1
|
Martinek N, Morrison KM, Field JM, Fisher SA, Stradiotto M. Comparative Screening of DalPhos/Ni Catalysts in C-N Cross-couplings of (Hetero)aryl Chlorides Enables Development of Aminopyrazole Cross-couplings with Amine Base. Chemistry 2023; 29:e202203394. [PMID: 36331074 DOI: 10.1002/chem.202203394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
A systematic competitive evaluation of the DalPhos ligand family in nickel-catalyzed N-arylation chemistry is reported, involving primary (linear and branched) and secondary alkylamines, as well as a primary five-membered heteroarylamine (aminopyrazole), in combination with a diverse set of test electrophiles and bases (NaOtBu, K2 CO3 , DBU/NaTFA). In addition to providing optimal ligand/catalyst identification, and bringing to light methodology limitations (e. g., unwanted C-O cross-coupling with NaOtBu), our survey enabled the development of the first efficient catalyst system for heteroatom-dense C-N cross-coupling of aminopyrazoles and related nucleophiles with (hetero)aryl chlorides by use of an amine 'dual-base' system.
Collapse
Affiliation(s)
- Nicole Martinek
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Kathleen M Morrison
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Justin M Field
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Samuel A Fisher
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
2
|
Luo H, Wang G, Feng Y, Zheng W, Kong L, Ma Y, Matsunaga S, Lin L. Photoinduced Nickel-Catalyzed Carbon-Heteroatom Coupling. Chemistry 2023; 29:e202202385. [PMID: 36214656 DOI: 10.1002/chem.202202385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/07/2022]
Abstract
Herein, we report visible light-promoted single nickel catalysis for diverse carbon-heteroatom couplings under mild conditions. This mild, general, and robust method to couple diverse nitrogen, oxygen, and sulfur nucleophiles with aryl(heteroaryl)/alkenyl iodides/bromides exhibits a wide functional group tolerance and is applicable to late-stage modification of pharmaceuticals and natural products. On the base of preliminary mechanistic studies, a NiI /NiIII cycle via the generation of active NiI complexes that appear from homolysis of NiII -I rather than NiII -aryl bond was tentatively proposed.
Collapse
Affiliation(s)
- Hang Luo
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Guohua Wang
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Yunhui Feng
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Wanyao Zheng
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Lingya Kong
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Yunpeng Ma
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, 060-0812, Sapporo, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-Ku, 060-0812, Sapporo, Japan
| | - Luqing Lin
- Department Zhang Dayu School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-Ku, 060-0812, Sapporo, Japan
| |
Collapse
|
3
|
Cavedon C, Gisbertz S, Reischauer S, Vogl S, Sperlich E, Burke JH, Wallick RF, Schrottke S, Hsu W, Anghileri L, Pfeifer Y, Richter N, Teutloff C, Müller‐Werkmeister H, Cambié D, Seeberger PH, Vura‐Weis J, van der Veen RM, Thomas A, Pieber B. Intraligand Charge Transfer Enables Visible-Light-Mediated Nickel-Catalyzed Cross-Coupling Reactions. Angew Chem Int Ed Engl 2022; 61:e202211433. [PMID: 36161982 PMCID: PMC9828175 DOI: 10.1002/anie.202211433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 01/12/2023]
Abstract
We demonstrate that several visible-light-mediated carbon-heteroatom cross-coupling reactions can be carried out using a photoactive NiII precatalyst that forms in situ from a nickel salt and a bipyridine ligand decorated with two carbazole groups (Ni(Czbpy)Cl2 ). The activation of this precatalyst towards cross-coupling reactions follows a hitherto undisclosed mechanism that is different from previously reported light-responsive nickel complexes that undergo metal-to-ligand charge transfer. Theoretical and spectroscopic investigations revealed that irradiation of Ni(Czbpy)Cl2 with visible light causes an initial intraligand charge transfer event that triggers productive catalysis. Ligand polymerization affords a porous, recyclable organic polymer for heterogeneous nickel catalysis of cross-coupling reactions. The heterogeneous catalyst shows stable performance in a packed-bed flow reactor during a week of continuous operation.
