1
|
Zong P, Chen Y, Bi J, Han K, Luo J, Wang X, Kong F, Liu K. Development of a novel chitosan-based two-photon fluorescent nanoprobe with enhanced stability for the specific detection of endogenous H 2O 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122797. [PMID: 37150072 DOI: 10.1016/j.saa.2023.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Hydrogen peroxide (H2O2) acts as an important reactive oxygen species (ROS) and maintains the redox equilibrium in organisms. Imbalance of H2O2 concentration is associated with the development of many diseases. Traditional small molecular based fluorescent probes often show drawbacks of cytotoxicity and easily metabolic clearance. Herein, a chitosan-based two-photon fluorescent nanoprobe (DC-BI) was constructed and applied for H2O2 detection in live organisms. DC-BI was composed by chitosan nanoparticles and a two-photon fluorophore of naphthalimide analogues (BI) with H2O2-responsive property. The structure of DC-BI was characterized by NMR, FTIR, XPS, XRD, DLS and MLS analyses. As study shown, the nanoprobe DC-BI exhibited improved distribution stability and smaller cytotoxicity. In the presence of H2O2, both the absorption and emission spectra show dramatic changes, the fluorescence intensity at 580 nm obviously enhanced. Furthermore, fluorescence imaging results indicate that DC-BI is capable of imaging endogenous H2O2 in cells and zebrafish. The design and development of chitosan-based nanoprobe DC-BI has provided a general example of nanoprobe construction with excellent distribution stability, two-photon property, and biocompatibility.
Collapse
Affiliation(s)
- Peipei Zong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yunling Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, Shandong 250022, China
| | - Jianling Bi
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250109, China
| | - Kejia Han
- Zibo Product Quality Testing Research Institute, Zibo 255022, China
| | - Jinlan Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaohui Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
2
|
Miao J, Miao M, Jiang Y, Zhao M, Li Q, Zhang Y, An Y, Pu K, Miao Q. An Activatable NIR-II Fluorescent Reporter for In Vivo Imaging of Amyloid-β Plaques. Angew Chem Int Ed Engl 2023; 62:e202216351. [PMID: 36512417 DOI: 10.1002/anie.202216351] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Fluorescence imaging in the second near-infrared (NIR-II) window holds great promise for in vivo visualization of amyloid-β (Aβ) pathology, which can facilitate characterization and deep understanding of Alzheimer's disease (AD); however, it has been rarely exploited. Herein, we report the development of NIR-II fluorescent reporters with a donor-π-acceptor (D-π-A) architecture for specific detection of Aβ plaques in AD-model mice. Among all the designed probes, DMP2 exhibits the highest affinity to Aβ fibrils and can specifically activate its NIR-II fluorescence after binding to Aβ fibrils via suppressed twisted intramolecular charge transfer (TICT) effect. With suitable lipophilicity for ideal blood-brain barrier (BBB) penetrability and deep-tissue penetration of NIR-II fluorescence, DMP2 possesses specific detection of Aβ plaques in in vivo AD-model mice. Thus, this study presents a potential agent for non-invasive imaging of Aβ plaques and deep deciphering of AD progression.
Collapse
Affiliation(s)
- Jia Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Minqian Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yi An
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.,School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Chen S, Pan Y, Chen K, Chen P, Shen Q, Sun P, Hu W, Fan Q. Increasing Molecular Planarity through Donor/Side-Chain Engineering for Improved NIR-IIa Fluorescence Imaging and NIR-II Photothermal Therapy under 1064 nm. Angew Chem Int Ed Engl 2023; 62:e202215372. [PMID: 36480198 DOI: 10.1002/anie.202215372] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Developing conjugated small molecules (CSM) with intense NIR-II (1000-1700 nm) absorption for phototheranostic is highly desirable but remains a tremendous challenge due to a lack of reliable design guidelines. This study reports a high-performance NIR-II CSM for phototheranostic by tailoring molecular planarity. A series of CSM show bathochromic absorption extended to the NIR-II region upon the increasing thiophene number, but an excessive number of thiophene results in decreased NIR-IIa (1300-1400 nm) brightness and photothermal effects. Further introduction of terminal nonconjugated alkyl chain can enhance NIR-II absorption coefficient, NIR-IIa brightness, and photothermal effects. Mechanism studies ascribe this overall enhancement to molecular planarity stemming from the collective contribution of donor/side-chain engineering. This finding directs the design of NIR-II CSM by rational manipulating molecular planarity to perform 1064 nm mediated phototheranostic at high efficiency.
