1
|
Ma X, Zhou L, Chen T, Sun P, Lv X, Yu H, Sun X, Leo Liu T. High-performance aqueous rechargeable NiCo//Zn battery with molybdate anion intercalated CoNi-LDH@CP bilayered cathode. J Colloid Interface Sci 2024; 658:728-738. [PMID: 38141394 DOI: 10.1016/j.jcis.2023.12.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Seeking cathode materials with high areal capacity and excellent cycling tolerance is a key step to develop aqueous rechargeable zinc-based alkaline batteries with high energy density, power density and excellent stability. Here, the bilayered cathode composite (MCN-LDH@CP) of molybdate intercalated cobalt-nickel layered hydroxide nanosheets (MCN-LDH) grown on cobalt phosphate octahydrate microsheet (CP) was prepared by a two-step hydrothermal process. Molybdate intercalation significantly reduces the thickness of cobalt-nickel layered hydroxide, greatly increases its specific surface area, regulates its pore distribution, increases the crystal plane spacing, promotes the diffusion rate of hydroxide in it, and increases its specific capacity. Meanwhile, the bilayered MCN-LDH@CP electrode significantly improved the areal energy density (2.89 mWh/cm2) and peak power density (111.22 mW/cm2) and cycle stability (97.8 % after 7000 cycles) of the CoNi//Zn battery. The excellent stability is mainly due to the fact that the MCN-LDH overlay inhibits the loss of P element of CP and improves the structural stability of the sample. The quasi-solid-state MCN-LDH@CP//Zn battery can still charge a mobile phone even when hammered and pierced, showing excellent safety and reliability. This work opens a new avenue to develop CoNi//Zn batteries with high energy density, power density and excellent tolerance.
Collapse
Affiliation(s)
- Xiaolin Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Linxiang Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Ting Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Panpan Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xiaowei Lv
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Haizhou Yu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China.
| | - Xiaohua Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China.
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
2
|
Zhao YN, Liu C, Xu S, Min S, Wang W, Mitsuzaki N, Chen Z. A/B-Site Management Strategy to Boost Electrocatalytic Overall Water Splitting on Perovskite Oxides in an Alkaline Medium. Inorg Chem 2023. [PMID: 37480341 DOI: 10.1021/acs.inorgchem.3c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
In this paper, Pr0.7Sr0.3Co1-xRuxO3 perovskite oxides were synthesized by the sol-gel method as bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotentials of PSCR0.05 against HER and OER at 10 mA cm-2 were 319 and 321 mV in alkaline medium, respectively. The Tafel slopes of HER and OER were 87.32 and 118.1 mV/dec, respectively. PSCR0.05 showed the largest electrochemical active area, the smallest charge transfer resistance, and excellent long-term durability. Meanwhile, the PSCR0.05 electrocatalyst was applied for overall water splitting and its cell voltage was maintained at 1.77 V at 10 mA cm-2. The super-exchange interaction between adjacent RuO6-CoO6 octahedra in perovskite made of PSCR0.05 contains sufficient active sites (such as Co2+/Co3+, Ru3+/Ru4+, and O22-/O-). The increase of surface oxygen vacancy and active site is the main reason for the improvement of difunctional catalyst performance. In this work, the electrocatalytic performance of perovskite-type oxides was further optimized by the method of A- and B-site cationic doping regulation, which provides a new idea for perovskite-type bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Changhai Liu
- School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Siqi Xu
- School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Shengkang Min
- School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Wenchang Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | | | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
3
|
Bhatti AL, Tahira A, Kumar S, Ujjan ZA, Bhatti MA, Kumar S, Aftab U, Karsy A, Nafady A, Infantes-Molina A, Ibupoto ZH. Facile synthesis of efficient Co 3O 4 nanostructures using the milky sap of Calotropis procera for oxygen evolution reactions and supercapacitor applications. RSC Adv 2023; 13:17710-17726. [PMID: 37333727 PMCID: PMC10273030 DOI: 10.1039/d3ra02555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023] Open
Abstract
The preparation of Co3O4 nanostructures by a green method has been rapidly increasing owing to its promising aspects, such as facileness, atom economy, low cost, scale-up synthesis, environmental friendliness, and minimal use of hazardous chemicals. In this study, we report on the synthesis of Co3O4 nanostructures using the milky sap of Calotropis procera (CP) by a low-temperature aqueous chemical growth method. The milky sap of CP-mediated Co3O4 nanostructures were investigated for oxygen evolution reactions (OERs) and supercapacitor applications. The structure and shape characterizations were done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) techniques. The prepared Co3O4 nanostructures showed a heterogeneous morphology consisting of nanoparticles and large micro clusters. A typical cubic phase and a spinel structure of Co3O4 nanostructures were also observed. The OER result was obtained at a low overpotential of 250 mV at 10 mA cm-2 and a low Tafel slope of 53 mV dec-1. In addition, the durability of 45 hours was also found at 20 mA cm-2. The newly prepared Co3O4 nanostructures using the milky sap of CP were also used to demonstrate a high specific capacitance of 700 F g-1 at a current density of 0.8 A g-1 and a power density of 30 W h kg-1. The enhanced electrochemical performance of Co3O4 nanostructures prepared using the milky sap of CP could be attributed to the surface oxygen vacancies, a relatively high amount of Co2+, the reduction in the optical band gap and the fast charge transfer rate. These surface, structural, and optical properties were induced by reducing, capping, and stabilizing agents from the milky sap of CP. The obtained results of OERs and supercapacitor applications strongly recommend the use of the milky sap of CP for the synthesis of diverse efficient nanostructured materials in a specific application, particularly in energy conversion and storage devices.
