1
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
2
|
Zhao W, Tan R, Yang Y, Yang H, Wang J, Yin X, Wu D, Zhang T. Galvanic-Replacement-Assisted Synthesis of Nanostructured Silver-Surface for SERS Characterization of Two-Dimensional Polymers. SENSORS (BASEL, SWITZERLAND) 2024; 24:474. [PMID: 38257565 PMCID: PMC10819046 DOI: 10.3390/s24020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a powerful technology in trace analysis. However, the wide applications of SERS in practice are limited by the expensive substrate materials and the complicated preparation processes. Here we report a simple and economical galvanic-replacement-assisted synthesis route to prepare Ag nanoparticles on Cu(0) foil (nanoAg@Cu), which can be directly used as SERS substrate. The fabrication process is fast (ca. 10 min) and easily scaled up to centimeters or even larger. In addition, the morphology of the nanoAg@Cu (with Ag particles size from 30 nm to 160 nm) can be adjusted by various additives (e.g., amino-containing ligands). Finally, we show that the as-prepared nanoAg@Cu can be used for SERS characterization of two-dimensional polymers, and ca. 298 times relative enhancement of Raman intensity is achieved. This work offers a simple and economical strategy for the scalable fabrication of silver-based SERS substrate in thin film analysis.
Collapse
Affiliation(s)
- Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runxiang Tan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Yanping Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
3
|
Huang T, Jiang H, Douglin JC, Chen Y, Yin S, Zhang J, Deng X, Wu H, Yin Y, Dekel DR, Guiver MD, Jiang Z. Single Solution-Phase Synthesis of Charged Covalent Organic Framework Nanosheets with High Volume Yield. Angew Chem Int Ed Engl 2023; 62:e202209306. [PMID: 36395246 DOI: 10.1002/anie.202209306] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Covalent organic framework nanosheets (COF-NSs) are emerging building blocks for functional materials, and their scalable fabrication is highly desirable. Current synthetic methods suffer from low volume yields resulting from confined on-surface/at-interface growth space and complex multiple-phase synthesis systems. Herein, we report the synthesis of charged COF-NSs in open space using a single-phase organic solution system, achieving magnitudes higher volume yields of up to 18.7 mg mL-1 . Charge-induced electrostatic repulsion forces enable in-plane anisotropic secondary growth from initial discrete and disordered polymers into large and crystalline COF-NSs. The charged COF-NS colloidal suspensions are cast into thin and compact proton exchange membranes (PEMs) with lamellar morphology and oriented crystallinity, displaying outstanding proton conductivity, negligible dimensional swelling, and good H2 /O2 fuel cell performance.
Collapse
Affiliation(s)
- Tong Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - John C Douglin
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yu Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuoyao Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Junfeng Zhang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Xiaojuan Deng
- Analysis and Testing Center, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yan Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel.,The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion, Israel Institute of Technology, Haifa, 3200003, Israel
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Biswas K, Urbani M, Sánchez-Grande A, Soler-Polo D, Lauwaet K, Matěj A, Mutombo P, Veis L, Brabec J, Pernal K, Gallego JM, Miranda R, Écija D, Jelínek P, Torres T, Urgel JI. Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers. J Am Chem Soc 2022; 144:12725-12731. [PMID: 35817408 PMCID: PMC9305978 DOI: 10.1021/jacs.2c02700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111). Scanning tunneling microscopy and noncontact atomic force microscopy describe the thermal-activated intra- and intermolecular oxidative ring closure reactions as well as the controlled tip-induced hydrogen dissociation from the porphyrinoid units. In addition, scanning tunneling spectroscopy measurements, complemented by computational investigations, reveal the open-shell character, that is, the antiferromagnetic singlet ground state (S = 0) of the formed polymers, characterized by singlet-triplet inelastic excitations observed between spins of adjacent porphyrinoid units. Our approach sheds light on the crucial relevance of the π-conjugation in the correlations between spins, while expanding the on-surface synthesis toolbox and opening avenues toward the synthesis of innovative functional nanomaterials with prospects in carbon-based spintronics.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Maxence Urbani
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Ana Sánchez-Grande
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Diego Soler-Polo
- Institute of Physics of the Czech Academy of Science, Praha 162 00, Czech Republic
| | - Koen Lauwaet
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Adam Matěj
- Institute of Physics of the Czech Academy of Science, Praha 162 00, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Science, Praha 162 00, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 00, Czech Republic
| | - Jiri Brabec
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 00, Czech Republic
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, Lodz 90-924, Poland
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid 28049, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain.,Departamento de Física de La Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - David Écija
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, Praha 162 00, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tomás Torres
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain.,Departamento de Química Orgánica and Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - José I Urgel
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
5
|
Sheng F, Li X, Li Y, Afsar NU, Zhao Z, Ge L, Xu T. Cationic covalent organic framework membranes for efficient dye/salt separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene‐Based Two‐Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS UK
| | - Wenxin Wei
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Qiang Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Materials Science Fudan University Shanghai 200433 P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| |
Collapse
|
7
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene-Based Two-Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202114059. [PMID: 34870362 PMCID: PMC9299764 DOI: 10.1002/anie.202114059] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 01/14/2023]
Abstract
Synthesis of covalent organic frameworks (COFs) with desirable organic units furnishes advanced materials with unique functionalities. As an emerging class of two-dimensional (2D) COFs, sp2 -carbon-conjugated COFs provide a facile platform to build highly stable and crystalline porous polymers. Herein, a 2D olefin-linked COF was prepared by employing nanographene, namely, dibenzo[hi,st]ovalene (DBOV), as a building block. The DBOV-COF exhibits unique ABC-stacked lattices, enhanced stability, and charge-carrier mobility of ≈0.6 cm2 V-1 s-1 inferred from ultrafast terahertz photoconductivity measurements. The ABC-stacking structure was revealed by the high-resolution transmission electron microscopy and powder X-ray diffraction. DBOV-COF demonstrated remarkable photocatalytic activity in hydroxylation, which was attributed to the exposure of narrow-energy-gap DBOV cores in the COF pores, in conjunction with efficient charge transport following light absorption.