Collapse
Affiliation(s)
- Shangyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yonghui Pan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Kai Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics, and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
4
|
Li S, Li Q, Chen W, Song Z, An Y, Chen P, Wu Y, Wang G, He Y, Miao Q. A Renal-Clearable Activatable Molecular Probe for Fluoro-Photacoustic and Radioactive Imaging of Cancer Biomarkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201334. [PMID: 35723177 DOI: 10.1002/smll.202201334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In vivo simultaneous visualization of multiple biomarkers is critical to accurately diagnose disease and decipher fundamental processes at a certain pathological evolution, which however is rarely exploited. Herein, a multimodal activatable imaging probe (P-125 I) is reported with activatable fluoro-photoacoustic and radioactive signal for in vivo imaging of biomarkers (i.e., hepsin and prostate-specific membrane antigen (PSMA)) associated with prostate cancer diagnosis and prognosis. P-125 I contains a near-infrared (NIR) dye that is caged with a hepsin-cleavable peptide sequence and linked with a radiolabeled PSMA-targeted ligand (PSMAL). After systemic administration, P-125 I actively targets the tumor site via specific recognition between PSMA and PSMAL moiety and in-situ generates of activated fluoro-photoacoustic signal after reacting with hepsin to release the free dye (uncaged state). P-125 I achieves precisely early detection of prostate cancer and renal clearance to alleviate toxicity issues. In addition, the accumulated radioactive and activated photoacoustic signal of probe correlates well with the respective expression level of PSMA and hepsin, which provides valuable foreseeability for cancer progression and prognosis. Thus, this study presents a multimodal activatable probe for early detection and in-depth deciphering of prostate cancer.
Collapse
Affiliation(s)
- Shenhua Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhuorun Song
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yi An
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Yao C, Chen Y, Zhao M, Wang S, Wu B, Yang Y, Yin D, Yu P, Zhang H, Zhang F. A Bright, Renal‐Clearable NIR‐II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenzhi Yao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Ying Chen
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Shangfeng Wang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Bin Wu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yiwei Yang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Dongrui Yin
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
6
|
Yao C, Chen Y, Zhao M, Wang S, Wu B, Yang Y, Yin D, Yu P, Zhang H, Zhang F. A Bright, Renal-Clearable NIR-II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging. Angew Chem Int Ed Engl 2022; 61:e202114273. [PMID: 34850517 DOI: 10.1002/anie.202114273] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 01/31/2023]
Abstract
Early detection of kidney disease is of vital importance due to its current prevalence worldwide. Fluorescence imaging, especially in the second near-infrared window (NIR-II) has been regarded as a promising technique for the early diagnosis of kidney disease due to the superior resolution and sensitivity. However, the reported NIR-II organic renal-clearable probes are hampered by their low brightness (ϵmax Φf>1000 nm <10 M-1 cm-1 ) and limited blood circulation time (t1/2 <2 h), which impede the targeted imaging performance. Herein, we develop the aza-boron-dipyrromethene (aza-BODIPY) brush macromolecular probes (Fudan BDIPY Probes (FBP 912)) with high brightness (ϵmax Φf>1000 nm ≈60 M-1 cm-1 ), which is about 10-fold higher than that of previously reported NIR-II renal-clearable organic probes. FBP 912 exhibits an average diameter of ≈4 nm and high renal clearance efficiency (≈65 % excretion through the kidney within 12 h), showing superior performance for non-invasively diagnosis of renal ischemia-reperfusion injury (RIR) earlier than clinical serum-based protocols. Additionally, the high molecular weight polymer brush enables FBP 912 with prolonged circulation time (t1/2 ≈6.1 h) and higher brightness than traditional PEGylated renal-clearable control fluorophores (t1/2 <2 h), facilitating for 4T1 tumor passive targeted imaging and renal cell carcinoma active targeted imaging with higher signal-to-noise ratio and extended retention time.