Collapse
Affiliation(s)
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | - Shusheel Kumar
- Institute of Physics, University of Sindh Jamshoro 76080 Sindh Pakistan
| | | | - Muhammad Ali Bhatti
- Centre for Environmental Sciences, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Sooraj Kumar
- Department of Chemical Engineering, Mehran University of Engineering and Technology 7680 Jamshoro Sindh Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials, Mehran University of Engineering and Technology 7680 Jamshoro Sindh Pakistan
| | - Amal Karsy
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE) Cairo Egypt
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Antonia Infantes-Molina
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Unidad Asociada al ICP-CSIC, Faculty of Sciences, University of Malaga, Campus de Teatinos 29071 Malaga Spain
| | | |
Collapse
|
4
|
Cao S, Li Y, Tang Y, Sun Y, Li W, Guo X, Yang F, Zhang G, Zhou H, Liu Z, Li Q, Shakouri M, Pang H. Space-Confined Metal Ion Strategy for Carbon Materials Derived from Cobalt Benzimidazole Frameworks with High Desalination Performance in Simulated Seawater. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301011. [PMID: 36990112 DOI: 10.1002/adma.202301011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Indexed: 06/09/2023]
Abstract
Various metal ions with different valence states (Mg2+ , Al3+ , Ca2+ , Ti4+ , Mn2+ , Fe3+ , Ni2+ , Zn2+ , Pb2+ , Ba2+ , Ce4+ ) are successfully confined in quasi-microcube shaped cobalt benzimidazole frameworks using a space-confined synthesis strategy. More importantly, a series of derived carbon materials that confine metal ions are obtained by high-temperature pyrolysis. Interestingly, the derived carbon materials exhibited electric double-layer and pseudocapacitance properties because of the presence of metal ions with various valence states. Moreover, the presence of additional metal ions within carbon materials may create new phases, which can accelerate Na+ insertion/extraction and thus increase electrochemical adsorption. Density functional theory results showed that carbon materials in which Ti ions are confined exhibit enhanced insertion/extraction of Na+ resulting from the presence of the characteristic anatase crystalline phases of TiO2 . The Ti-containing materials have an impressive desalination capacity (62.8 mg g-1 ) in capacitive deionization (CDI) applications with high cycling stability. This work provides a facile synthetic strategy for the confinement of metal ions in metal-organic frameworks and thus supports the further development of derived carbon materials for seawater desalination by CDI.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Feiyu Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Zheng Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, S7N 2V3, Canada
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
5
|
Shankar Naik S, Theerthagiri J, Nogueira FS, Lee SJ, Min A, Kim GA, Maia G, Pinto LM, Choi MY. Dual-Cation-Coordinated CoFe-Layered Double-Hydroxide Nanosheets Using the Pulsed Laser Ablation Technique for Efficient Electrochemical Water Splitting: Mechanistic Screening by In Situ/Operando Raman and Density Functional Theory Calculations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shreyanka Shankar Naik
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Fabio Sobral Nogueira
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Gyeong-Ah Kim
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Gilberto Maia
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Leandro M.C. Pinto
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| |
Collapse
|
6
|
Das B, Toledo-Carrillo EA, Li L, Ye F, Chen J, Slabon A, Verho O, Eriksson L, Göthelid M, Dutta J, Äkermark B. Cobalt Electrocatalyst on Fluorine Doped Carbon Cloth – a Robust and Partially Regenerable Anode for Water Oxidation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biswanath Das
- Stockholm University: Stockholms Universitet Organic Chemistry Stockholm SWEDEN
| | | | - Lin Li
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Physical Science and Technology CHINA
| | - Fei Ye
- KTH: Kungliga Tekniska Hogskolan Materials and nanophysics SWEDEN
| | - Jianhong Chen
- Stockholm University: Stockholms Universitet MMK SWEDEN
| | - Adam Slabon
- University of Wuppertal: Bergische Universitat Wuppertal Inorganic Chemistry GERMANY
| | - Oscar Verho