Collapse
Affiliation(s)
- Cristian Cavedon
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany,Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Sebastian Gisbertz
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany,Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Susanne Reischauer
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany,Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Sarah Vogl
- Department of ChemistryFunctional MaterialsTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Eric Sperlich
- Institute of ChemistryUniversity of PotsdamKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - John H. Burke
- Department of ChemistryUniversity of Illinois Urbana-ChampaignUrbanaIllinois61801USA
| | - Rachel F. Wallick
- Department of ChemistryUniversity of Illinois Urbana-ChampaignUrbanaIllinois61801USA
| | - Stefanie Schrottke
- Department of PhysicsFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Wei‐Hsin Hsu
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Lucia Anghileri
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany,Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Yannik Pfeifer
- Institute of ChemistryUniversity of PotsdamKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Noah Richter
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Christian Teutloff
- Department of PhysicsFreie Universität BerlinArnimallee 2214195BerlinGermany
| | | | - Dario Cambié
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany,Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Josh Vura‐Weis
- Department of ChemistryUniversity of Illinois Urbana-ChampaignUrbanaIllinois61801USA
| | - Renske M. van der Veen
- Department of ChemistryUniversity of Illinois Urbana-ChampaignUrbanaIllinois61801USA,Helmholtz Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner-Platz 114109BerlinGermany
| | - Arne Thomas
- Department of ChemistryFunctional MaterialsTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Bartholomäus Pieber
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
4
|
Toriumi N, Inoue T, Iwasawa N. Shining Visible Light on Reductive Elimination: Acridine-Pd-Catalyzed Cross-Coupling of Aryl Halides with Carboxylic Acids. J Am Chem Soc 2022; 144:19592-19602. [PMID: 36219695 DOI: 10.1021/jacs.2c09318] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the recent tremendous progress on transition-metal/photoredox dual catalysis in organic synthesis, single transition-metal catalysis under visible-light irradiation, which can utilize light energy more efficiently, is still underdeveloped. Herein, we report the design of photosensitizing phosphinoacridine bidentate ligands for visible-light-induced transition-metal catalysis, expecting that the electron-accepting acridine moiety would create a highly reactive electron-deficient metal center toward reductive elimination via metal-to-ligand charge transfer (MLCT). Using these ligands, we have achieved a palladium-catalyzed cross-coupling reaction of aryl halides with carboxylic acids under visible-light irradiation. Electronic tuning of the phosphinoacridine ligands not only enabled the use of a variety of aryl halides as the coupling partner, including less reactive aryl chlorides, under blue light irradiation, but also realized the employment of lower-energy green and red light for the cross-coupling. Experimental mechanistic studies have proved that the reductive elimination of aryl esters is induced by photoirradiation of phosphinoacridine-ligated arylpalladium(II) carboxylate complexes. The theoretical calculation suggests that the reductive elimination in the excited state is promoted by decreasing the electron density of the Pd center through photoinduced intramolecular electron transfer, i.e., MLCT, in the transition state owing to the electron-deficient acridine scaffold. This is a very rare example of photoinduced reductive elimination on palladium(II) complexes.
Collapse
Affiliation(s)
- Naoyuki Toriumi
- Department of Chemistry, Tokyo Institute of Technology, O̅okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomonori Inoue
- Department of Chemistry, Tokyo Institute of Technology, O̅okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O̅okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
5
|
Marchi M, Gentile G, Rosso C, Melchionna M, Fornasiero P, Filippini G, Prato M. The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science. CHEMSUSCHEM 2022; 15:e202201094. [PMID: 35789214 PMCID: PMC9804426 DOI: 10.1002/cssc.202201094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Indexed: 05/30/2023]
Abstract
Recently, the field of dual photocatalysis has grown rapidly, to become one of the most powerful tools for the functionalization of organic molecules under mild conditions. In particular, the merging of Earth-abundant nickel-based catalytic systems with visible-light-activated photoredox catalysts has allowed the development of a number of unique green synthetic approaches. This goes in the direction of ensuring an effective and sustainable chemical production, while safeguarding human health and environment. Importantly, this relatively new branch of catalysis has inspired an interdisciplinary stream of research that spans from inorganic and organic chemistry to materials science, thus establishing itself as one dominant trend in modern organic synthesis. This Review aims at illustrating the milestones on the timeline evolution of the photocatalytic systems used, with a critical analysis toward novel applications based on the use of photoactive two-dimensional carbon-based nanostructures. Lastly, forward-looking opportunities within this intriguing research field are discussed.
