promise for guiding disease treatment and improving the corresponding therapy efficacy. We report the development of a novel g-C3N4 nanosheet-based theranostic nanoassembly for both enhanced imaging of cancer-relevant mRNA in living cells and imaging-guided on-demand photodynamic therapy (PDT) for tumors. The nanoassembly was constructed by using highly fluorescent and water-dispersible g-C3N4 nanosheets which act as nanocarriers, enabling efficient and self-tracking transfection of the DNA hairpin probes. The presence of intracellular mRNA will initiate the DNA hairpin probes, ultimately resulting in an amplified fluorescence signal via hybridization and displacement with mRNA. Moreover, enhanced fluorescence imaging-guided precise PDT for tumors in living cells was also demonstrated, allowing the selective ablation of tumors without any obvious side effects. Therefore, the developed theranostic approach can provide a promising platform for low-abundance biomarker discovery and early treatment of related diseases.
Collapse
Affiliation(s)
- Mei-Hao Xiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | |
Collapse
|
31
|
Guan Q, Zhou LL, Li WY, Li YA, Dong YB. Covalent Organic Frameworks (COFs) for Cancer Therapeutics. Chemistry 2020; 26:5583-5591. [PMID: 31880368 DOI: 10.1002/chem.201905150] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/21/2019] [Indexed: 12/27/2022]
Abstract
As newly emerged crystalline porous materials, covalent organic frameworks (COFs) possess fascinating structures and some specific features such as modularity, crystallinity, porosity, stability, versatility, and biocompatibility. Besides adsorption/separation, sensing, catalysis, and energy applications, COFs have recently shown a promise in biomedical applications. This contribution provides an overview of the recent developments of COF-based medicines in cancer therapeutics, including drug delivery, photodynamic therapy (PDT), photothermal therapy (PTT), and combined therapy. Furthermore, the major challenges and developing trends in this field are also discussed. These recent developments are summarized and discussed to help encourage further contributions in this emerging and promising field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
32
|
Li X, Yadav P, Loh KP. Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks – from 3D solids to 2D sheets. Chem Soc Rev 2020; 49:4835-4866. [DOI: 10.1039/d0cs00236d] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides guidelines for the function-oriented synthesis of 2D COFs from 3D solids to 2D sheets.
Collapse
Affiliation(s)
- Xing Li
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Priya Yadav
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Kian Ping Loh
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| |
Collapse
|