- Uppsala Universitet Biomedicinskt Centrum BMC SWEDEN
| | | | - Mats Göthelid
- KTH: Kungliga Tekniska Hogskolan Materials and nanophysics SWEDEN
| | - Joydeep Dutta
- KTH: Kungliga Tekniska Hogskolan Materials and nanophysics SWEDEN
| | - Björn Äkermark
- Stockholms Universitet Organic Chemistry Svante Arrhenius väg 16C, 11418 Stockholm SWEDEN
| |
Collapse
|
7
|
Lei H, Zhang Q, Liang Z, Guo H, Wang Y, Lv H, Li X, Zhang W, Apfel UP, Cao R. Metal-Corrole-Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2022; 61:e202201104. [PMID: 35355376 DOI: 10.1002/anie.202201104] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/21/2022]
Abstract
Integrating molecular catalysts into designed frameworks often enables improved catalysis. Compared with porphyrin-based frameworks, metal-corrole-based frameworks have been rarely developed, although monomeric metal corroles are usually more efficient than porphyrin counterparts for the electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). We herein report on metal-corrole-based porous organic polymers (POPs) as ORR and OER electrocatalysts. M-POPs (M=Mn, Fe, Co, Cu) were synthesized by coupling metal 10-phenyl-5,15-(4-iodophenyl)corrole with tetrakis(4-ethynylphenyl)methane. Compared with metal corrole monomers, M-POPs displayed significantly enhanced catalytic activity and stability. Co-POP outperformed other M-POPs by achieving four-electron ORR with a half-wave potential of 0.87 V vs. RHE and reaching 10 mA cm-2 OER current density at 340 mV overpotential. This work is unparalleled to develop and explore metal-corrole-based POPs as electrocatalysts.
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Su Y, Luo W, Lin W, Su Y, Li Z, Yuan Y, Li J, Chen G, Li Z, Yu Z, Zou Z. A Water‐Soluble Highly Oxidizing Cobalt Molecular Catalyst Designed for Bioinspired Water Oxidation. Angew Chem Int Ed Engl 2022; 61:e202201430. [DOI: 10.1002/anie.202201430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yun‐Fei Su
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Wen‐Zhi Luo
- Department of Chemistry Shantou University Guangdong 515063 P. R. China
| | - Wang‐Qiang Lin
- Department of Chemistry Shantou University Guangdong 515063 P. R. China
| | - Yi‐Bing Su
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Zi‐Jian Li
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Yong‐Jun Yuan
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou Zhejiang 310018 P. R. China
| | - Jian‐Feng Li
- College of Materials Science and Optoelectronic Technology CAS Center for Excellence in Topological Quantum Computation Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Yanqi Lake, Huairou District Beijing 101408 P. R. China
| | - Guang‐Hui Chen
- Department of Chemistry Shantou University Guangdong 515063 P. R. China
| | - Zhaosheng Li
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Zhen‐Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
9
|
Lei H, Zhang Q, Liang Z, Guo H, Wang Y, Lv H, Li X, Zhang W, Apfel U, Cao R. Metal‐Corrole‐Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
10
|
Li CF, Xie LJ, Zhao JW, Gu LF, Tang HB, Zheng L, Li GR. Interfacial Fe-O-Ni-O-Fe Bonding Regulates the Active Ni Sites of Ni-MOFs via Iron Doping and Decorating with FeOOH for Super-Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2022; 61:e202116934. [PMID: 35148567 DOI: 10.1002/anie.202116934] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 12/17/2022]
Abstract
The integration of Fe dopant and interfacial FeOOH into Ni-MOFs [Fe-doped-(Ni-MOFs)/FeOOH] to construct Fe-O-Ni-O-Fe bonding is demonstrated and the origin of remarkable electrocatalytic performance of Ni-MOFs is elucidated. X-ray absorption/photoelectron spectroscopy and theoretical calculation results indicate that Fe-O-Ni-O-Fe bonding can facilitate the distorted coordinated structure of the Ni site with a short nickel-oxygen bond and low coordination number, and can promote the redistribution of Ni/Fe charge density to efficiently regulate the adsorption behavior of key intermediates with a near-optimal d-band center. Here the Fe-doped-(Ni-MOFs)/FeOOH with interfacial Fe-O-Ni-O-Fe bonding shows superior catalytic performance for OER with a low overpotential of 210 mV at 15 mA cm-2 and excellent stability with ≈3 % attenuation after a 120 h cycle test. This study provides a novel strategy to design high-performance Ni/Fe-based electrocatalysts for OER in alkaline media.