Collapse
Affiliation(s)
- Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Yiwei Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
7
|
Yan D, Xie W, Zhang J, Wang L, Wang D, Tang BZ. Donor/π-Bridge Manipulation for Constructing a Stable NIR-II Aggregation-Induced Emission Luminogen with Balanced Phototheranostic Performance*. Angew Chem Int Ed Engl 2021; 60:26769-26776. [PMID: 34626441 DOI: 10.1002/anie.202111767] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/31/2022]
Abstract
Owing to their versatile functionality and tunable energy dissipation, aggregation-induced emission luminogens (AIEgens) have emerged as a potential platform for multimodal theranostics. Nevertheless, the construction of AIE-active phototheranostic agents in the second near-infrared window (NIR-II, 1000-1700 nm), which allows superior resolution and minimized photodamage, is still a formidable challenge. Herein, benzo[c]thiophene serves as an electron-rich and bulky donor (D)/π-bridge, which can enlarge the conjugation length and distort the backbone of an AIEgen. By precise D/π-bridge engineering, highly stable NIR-II AIEgen DPBTA-DPTQ nanoparticles are obtained with acceptable NIR-II fluorescence quantum yield and excellent photothermal conversion efficiency. In addition, the spatial conformation of DPBTA-DPTQ is determined for the first time by X-ray single crystal diffraction and theoretical simulations. DPBTA-DPTQ NPs have good biocompatibility and show efficient photothermal therapeutic effects in in vitro tests. Furthermore, DPBTA-DPTQ NPs were used in fluorescence-photoacoustic-photothermal trimodal imaging-guided photothermal eradication of tumors in HepG2 and B16-F10 tumor-xenografted mice.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Wei Xie
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| |
Collapse
|
8
|
Yan D, Xie W, Zhang J, Wang L, Wang D, Tang BZ. Donor/π‐Bridge Manipulation for Constructing a Stable NIR‐II Aggregation‐Induced Emission Luminogen with Balanced Phototheranostic Performance**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Wei Xie
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Jianyu Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong 999077 China
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong, Shenzhen 2001 Longxiang Boulevard, Longgang District Shenzhen City Guangdong 518172 China
| |
Collapse
|
9
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
10
|
Li Y, Zha M, Yang G, Wang S, Ni JS, Li K. NIR-II Fluorescent Brightness Promoted by "Ring Fusion" for the Detection of Intestinal Inflammation. Chemistry 2021; 27:13085-13091. [PMID: 34224191 DOI: 10.1002/chem.202101767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Fluorophores with emission in the second near-infrared window (NIR-II) have displayed salient advantages for biomedical applications. However, the common strategy of reducing the energy bandgap of fluorophores so as to achieve red-shifted wavelengths always leads to compromised fluorescent brightness. Herein, we propose a molecular design concept of "ring-fusion" to modify the acceptor of AIEgen that can extend the luminous wavelength from NIR-I to NIR-II. The fused-acceptor-containing fluorophore yielded, TTQP, has an enhanced absorption coefficient with a higher brightness in nanoparticle formation compared to its NIR-I emissive counterpart (TTQ-DP) with a non-fused acceptor. Theoretical calculation further confirms that the ring fusion can efficiently promote the rigidity and planarity of the electron-deficient core, leading to a lower reorganization energy and nonradiative decay. The TTQP NPs yielded thus allow sensitive NIR-II fluorescence imaging of vasculature and intestinal inflammation in mice models. Therefore, we anticipate that our work will provide a promising molecular-engineering strategy to enrich the library and broaden the application scope of NIR-II fluorophores.