Collapse
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton Lane, NottinghamNG11 8NSUK
| | - Wenxin Wei
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Robert Graf
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Materials ScienceFudan UniversityShanghai200433P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| |
Collapse
|
8
|
Yang B, Yu S, Zhang P, Wang Z, Qi Q, Wang X, Xu X, Yang H, Wu Z, Liu Y, Ma D, Li Z. Self‐Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry Zhengzhou University 100 Kexue Street Zhengzhou 450001 China
| | - Shang‐Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Pan‐Qing Zhang
- College of Chemistry Zhengzhou University 100 Kexue Street Zhengzhou 450001 China
| | - Ze‐Kun Wang
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Qiao‐Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xun‐Hui Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zong‐Quan Wu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yi Liu
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California 94720 United States
| | - Da Ma
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan‐Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| |
Collapse
|
9
|
Yang B, Yu SB, Zhang PQ, Wang ZK, Qi QY, Wang XQ, Xu XH, Yang HB, Wu ZQ, Liu Y, Ma D, Li ZT. Self-Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angew Chem Int Ed Engl 2021; 60:26268-26275. [PMID: 34562051 DOI: 10.1002/anie.202112514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Accurate control of the layer number of orderly stacked 2D polymers has been an unsettled challenge in self-assembly. Herein we describe the fabrication of a bilayer 2D supramolecular organic framework from a monolayer 2D supramolecular organic framework in water by utilizing the cooperative coordination of a rod-like bipyridine ligands to zinc porphyrin subunits of the monolayer network. The monolayer supramolecular framework is prepared from the co-assembly of an octacationic zinc porphyrin monomer and cucurbit[8]uril (CB[8]) in water through CB[8]-encapsulation-promoted dimerization of 4-phenylpyridiunium subunits that the zinc porphyrin monomer bear. The bilayer 2D supramolecular organic framework exhibits structural regularity in both solution and the solid state, which is characterized by synchrotron small-angle X-ray scattering and high-resolution transmission electron microscopic techniques. Atomic force microscopic imaging confirms that the bilayer character of the 2D supramolecular organic framework can be realized selectively on the micrometer scale.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry, Zhengzhou University, 100 Kexue Street, Zhengzhou, 450001, China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Pan-Qing Zhang
- College of Chemistry, Zhengzhou University, 100 Kexue Street, Zhengzhou, 450001, China
| | - Ze-Kun Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Da Ma
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
10
|
Min F, Zhou P, Huang Z, Qiao Y, Yu C, Qu Z, Shi X, Li Z, Jiang L, Zhang Z, Yan X, Song Y. A Bubble-Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angew Chem Int Ed Engl 2021; 60:16547-16553. [PMID: 33974728 DOI: 10.1002/anie.202103765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Indexed: 11/11/2022]
Abstract
We demonstrate a new approach to pattern functional organic molecules with a template of foams, and achieve a resolution of sub 100 nm. The bubble-assisted assembly (BAA) process is consisted of two periods, including bubble evolution and molecular assembly, which are dominated by the Laplace pressure and molecular interactions, respectively. Using TPPS (meso-tetra(4-sulfonatophenyl) porphyrin), we systematically investigate the patterns and assembly behaviour in the bubble system with a series of characterizations, which show good uniformity in nanoscale resolution. Theoretical simulations reveal that TPPS's J-aggregates contribute to the ordered construction of molecular patterns. Finally, we propose an empirical rule for molecular patterning approach, that the surfactant and functional molecules should have the same type of charge in a two-component system. This approach exhibits promising feasibility to assemble molecular patterns at nanoscale resolution for micro/nano functional devices.