Collapse
Affiliation(s)
- Cheng-Fei Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ling-Jie Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jia-Wei Zhao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lin-Fei Gu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hai-Bo Tang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Su Y, Luo W, Lin W, Su Y, Li Z, Yuan Y, Li J, Chen G, Li Z, Yu Z, Zou Z. A Water‐Soluble Highly Oxidizing Cobalt Molecular Catalyst Designed for Bioinspired Water Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yun‐Fei Su
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Wen‐Zhi Luo
- Department of Chemistry Shantou University Guangdong 515063 P. R. China
| | - Wang‐Qiang Lin
- Department of Chemistry Shantou University Guangdong 515063 P. R. China
| | - Yi‐Bing Su
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Zi‐Jian Li
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Yong‐Jun Yuan
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou Zhejiang 310018 P. R. China
| | - Jian‐Feng Li
- College of Materials Science and Optoelectronic Technology CAS Center for Excellence in Topological Quantum Computation Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Yanqi Lake, Huairou District Beijing 101408 P. R. China
| | - Guang‐Hui Chen
- Department of Chemistry Shantou University Guangdong 515063 P. R. China
| | - Zhaosheng Li
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Zhen‐Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
12
|
Li CF, Xie LJ, Zhao JW, Gu LF, Tang HB, Zheng LR, Li GR. Interfacial Fe‐O‐Ni‐O‐Fe Bonding Regulates the Active Ni Sites of Ni‐MOFs via Iron Doping and Decorating with FeOOH for Super‐Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng-Fei Li
- Sun Yat-Sen University School of Chemistry No. 135, Xin-Gang West Road 510275 Guangzhou CHINA
| | - Ling-Jie Xie
- Sun Yat-Sen University School of Chemistry No. 135, Xin-Gang West Road 510275 Guangzhou CHINA
| | - Jia-Wei Zhao
- Sun Yat-Sen University School of Chemistry No. 135, Xin-Gang West Road 510275 Guangzhou CHINA
| | - Lin-Fei Gu
- Sun Yat-Sen University School of Chemistry CHINA
| | - Hai-Bo Tang
- Sun Yat-Sen University School of Chemistry No. 135, Xin-Gang West Road 510275 Guangzhou CHINA
| | - Li-Rong Zheng
- Chinese Academy of Sciences Institute of high energy physics CHINA
| | - Gao-Ren Li
- Sichuan University No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| |
Collapse
|
13
|
Cai X, Peng F, Luo X, Ye X, Zhou J, Lang X, Shi M. Understanding the Evolution of Cobalt-Based Metal-Organic Frameworks in Electrocatalysis for the Oxygen Evolution Reaction. CHEMSUSCHEM 2021; 14:3163-3173. [PMID: 34101996 DOI: 10.1002/cssc.202100851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted increasing attention as a promising electrode material for the oxygen evolution reaction (OER). Comprehending catalytic mechanisms in the OER process is of key relevance for the design of efficient catalysts. In this study, two types of Co based MOF with different organic ligands (ZIF-67 and CoBDC; BDC=1,4-benzenedicarboxylate) are synthesized as OER electrocatalysts and their electrochemical behavior is studied in alkaline solution. Physical characterization indicates that ZIF-67, with tetrahedral Co sites, transforms into α-Co(OH)2 on electrochemical activation, which provides continuous active sites in the following oxidation, whereas CoBDC, with octahedral sites, evolves into β-Co(OH)2 through hydrolysis, which is inert for the OER. Electrochemical characterization reveals that Co sites coordinated by nitrogen from imidazole ligands (Co-N coordination) are more inclined to electrochemical activation than Co-O sites. The successive exposure and accumulation of real active sites is responsible for the gradual increase in activity of ZIF-67 in OER. This work not only indicates that CoMOFs are promising OER electrocatalysts but also provides a reference system to understand how metal coordination in MOFs affects the OER process.
