1
|
Peng L, Odnoroh M, Destarac M, Coppel Y, Delmas C, Benoit-Marquié F, Mingotaud C, Marty JD. How tailor-made copolymers can control the structure and properties of hybrid nanomaterials: the case of polyionic complexes. NANOSCALE 2025; 17:4636-4648. [PMID: 39812163 DOI: 10.1039/d4nr04332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions. Hence, double hydrophilic block copolymers were synthesized using RAFT polymerization, with polyethylene glycol as the neutral block and different ratios of acrylic acid (AA) and vinylphosphonic acid (VPA) as the functional block and further complexed with Fe(III) ions. The resulting iron-based HPICs with higher VPA content were more stable at low pH due to stronger VPA-iron interactions, but their catalytic efficiency in the photo-Fenton process decreased at higher pH. In nanoparticle synthesis, polymers with higher VPA content produced smaller, less-defined Prussian blue nanoparticles, while a 50/50 AA/VPA ratio resulted in uniform nanoparticles and optimal reactivity. Multivariate analysis revealed that not only composition but also local structural organization impacts HPIC properties, influenced by changes in the complexing block structure (e.g., statistical, block) or formulation conditions.
Collapse
Affiliation(s)
- Liming Peng
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Maksym Odnoroh
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Mathias Destarac
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse, France
| | - Céline Delmas
- MIAT UR 875, INRAE, Université de Toulouse, F-31326 Castanet-Tolosan, France
| | - Florence Benoit-Marquié
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Christophe Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
2
|
Zhang J, Shi X, Zhao Z, Wang M, Deng H, Du Y. Hydrogel Films with Impact Resistance by Sacrificial Micelle-Assisted-Alignment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409287. [PMID: 39373696 PMCID: PMC11600213 DOI: 10.1002/advs.202409287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Various strategies are developed to engineer aligned hierarchical architectures in polymer hydrogels for enhanced mechanical performance. However, chain alignment remains impeded by the presence of hydrogen bonds between adjacent chains. Herein, a facile sacrificial micelle-assisted-alignment strategy is proposed, leading to well-aligned, strong and tough pure chitosan hydrogels. The sacrificial sodium dodecyl sulfate micelles electrostatically interact with the protonated chitosan chains, enabling chain sliding and alignment under uniaxial forces. Subsequently, sacrificial micelles can be easily removed via NaOH treatment, causing the reforming of H-bond in the chain networks. The strength of the pure chitosan hydrogels increases 140-fold, reaching 58.9 ± 3.4 MPa; the modulus increases 595-fold, reaching 226.4 ± 42.8 MPa. After drying-rehydration, the strength and modulus further rise to 70.3 ± 2.4 and 403.5 ± 76.3 MPa, marking a significant advancement in high-strength pure chitosan hydrogel films. Furthermore, the designed multiscale architectures involving enhanced crystallinity, well-aligned fibers, strong interfaces, robust multilayer Bouligand assembly contribute to the exact replica of lobster underbelly with impact resistance up to 6.8 ± 1.0 kJ m-1. This work presents a promising strategy for strong, tough, stiff and impact-resistant polymer hydrogels via well-aligned hierarchical design.
Collapse
Affiliation(s)
- Jingxian Zhang
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Xiaowen Shi
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Zhongtao Zhao
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Manya Wang
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Hongbing Deng
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Yumin Du
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| |
Collapse
|
3
|
Narayanan T. Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids. Adv Colloid Interface Sci 2024; 325:103114. [PMID: 38452431 DOI: 10.1016/j.cis.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Recent progress in synchrotron based X-ray scattering methods applied to colloid science is reviewed. An important figure of merit of these techniques is that they enable in situ investigations of colloidal systems under the desired thermophysical and rheological conditions. An ensemble averaged simultaneous structural and dynamical information can be derived albeit in reciprocal space. Significant improvements in X-ray source brilliance and advances in detector technology have overcome some of the limitations in the past. Notably coherent X-ray scattering techniques have become more competitive and they provide complementary information to laboratory based real space methods. For a system with sufficient scattering contrast, size ranges from nm to several μm and time scales down to μs are now amenable to X-ray scattering investigations. A wide variety of sample environments can be combined with scattering experiments further enriching the science that could be pursued by means of advanced X-ray scattering instruments. Some of these recent progresses are illustrated via representative examples. To derive quantitative information from the scattering data, rigorous data analysis or modeling is required. Development of powerful computational tools including the use of artificial intelligence have become the emerging trend.