Collapse
Affiliation(s)
- Fanyi Min
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering, The University of Western Ontario London, Ontario, N6A 5B9, Canada
| | - Yali Qiao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changhui Yu
- State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory of Molecular Sciences, University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyuan Qu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaosong Shi
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lang Jiang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhen Zhang
- State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory of Molecular Sciences, University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
11
|
Min F, Zhou P, Huang Z, Qiao Y, Yu C, Qu Z, Shi X, Li Z, Jiang L, Zhang Z, Yan X, Song Y. A Bubble‐Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fanyi Min
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering The University of Western Ontario London Ontario N6A 5B9 Canada
| | - Yali Qiao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changhui Yu
- State Key Laboratory of Molecular Reaction Dynamics CAS Research/Education Centre for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory of Molecular Sciences University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhiyuan Qu
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiaosong Shi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lang Jiang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhen Zhang
- State Key Laboratory of Molecular Reaction Dynamics CAS Research/Education Centre for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory of Molecular Sciences University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
12
|
Sun Q, Pan Q, Ban Y, Liu H, Fan C, Sun L, Zhao Y. Donor-Acceptor Interactions Induced Interfacial Synthesis of an Ultrathin Fluoric 2D Polymer by Photochemical [2+2] Cycloaddition. Chemistry 2021; 27:3661-3664. [PMID: 33264450 DOI: 10.1002/chem.202004797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2020] [Indexed: 01/02/2023]
Abstract
Two-dimensional polymers (2DPs) have attracted much interest due to their unique 2D atomic-thick covalent network with periodically linked monomers. The preparation of mono- or few-layered 2DPs with highly ordered structures is still a big challenge. Herein, we report a preparation of ultrathin 2DP film based on photo-triggered [2+2] cycloaddition at the air/water interface. The pre-assembly process induced by the D-A interactions before the polymerization plays a key role in constructing the highly ordered structure. The precise structure and chemical compositions of the continuous 2DP films were proved by selected area electron diffraction (SAED), Tip-Enhanced Raman Spectroscopy (TERS) and molecular-mechanics-based structural simulation.
Collapse
Affiliation(s)
- Qingzhu Sun
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qingyan Pan
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yanqi Ban
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hui Liu
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chunyan Fan
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lishui Sun
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingjie Zhao
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
13
|
Kasbe PS, Luo X, Xu W. Interface engineering and integration of two-dimensional polymeric and inorganic materials for advanced hybrid structures. NEW J CHEM 2021. [DOI: 10.1039/d1nj04022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress and future directions in the creation of hybrid structures based on 2D polymers and inorganic 2D materials are discussed.
Collapse
Affiliation(s)
- Pratik S. Kasbe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Xiongyu Luo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
14
|
Zhang F, Fan J, Wang S. Grenzflächenpolymerisation: Von der Chemie zu funktionellen Materialien. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Feilong Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
15
|
Zhang F, Fan JB, Wang S. Interfacial Polymerization: From Chemistry to Functional Materials. Angew Chem Int Ed Engl 2020; 59:21840-21856. [PMID: 32091148 DOI: 10.1002/anie.201916473] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 11/07/2022]
Abstract
Interfacial polymerization, where a chemical reaction is confined at the liquid-liquid or liquid-air interface, exhibits a strong advantage for the controllable fabrication of films, capsules, and fibers for use as separation membranes and electrode materials. Recent developments in technology and polymer chemistry have brought new vigor to interfacial polymerization. Here, we consider the history of interfacial polymerization in terms of the polymerization types: interfacial polycondensation, interfacial polyaddition, interfacial oxidative polymerization, interfacial polycoordination, interfacial supramolecular polymerization, and some others. The accordingly emerging functional materials are highlighted, as well as the challenges and opportunities brought by new technologies for interfacial polymerization. Interfacial polymerization will no doubt keep on developing and producing a series of fascinating functional materials.
Collapse
Affiliation(s)
- Feilong Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun-Bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Li C, Wang Y, Zou Y, Zhang X, Dong H, Hu W. Two‐Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. Angew Chem Int Ed Engl 2020; 59:9403-9407. [DOI: 10.1002/anie.202002644] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Chenguang Li
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yongshuai Wang
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ye Zou
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Huanli Dong
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
17
|
Li C, Wang Y, Zou Y, Zhang X, Dong H, Hu W. Two‐Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chenguang Li
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yongshuai Wang
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ye Zou
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Huanli Dong
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|