Collapse
Affiliation(s)
- Xiaowei Cai
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Fei Peng
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Xingyu Luo
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Xuejie Ye
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Junxi Zhou
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Xiaoling Lang
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan, 364000, Fujian, P. R. China
| | - Meiqin Shi
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| |
Collapse
|
14
|
Pan DS, Guo ZH, Li JK, Huang S, Zhou LL, Song JL. Rational Construction of a N, F Co-doped Mesoporous Cobalt Phosphate with Rich-Oxygen Vacancies for Oxygen Evolution Reaction and Supercapacitors. Chemistry 2021; 27:7731-7737. [PMID: 33792092 DOI: 10.1002/chem.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 12/30/2022]
Abstract
Transition-metal phosphates have been widely applied as promising candidates for electrochemical energy storage and conversion. In this study, we report a simple method to prepare a N, F co-doped mesoporous cobalt phosphate with rich-oxygen vacancies by in-situ pyrolysis of a Co-phosphate precursor with NH4 + cations and F- anions. Due to this heteroatom doping, it could achieve a current density of 10 mA/cm2 at lower overpotential of 276 mV and smaller Tafel slope of 57.11 mV dec-1 on glassy carbon. Moreover, it could keep 92 % of initial current density for 35 h, indicating it has an excellent stability and durability. Furthermore, the optimal material applied in supercapacitor displays specific capacitance of 206.3 F g-1 at 1 A ⋅ g-1 and maintains cycling stability with 80 % after 3000 cycles. The excellent electrochemical properties should be attributed to N, F co-doping into this Co-based phosphate, which effectively modulates its electronic structure. In addition, its amorphous structure provides more active sites; moreover, its mesoporous structure should be beneficial to mass transfer and electrolyte diffusion.
Collapse
Affiliation(s)
- Dong-Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Zheng-Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Jin-Kun Li
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Sai Huang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Ling-Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| |
Collapse
|
15
|
Wang P, Li D, Chi H, Zhao Y, Wang J, Li D, Pang S, Fu P, Shi J, Li C. Unveiling the Hydration Structure of Ferrihydrite for Hole Storage in Photoelectrochemical Water Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pengpeng Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Deng Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haibo Chi
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yongle Zhao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhu Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Dongfeng Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shan Pang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ping Fu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jingying Shi
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
16
|
Wang P, Li D, Chi H, Zhao Y, Wang J, Li D, Pang S, Fu P, Shi J, Li C. Unveiling the Hydration Structure of Ferrihydrite for Hole Storage in Photoelectrochemical Water Oxidation. Angew Chem Int Ed Engl 2021; 60:6691-6698. [DOI: 10.1002/anie.202014871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Pengpeng Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Deng Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haibo Chi
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yongle Zhao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhu Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Dongfeng Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shan Pang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ping Fu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jingying Shi
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
17
|
Zhao H, Yuan ZY. Design Strategies of Transition-Metal Phosphate and Phosphonate Electrocatalysts for Energy-Related Reactions. CHEMSUSCHEM 2021; 14:130-149. [PMID: 33030810 DOI: 10.1002/cssc.202002103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The key challenge to developing renewable energy conversion and storage devices lies in the exploration and rational engineering of cost-effective and highly efficient electrocatalysts for various energy-related electrochemical reactions. Transition-metal phosphates and phosphonates have shown remarkable performances for these reactions based on their unique physicochemical properties. Compared with transition-metal oxides, phosphate groups in transition-metal phosphates and phosphonates show flexible coordination with diverse orientations, making them an ideal platform for designing active electrocatalysts. Although numerous efforts have been spent on the development of transition-metal phosphate and phosphonate electrocatalysts, some urgent issues, such as low intrinsic catalytic efficiency and low electronic conductivity, have to be resolved in accordance with their applications. In this Review, we focus on the design strategies of highly efficient transition-metal phosphate and phosphonate electrocatalysts, with special emphasis on the tuning of transition-metal-center coordination environment, optimization of electronic structures, increase of catalytically active site densities, and construction of heterostructures. Guided by these strategies, recently developed transition-metal phosphate and phosphonate materials have exhibited excellent activity, selectivity, and stability for various energy-related electrocatalytic reactions, showing great potential for replacing noble-metal-based catalysts in next-generation advanced energy techniques. The existing challenges and prospects regarding these materials are also presented.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, Shandong, P. R. China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|