Collapse
Affiliation(s)
- Yaxi Li
- Harbin Institute of Technology, Harbin, 150001, P. R. China.,Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Guang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Shuxian Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Jen-Shyang Ni
- Department of Chemical and Materials Engineering Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| |
Collapse
|
11
|
Zhang X, Ji A, Wang Z, Lou H, Li J, Zheng L, Zhou Y, Qu C, Liu X, Chen H, Cheng Z. Azide-Dye Unexpected Bone Targeting for Near-Infrared Window II Osteoporosis Imaging. J Med Chem 2021; 64:11543-11553. [PMID: 34342432 DOI: 10.1021/acs.jmedchem.1c00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Azide is an important chemical functional group and has been widely used in chemical biology. However, the impact of azide on the in vivo behaviors of compounds has been rarely studied. Herein, azide was introduced into a fluorescent dye for the near-infrared window two (NIR-II) bone imaging. Specifically, we designed and synthesized the small-molecule NIR-II dyes, N3-FEP-4T capped with azide and FEP-4T without azide capping. In vitro assays revealed that N3-FEP-4T showed 5- and 5.6- times higher hydroxyapatite accumulation and macrophage uptake than those of FEP-4T, respectively. Moreover, N3-FEP-4T displayed higher bone uptakes and much better bone NIR-II imaging quality, demonstrating the specific bone-targeting ability of the azide-containing probe. N3-FEP-4T was then further successfully used for osteoporosis NIR-II imaging. Overall, our study provides insights into the impact of azide on the in vivo behavior of azide-containing compounds and opens a new window for biological application of azide.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Aiyan Ji
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiming Wang
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyue Lou
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiafeng Li
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lingling Zheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Yujing Zhou
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Chunrong Qu
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen Cheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, United States
| |
Collapse
|
12
|
Tan Y, Chen M, Chen H, Wu J, Liu J. Enhanced Ultrasound Contrast of Renal-Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2021; 60:11713-11717. [PMID: 33665956 DOI: 10.1002/anie.202017273] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Renal-clearable nanoparticles are typically fast eliminated through the free glomerular filtration, which show weak interaction with the renal compartments and negligible ultrasound signals, raising challenges in direct imaging of kidney diseases. Here, we report the ultrasmall renal-clearable luminescent gold nanoparticles (AuNPs) with both pH-induced charge reversal and aggregation properties, and discover that enhanced ultrasound contrast could be facilely acquired through the increased tubular reabsorption and in situ aggregation of AuNPs in renal tubule cells in injured kidneys. The tuning elimination pathway of the renal-clearable luminescent AuNPs is further demonstrated to provide a synergistical fluorescence and ultrasound imaging strategy for diagnosing early kidney injury with precise anatomical information.
Collapse
Affiliation(s)
- Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Miaona Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Juefei Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
13
|
Tan Y, Chen M, Chen H, Wu J, Liu J. Enhanced Ultrasound Contrast of Renal‐Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Miaona Chen
- Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Juefei Wu
- Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
14
|
Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, Lu L, Zhao M, Zhang H, Zhang F. Bright and Stable NIR‐II J‐Aggregated AIE Dibodipy‐Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angew Chem Int Ed Engl 2020; 60:3967-3973. [DOI: 10.1002/anie.202012427] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Qisong Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Yong Fan
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Haisheng He
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Xuan Liu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Lingfei Lu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| |
Collapse
|
15
|
Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, Lu L, Zhao M, Zhang H, Zhang F. Bright and Stable NIR‐II J‐Aggregated AIE Dibodipy‐Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qisong Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Yong Fan
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Haisheng He
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Xuan Liu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Lingfei Lu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| |
Collapse
|
16
|
Song X, Zhu W, Ge X, Li R, Li S, Chen X, Song J, Xie J, Chen X, Yang H. A New Class of NIR‐II Gold Nanocluster‐Based Protein Biolabels for In Vivo Tumor‐Targeted Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Wei Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Xian Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou Fujian 350207 China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
17
|
Song X, Zhu W, Ge X, Li R, Li S, Chen X, Song J, Xie J, Chen X, Yang H. A New Class of NIR‐II Gold Nanocluster‐Based Protein Biolabels for In Vivo Tumor‐Targeted Imaging. Angew Chem Int Ed Engl 2020; 60:1306-1312. [DOI: 10.1002/anie.202010870] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Wei Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Xian Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou Fujian 350207 China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