Collapse
|
4
|
Ochoa C, Gao S, Xu C, Srivastava S, Sharma V. Foam film stratification, viscosity, and small-angle X-ray scattering of micellar SDS solutions over an extended concentration range (1< c/CMC < 75). SOFT MATTER 2024; 20:1922-1934. [PMID: 38323381 DOI: 10.1039/d3sm01069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Ultrathin foam films (thickness, h < 100 nm) containing micelles undergo drainage via stratification manifested as coexisting thick-thin flat regions, nanoscopic non-flat topography, and the stepwise decrease in film thickness that yields a characteristic step-size. Most studies characterize the variation in step size and stratification kinetics in micellar foam films in a limited concentration range, c/CMC < 12.5 (c < 100 mM). Likewise, most scattering studies characterize micelle dimensions, intermicellar distance, and volume fraction in bulk aqueous SDS solutions in this limited concentration range. In this contribution, we show drainage via stratification can be observed for concentrations up to c/CMC < 75 (c < 600 mM). Understanding the stratification behavior of freely draining micellar films with sodium dodecyl sulfate (SDS) concentration varying in the range 10 mM ≤ cSDS ≤ 600 mM is essential for molecular engineering, consumer product formulations, and controlling foaming in industrial processes. Here, we visualize and analyze nanoscopic thickness variations and transitions in stratifying foam films using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols. We compare step size obtained from foam stratification to micelle dimension, micelle volume fraction, and intermicellar distance obtained from small angle X-ray scattering studies. Even though the volume fraction increases and approaches 25% at c = 600 mM, the solution viscosity only increases by a factor of four compared to the solvent, consistent with the findings from both stratification and scattering studies. These comparisons allow us to explore the effect of micelle size, morphology, and intermicellar interactions on supramolecular oscillatory structural disjoining pressure, which influences the stratification behavior of draining foam films containing micelles under confinement.
Collapse
Affiliation(s)
- Chrystian Ochoa
- Department of Chemical Engineering, University of Illinois Chicago, 929 W Taylor St, Chicago, IL 60607, USA.
| | - Shang Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, 929 W Taylor St, Chicago, IL 60607, USA.
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Biological Physics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, 929 W Taylor St, Chicago, IL 60607, USA.
| |
Collapse
|
5
|
Li J, Li B, Hou Y, Zeb J, Yuan Q, Gan W. Measuring the activation energy of the structural evolution in vesicle formation with combined spectroscopic methods and revealing the different ionic effects from Na+ and Ca2+. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Victorov AI, Molchanov VS, Sorina PO, Safonova EA, Philippova OE. Modeling Micellar Growth and Branching in Mixtures of Zwitterionic with Ionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11929-11940. [PMID: 36121425 DOI: 10.1021/acs.langmuir.2c01677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zwitterionic surfactants are widely applied as drag-reducing or thickening agents because their aggregation patterns may drastically change in response to variations of the system composition or external stimuli, which provides controllable viscoelasticity. For predicting aggregation behavior of surfactant mixtures, classical molecular thermodynamic models have been widely used. Particularly, the results of modeling have been reported for zwitterionic/ionic surfactant mixtures. However, for solutions containing a zwitterionic surfactant, no molecular thermodynamic model has been proposed for a micellar branch. In this work we extend the classical molecular thermodynamic aggregation model to describe aggregation in the aqueous mixtures that contain a zwitterionic and an ionic surfactant. We derive analytical expressions (1) for the contribution of dipoles to the electrostatic term of the standard free energy of aggregation into micellar branches and (2) for the dipolar contribution to the persistence length of wormlike micelles. The dependence of micellar branching on the surfactant concentration is taken into account by including the population of micellar branches in the material balance equations. This model is applied to predict aggregation equilibrium in aqueous salt solutions of betaine (oleoylamidopropyl-N,N-dimethylbetaine) mixed with sodium dodecyl sulfate (SDS) and the longer tail sodium n-alkyl sulfates. We discuss the predicted properties of the aggregates and micellar networks and compare our predictions with available experimental data.