Collapse
Affiliation(s)
- Miriam Marchi
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo Miramón 19420014Donostia San SebastiánSpain
- Basque Fdn Sci, Ikerbasque48013BilbaoSpain
| |
Collapse
|
6
|
Wolzak LA, de Zwart FJ, Oudsen JPH, Bartlett SA, de Bruin B, Reek JN, Tromp M, Korstanje TJ. Exogenous Ligand‐free Nickel‐catalyzed carboxylate O‐arylation Insight into NiI/NiIII cycles. ChemCatChem 2022. [DOI: 10.1002/cctc.202200547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lukas A. Wolzak
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Felix J. de Zwart
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Jean-Pierre H. Oudsen
- Technical University of Berlin: Technische Universitat Berlin Physical/Biophysical Chemistry GERMANY
| | | | - Bas de Bruin
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Joost N.H. Reek
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Moniek Tromp
- Rijksuniversiteit Groningen Faculty of Science and Engineering Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen NETHERLANDS
| | - Ties J. Korstanje
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| |
Collapse
|
7
|
Philip RM, Saranya PV, Anilkumar G. Nickel‐catalysed amination of arenes and heteroarenes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Gopinathan Anilkumar
- Mahatma Gandhi University School of Chemical Sciences Priyadarsini Hills P O 686560 KOTTAYAM INDIA
| |
Collapse
|
8
|
McGuire RT, Lundrigan T, MacMillan JWM, Robertson KN, Yadav AA, Stradiotto M. Mapping Dual-Base-Enabled Nickel-Catalyzed Aryl Amidations: Application in the Synthesis of 4-Quinolones. Angew Chem Int Ed Engl 2022; 61:e202200352. [PMID: 35085411 DOI: 10.1002/anie.202200352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 01/15/2023]
Abstract
The C-N cross-coupling of (hetero)aryl (pseudo)halides with NH substrates employing nickel catalysts and organic amine bases represents an emergent strategy for the sustainable synthesis of (hetero)anilines. However, unlike protocols that rely on photoredox/electrochemical/reductant methods within NiI/III cycles, the reaction steps that comprise a putative Ni0/II C-N cross-coupling cycle for a thermally promoted catalyst system using organic amine base have not been elucidated. Here we disclose an efficient new nickel-catalyzed protocol for the C-N cross-coupling of amides and 2'-(pseudo)halide-substituted acetophenones, for the first time where the (pseudo)halide is chloride or sulfonate, which makes use of the commercial bisphosphine ligand PAd2-DalPhos (L4) in combination with an organic amine base/halide scavenger, leading to 4-quinolones. Room-temperature stoichiometric experiments involving isolated Ni0, I, and II species support a Ni0/II pathway, where the combined action of DBU/NaTFA allows for room-temperature amide cross-couplings.
Collapse
Affiliation(s)
- Ryan T McGuire
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Travis Lundrigan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Joshua W M MacMillan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Arun A Yadav
- Paraza Pharma Inc., 2525 Avenue Marie-Curie, Montreal, Quebec, H4S 2E1, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
9
|
McGuire RT, Lundrigan T, MacMillan JWM, Robertson KN, Yadav AA, Stradiotto M. Mapping Dual‐Base‐Enabled Nickel‐Catalyzed Aryl Amidations: Application in the Synthesis of 4‐Quinolones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Mark Stradiotto
- Dalhousie University Department of Chemistry Studley Campus B3H 4J3 Halifax CANADA
| |
Collapse
|
10
|
Zhang H, Chen L, Oderinde MS, Edwards JT, Kawamata Y, Baran PS. Chemoselective, Scalable Nickel‐Electrocatalytic
O
‐Arylation of Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hai‐Jun Zhang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Longrui Chen
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Martins S. Oderinde
- Department of Discovery Synthesis Bristol Myers Squibb Research & Early Development Princeton NJ 08540 USA
| | | | - Yu Kawamata
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Phil S. Baran
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
11
|
Zhang HJ, Chen L, Oderinde MS, Edwards JT, Kawamata Y, Baran PS. Chemoselective, Scalable Nickel-Electrocatalytic O-Arylation of Alcohols. Angew Chem Int Ed Engl 2021; 60:20700-20705. [PMID: 34288303 PMCID: PMC8429144 DOI: 10.1002/anie.202107820] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Indexed: 11/12/2022]
Abstract
The formation of aryl-alkyl ether bonds through cross coupling of alcohols with aryl halides represents a useful strategic departure from classical SN 2 methods. Numerous tactics relying on Pd-, Cu-, and Ni-based catalytic systems have emerged over the past several years. Herein we disclose a Ni-catalyzed electrochemically driven protocol to achieve this useful transformation with a broad substrate scope in an operationally simple way. This electrochemical method does not require strong base, exogenous expensive transition metal catalysts (e.g., Ir, Ru), and can easily be scaled up in either a batch or flow setting. Interestingly, e-etherification exhibits an enhanced substrate scope over the mechanistically related photochemical variant as it tolerates tertiary amine functional groups in the alcohol nucleophile.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Longrui Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research & Early Development, Princeton, NJ, 08540, USA