18
|
Li L, Shao C, Liu T, Chao Z, Chen H, Xiao F, He H, Wei Z, Zhu Y, Wang H, Zhang X, Wen Y, Yang B, He F, Tian L. An NIR-II-Emissive Photosensitizer for Hypoxia-Tolerant Photodynamic Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003471. [PMID: 33029855 DOI: 10.1002/adma.202003471] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Indexed: 06/11/2023]
Abstract
As a common feature in a majority of malignant tumors, hypoxia has become the Achilles' heel of photodynamic therapy (PDT). The development of type-I photosensitizers that show hypoxia-tolerant PDT efficiency provides a straightforward way to address this issue. However, type-I PDT materials have rarely been discovered. Herein, a π-conjugated molecule with A-D-A configuration, COi6-4Cl, is reported. The H2 O-dispersible nanoparticle of COi6-4Cl can be activated by an 880 nm laser, and displays hypoxia-tolerant type I/II combined PDT capability, and more notably, a high NIR-II fluorescence with a quantum yield over 5%. Moreover, COi6-4Cl shows a negligible photothermal conversion effect. The non-radiative decay of COi6-4Cl is suppressed in the dispersed and aggregated state due to the restricted molecular vibrations and distinct intermolecular steric hindrance induced by its four bulky side chains. These features make COi6-4Cl a distinguished single-NIR-wavelength-activated phototheranostic material, which performs well in NIR-II fluorescence-guided PDT treatment and shows an enhanced in vivo anti-tumor efficiency over the clinically approved Chlorin e6, by the equal stresses on hypoxia-tolerant anti-tumor therapy and deep-penetration imaging. Therefore, the great potential of COi6-4Cl in precise PDT cancer therapy against hypoxia challenges is demonstrated.
Collapse
Affiliation(s)
- Lanqing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Chen Shao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Tao Liu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Zhicong Chao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Huanle Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Fan Xiao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Huamei He
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yulin Zhu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Huan Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Xindan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yating Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, China
| | - Feng He
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
19
|
Jia J, Liu G, Xu W, Tian X, Li S, Han F, Feng Y, Dong X, Chen H. Fine‐Tuning the Homometallic Interface of Au‐on‐Au Nanorods and Their Photothermal Therapy in the NIR‐II Window. Angew Chem Int Ed Engl 2020; 59:14443-14448. [DOI: 10.1002/anie.202000474] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/28/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jia Jia
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Gongyuan Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences Nanjing Tech University Nanjing 211800 P. R. China
- Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
| | - Wenjia Xu
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Xiaoli Tian
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Shuaibin Li
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Fei Han
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Yuhua Feng
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences Nanjing Tech University Nanjing 211800 P. R. China
- School of Chemistry and Materials Science Nanjing University of Information Science & Technology Nanjing 210044 P. R. China
| | - Hongyu Chen
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| |
Collapse
|
20
|
Jia J, Liu G, Xu W, Tian X, Li S, Han F, Feng Y, Dong X, Chen H. Fine‐Tuning the Homometallic Interface of Au‐on‐Au Nanorods and Their Photothermal Therapy in the NIR‐II Window. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jia Jia
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Gongyuan Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences Nanjing Tech University Nanjing 211800 P. R. China
- Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
| | - Wenjia Xu
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Xiaoli Tian
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Shuaibin Li
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Fei Han
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Yuhua Feng
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences Nanjing Tech University Nanjing 211800 P. R. China
- School of Chemistry and Materials Science Nanjing University of Information Science & Technology Nanjing 210044 P. R. China
| | - Hongyu Chen
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Centre for Advanced Materials Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| |
Collapse
|
21
|
Huang J, Pu K. Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angew Chem Int Ed Engl 2020; 59:11717-11731. [PMID: 32134156 DOI: 10.1002/anie.202001783] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 01/01/2023]
Abstract
Optical imaging plays a crucial role in biomedicine. However, due to strong light scattering and autofluorescence in biological tissue between 650-900 nm, conventional optical imaging often has a poor signal-to-background ratio and shallow penetration depth, which limits its ability in deep-tissue in vivo imaging. Second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging modalities mitigate these issues by their respective advantages of minimized light scattering, eliminated external excitation, and ultrasound detection. To enable disease detection, activatable molecular probes (AMPs) with the ability to change their second near-infrared fluorescence, chemiluminescence, or photoacoustic signals in response to a biomarker have been developed. This Minireview summarizes the molecular design strategies, sensing mechanisms, and imaging applications of AMPs. The potential challenges and perspectives of AMPs in deep-tissue imaging are also discussed.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