Collapse
Affiliation(s)
- Alexey I Victorov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | | | - Polina O Sorina
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Evgenia A Safonova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Olga E Philippova
- Physics Department, Moscow State University, 1-2 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
7
|
Ma Z, Lin K, Tang M, Ramachandran M, Qiu R, Li J, Solano LN, Huang Y, De Souza C, Abou-Adas S, Xiang B, Zhang L, Li M, Li Y. A pH-Driven Small-Molecule Nanotransformer Hijacks Lysosomes and Overcomes Autophagy-Induced Resistance in Cancer. Angew Chem Int Ed Engl 2022; 61:e202204567. [PMID: 35791769 PMCID: PMC9995155 DOI: 10.1002/anie.202204567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/11/2022]
Abstract
Smart conversion of supramolecular structures in vivo is an attractive strategy in cancer nanomedicine, which is usually achieved via specific peptide sequences. Here we developed a lysosomal targeting small-molecule conjugate, PBC, which self-assembles into nanoparticles at physiological pH and smartly converts to nanofibrils in lysosomes of tumor cells. Such a transformation mechanically leads to lysosomal dysfunction, autophagy inhibition, and unusual cytoplasmic vacuolation, thus granting PBC a unique anticancer activity as a monotherapy. Importantly, the photo-activated PBC elicits significant phototoxicity to lysosomes and shows enormous advantages in overcoming autophagy-caused treatment resistance frequently occurring in conventional phototherapy. This improved phototherapy achieves a complete cure of oral cancer xenografts upon limited administration. Our work provides a new paradigm for the construction of nonpeptide nanotransformers with biomedical activities.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Kai Lin
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Menghuan Tang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Reng Qiu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Jin Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Lucas N Solano
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Sara Abou-Adas
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Bai Xiang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
8
|
Su L, Mosquera J, Mabesoone MFJ, Schoenmakers SMC, Muller C, Vleugels MEJ, Dhiman S, Wijker S, Palmans ARA, Meijer EW. Dilution-induced gel-sol-gel-sol transitions by competitive supramolecular pathways in water. Science 2022; 377:213-218. [DOI: 10.1126/science.abn3438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fascinating properties are displayed by synthetic multicomponent supramolecular systems that comprise a manifold of competitive interactions, thereby mimicking natural processes. We present the integration of two reentrant phase transitions based on an unexpected dilution-induced assembly process using supramolecular polymers and surfactants. The co-assembly of the water-soluble benzene-1,3,5-tricarboxamide (BTA-EG
4
) and a surfactant at a specific ratio yielded small-sized aggregates. These interactions were modeled using the competition between self-sorting and co-assembly of both components. The small-sized aggregates were transformed into supramolecular polymer networks by a twofold dilution in water without changing their ratio. Kinetic experiments show the in situ growth of micrometer-long fibers in the dilution process. We were able to create systems that undergo fully reversible hydrogel-solution-hydrogel-solution transitions upon dilution by introducing another orthogonal interaction.