| | | | - Yu Kawamata
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
12
|
Zhu C, Yue H, Jia J, Rueping M. Nickel-Catalyzed C-Heteroatom Cross-Coupling Reactions under Mild Conditions via Facilitated Reductive Elimination. Angew Chem Int Ed Engl 2021; 60:17810-17831. [PMID: 33252192 DOI: 10.1002/anie.202013852] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The formation of C-heteroatom bonds represents an important type of bond-forming reaction in organic synthesis and often provides a fast and efficient access to privileged structures found in pharmaceuticals, agrochemical and materials. In contrast to conventional Pd- or Cu-catalyzed C-heteroatom cross-couplings under high-temperature conditions, recent advances in homo- and heterogeneous Ni-catalyzed C-heteroatom formations under mild conditions are particularly attractive from the standpoint of sustainability and practicability. The generation of NiIII and excited NiII intermediates facilitate the reductive elimination step to achieve mild cross-couplings. This review provides an overview of the state-of-the-art approaches for mild C-heteroatom bond formations and highlights the developments in photoredox and nickel dual catalysis involving SET and energy transfer processes; photoexcited nickel catalysis; electro and nickel dual catalysis; heterogeneous photoredox and nickel dual catalysis involving graphitic carbon nitride (mpg-CN), metal organic frameworks (MOFs) or semiconductor quantum dots (QDs); as well as more conventional zinc and nickel dual catalyzed reactions.
Collapse
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jiaqi Jia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Liu D, Liu Z, Ma C, Jiao K, Sun B, Wei L, Lefranc J, Herbert S, Mei T. Nickel‐Catalyzed
N
‐Arylation of
NH
‐Sulfoximines with Aryl Halides via Paired Electrolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhao‐Ran Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ke‐Jin Jiao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lei Wei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Julien Lefranc
- Nuvisan Innovation Campus Berlin GmbH 13353 Berlin Germany
| | - Simon Herbert
- Pharmaceuticals, Research and Development Bayer AG 13353 Berlin Germany
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
14
|
Liu D, Liu ZR, Ma C, Jiao KJ, Sun B, Wei L, Lefranc J, Herbert S, Mei TS. Nickel-Catalyzed N-Arylation of NH-Sulfoximines with Aryl Halides via Paired Electrolysis. Angew Chem Int Ed Engl 2021; 60:9444-9449. [PMID: 33576561 DOI: 10.1002/anie.202016310] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/31/2021] [Indexed: 11/08/2022]
Abstract
A novel strategy for the N-arylation of NH-sulfoximines has been developed by merging nickel catalysis and electrochemistry (in an undivided cell), thereby providing a practical method for the construction of sulfoximine derivatives. Paired electrolysis is employed in this protocol, so a sacrificial anode is not required. Owing to the mild reaction conditions, excellent functional group tolerance and yield are achieved. A preliminary mechanistic study indicates that the anodic oxidation of a NiII species is crucial to promote the reductive elimination of a C-N bond from the resulting NiIII species at room temperature.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ke-Jin Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Lei Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Julien Lefranc
- Nuvisan Innovation Campus Berlin GmbH, 13353, Berlin, Germany
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
15
|
Zhu C, Yue H, Jia J, Rueping M. Nickel‐Catalyzed C‐Heteroatom Cross‐Coupling Reactions under Mild Conditions via Facilitated Reductive Elimination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013852] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jiaqi Jia
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
16
|
Hashimoto T, Shiota K, Funatsu K, Yamaguchi Y. Cross‐Coupling Reactions of Aryl Halides with Primary and Secondary Aliphatic Alcohols Catalyzed by an
O
,
N
,
N
‐Coordinated Nickel Complex. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Toru Hashimoto
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan Phone
| | - Keisuke Shiota
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan Phone
| | - Kei Funatsu
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan Phone
| | - Yoshitaka Yamaguchi
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan Phone
| |
Collapse
|
17
|
Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Organic Superbases in Recent Synthetic Methodology Research. Chemistry 2021; 27:4216-4229. [DOI: 10.1002/chem.202003580] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas R. Puleo
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J. Sujansky
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Shawn E. Wright
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|