22
|
Huang J, Pu K. Activatable Molecular Probes for Second Near‐Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001783] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
23
|
Li Q, Li S, He S, Chen W, Cheng P, Zhang Y, Miao Q, Pu K. An Activatable Polymeric Reporter for Near‐Infrared Fluorescent and Photoacoustic Imaging of Invasive Cancer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qing Li
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Shenhua Li
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Shasha He
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637457 Singapore
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Penghui Cheng
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637457 Singapore
| | - Yan Zhang
- National Engineering Research Centre for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Kanyi Pu
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637457 Singapore
| |
Collapse
|
24
|
Li Q, Li S, He S, Chen W, Cheng P, Zhang Y, Miao Q, Pu K. An Activatable Polymeric Reporter for Near‐Infrared Fluorescent and Photoacoustic Imaging of Invasive Cancer. Angew Chem Int Ed Engl 2020; 59:7018-7023. [DOI: 10.1002/anie.202000035] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/06/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Qing Li
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of, Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Shenhua Li
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of, Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Shasha He
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637457 Singapore
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of, Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637457 Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of, Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637457 Singapore
| |
Collapse
|
25
|
Huang J, Jiang Y, Li J, He S, Huang J, Pu K. A Renal‐Clearable Macromolecular Reporter for Near‐Infrared Fluorescence Imaging of Bladder Cancer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911859] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Shasha He
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingsheng Huang
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
26
|
Huang J, Jiang Y, Li J, He S, Huang J, Pu K. A Renal-Clearable Macromolecular Reporter for Near-Infrared Fluorescence Imaging of Bladder Cancer. Angew Chem Int Ed Engl 2020; 59:4415-4420. [PMID: 31876017 DOI: 10.1002/anie.201911859] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BC) is a prevalent disease with high morbidity and mortality; however, in vivo optical imaging of BC remains challenging because of the lack of cancer-specific optical agents with high renal clearance. Herein, a macromolecular reporter (CyP1) was synthesized for real-time near-infrared fluorescence (NIRF) imaging and urinalysis of BC in living mice. Because of the high renal clearance (ca. 94 % of the injection dosage at 24 h post-injection) and its cancer biomarker (APN=aminopeptidase N) specificity, CyP1 can be efficiently transported to the bladder and specially turn on its NIRF signal to report the detection of BC in living mice. Moreover, CyP1 can be used for optical urinalysis, permitting the ex vivo tracking of tumor progression for therapeutic evaluation and easy translation of CyP2 as an in vitro diagnostic assay. This study not only provides new opportunities for non-invasive diagnosis of BC, but also reveals useful guidelines for the development of molecular reporters for the detection of bladder diseases.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
27
|
Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, Zheng J, Yang B, Qin W, Zhang X, Wu C. Semiconducting Polymer Dots with Dual‐Enhanced NIR‐IIa Fluorescence for Through‐Skull Mouse‐Brain Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914397] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhe Zhang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Xiaofeng Fang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhihe Liu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Haichao Liu
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Shuqing He
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Zheng
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Bing Yang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Weiping Qin
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health ScienceUniversity of Macau Taipa Macau SAR 999078 China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
28
|
Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, Zheng J, Yang B, Qin W, Zhang X, Wu C. Semiconducting Polymer Dots with Dual‐Enhanced NIR‐IIa Fluorescence for Through‐Skull Mouse‐Brain Imaging. Angew Chem Int Ed Engl 2020; 59:3691-3698. [DOI: 10.1002/anie.201914397] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/09/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Zhe Zhang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Xiaofeng Fang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhihe Liu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Haichao Liu
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Shuqing He
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Zheng
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Bing Yang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Weiping Qin
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health ScienceUniversity of Macau Taipa Macau SAR 999078 China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|