Collapse
Affiliation(s)
- Lu Su
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, Netherlands
| | - Jesús Mosquera
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
- Centro de Investigacións Científicas Avanzadas, Universidade da Coruña (CICA), A Coruña, Spain
| | - Mathijs F. J. Mabesoone
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Sandra M. C. Schoenmakers
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Cyprien Muller
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Marle E. J. Vleugels
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Shikha Dhiman
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Stefan Wijker
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Anja R. A. Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Ma Z, Lin K, Tang M, Ramachandran M, Qiu R, Li J, Solano LN, Huang Y, De Souza C, Abou-Adas S, Xiang B, Zhang L, Li M, Li Y. A pH‐Driven Small‐Molecule Nanotransformer Hijacks Lysosomes and Overcomes Autophagy‐Induced Resistance in Cancer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao Ma
- Shandong University Cheeloo College of Medicine Medicinal Chemistry CHINA
| | - Kai Lin
- University of California Davis School of Medicine Biochemistry and Molecular Medicine UNITED STATES
| | - Menghuan Tang
- University of California Davis School of Medicine Biochemistry and Molecular Medicine UNITED STATES
| | - Mythili Ramachandran
- University of California Davis School of Medicine Biochemistry and Molecular Medicine UNITED STATES
| | - Reng Qiu
- University of California Davis School of Medicine Biochemistry and Molecular Medicine UNITED STATES
| | - Jin Li
- University of California Davis School of Medicine Biochemistry and Molecular Medicine UNITED STATES
| | - Lucas N. Solano
- University of California Davis School of Medicine Biochemistry and Molecular Medicine UNITED STATES
| | - Yanyu Huang
- University of California Davis Biochemistry and Molecular Medicine UNITED STATES
| | - Cristabelle De Souza
- University of California Davis School of Medicine Biochemistry and Molecular Medicine UNITED STATES
| | - Sara Abou-Adas
- University of California Davis Biochemistry and Molecular Medicine UNITED STATES
| | - Bai Xiang
- University of California Davis School of Medicine Biochemistry and Molecular Medicine UNITED STATES
| | - Lanwei Zhang
- Ocean University of China College of Food Science and Engineering CHINA
| | - Minyong Li
- Shandong University Cheeloo College of Medicine Medicinal Chemistry CHINA
| | - Yuanpei Li
- University of California Davis School of Medicine Biochemistry and Molecular Medicine 2700 Stockton Blvd, Suite 2405 95817 Sacramento UNITED STATES
| |
Collapse
|
10
|
Goujard S, Suau JM, Chaub A, Guigner JM, Bizien T, Cloitre M. Glassy states in adsorbing surfactant-microgel soft nanocomposites. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:404003. [PMID: 34237714 DOI: 10.1088/1361-648x/ac1282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Mixtures of polymer-colloid hybrids such as star polymers and microgels with non-adsorbing polymeric additives have received a lot of attention. In these materials, the interplay between entropic forces and softness is responsible for a wealth of phenomena. By contrast, binary mixtures where one component can adsorb onto the other one have been far less studied. Yet real formulations in applications often contain low molecular weight additives that can adsorb onto soft colloids. Here we study the microstructure and rheology of soft nanocomposites made of surfactants and microgels using linear and nonlinear rheology, SAXS experiments, and cryo-TEM techniques. The results are used to build a dynamical state diagram encompassing various liquid, glassy, jammed, metastable, and reentrant liquid states, which results from a subtle interplay between enthalpic, entropic, and kinetic effects. We rationalize the rheological properties of the nanocomposites in each domain of the state diagram, thus providing exquisite solutions for designing new rheology modifiers at will.
Collapse
Affiliation(s)
- Sarah Goujard
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| | | | - Arnaud Chaub
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| | - Jean-Michel Guigner
- Sorbonne Université, CNRS, UMR 7590 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN, 75005 Paris, France
| | - Thomas Bizien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, Gif-sur-Yvette 91190, France
| | - Michel Cloitre
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
11
|
Min F, Zhou P, Huang Z, Qiao Y, Yu C, Qu Z, Shi X, Li Z, Jiang L, Zhang Z, Yan X, Song Y. A Bubble-Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angew Chem Int Ed Engl 2021; 60:16547-16553. [PMID: 33974728 DOI: 10.1002/anie.202103765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Indexed: 11/11/2022]
Abstract
We demonstrate a new approach to pattern functional organic molecules with a template of foams, and achieve a resolution of sub 100 nm. The bubble-assisted assembly (BAA) process is consisted of two periods, including bubble evolution and molecular assembly, which are dominated by the Laplace pressure and molecular interactions, respectively. Using TPPS (meso-tetra(4-sulfonatophenyl) porphyrin), we systematically investigate the patterns and assembly behaviour in the bubble system with a series of characterizations, which show good uniformity in nanoscale resolution. Theoretical simulations reveal that TPPS's J-aggregates contribute to the ordered construction of molecular patterns. Finally, we propose an empirical rule for molecular patterning approach, that the surfactant and functional molecules should have the same type of charge in a two-component system. This approach exhibits promising feasibility to assemble molecular patterns at nanoscale resolution for micro/nano functional devices.
Collapse
Affiliation(s)
- Fanyi Min
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering, The University of Western Ontario London, Ontario, N6A 5B9, Canada
| | - Yali Qiao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changhui Yu
- State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory of Molecular Sciences, University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyuan Qu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaosong Shi
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lang Jiang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhen Zhang
- State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory of Molecular Sciences, University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
12
|
Min F, Zhou P, Huang Z, Qiao Y, Yu C, Qu Z, Shi X, Li Z, Jiang L, Zhang Z, Yan X, Song Y. A Bubble‐Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fanyi Min
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering The University of Western Ontario London Ontario N6A 5B9 Canada
| | - Yali Qiao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changhui Yu
- State Key Laboratory of Molecular Reaction Dynamics CAS Research/Education Centre for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory of Molecular Sciences University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhiyuan Qu
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiaosong Shi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lang Jiang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhen Zhang
- State Key Laboratory of Molecular Reaction Dynamics CAS Research/Education Centre for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory of Molecular Sciences University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing National Laboratory for Molecular Sciences (BNLMS) University of the Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
13
|
Kotha S, Mabesoone MFJ, Srideep D, Sahu R, Reddy SK, Rao KV. Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π‐Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Srinu Kotha
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi Sangareddy Telangana 502285 India
| | - Mathijs F. J. Mabesoone
- Laboratory of Macromolecular and Organic Chemistry and the Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Dasari Srideep
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi Sangareddy Telangana 502285 India
| | - Rahul Sahu
- Centre for Computational and Data Science Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Sandeep K. Reddy
- Centre for Computational and Data Science Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Kotagiri Venkata Rao
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi Sangareddy Telangana 502285 India
| |
Collapse
|
14
|
Kotha S, Mabesoone MFJ, Srideep D, Sahu R, Reddy SK, Rao KV. Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π-Systems. Angew Chem Int Ed Engl 2021; 60:5459-5466. [PMID: 33247874 DOI: 10.1002/anie.202011977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Indexed: 11/10/2022]
Abstract
Solvents are fundamentally essential for the synthesis and processing of soft materials. Supramolecular polymers (SPs), an emerging class of soft materials, are usually stable in single and mixtures of poor solvents. In contrast to these preconceived notions, here we report the depolymerization of SPs in the mixture of two poor solvents. This surprising behavior was observed for well-known cationic perylene diimides (cPDIs) in the mixtures of water and amphiphilic organic solvents such as isopropanol (IPA). cPDIs form stable SPs in water and IPA but readily depolymerize into monomers in 50-70 vol% IPA containing water. This is due to the selective solvation of the π-surface of cPDIs by alkyl chains of IPA and ionic side chains by water, as evidenced by molecular dynamic simulations. Moreover, by systematically changing the ratio between water and amphiphilic organic solvent, we could achieve an unprecedented supramolecular polymerization both by increasing and decreasing the solvent polarity.
Collapse
Affiliation(s)
- Srinu Kotha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Mathijs F J Mabesoone
- Laboratory of Macromolecular and Organic Chemistry and the Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Dasari Srideep
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Rahul Sahu
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sandeep K Reddy
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kotagiri Venkata Rao
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| |
Collapse
|