1
|
Báti G, Csókás D, Stuparu MC. Mechanochemical Scholl Reaction on Phenylated Cyclopentadiene Core: One-Step Synthesis of Fluoreno[5]helicenes. Chemistry 2024; 30:e202302971. [PMID: 37870299 DOI: 10.1002/chem.202302971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
In this study, we explore feasibility of the mechanochemical approach in the synthesis of tetrabenzofluorenes (fluoreno[5]helicenes). For this, commercially available phenylated cyclopentadiene precursors are subjected to the Scholl reaction in the solid state using FeCl3 as an oxidant and sodium chloride as the solid reaction medium. This ball milling process gave access to the 5-membered ring containing-helicenes in one synthetic step in high (95-96 %) isolated yields. The solution-phase reactions, however, were found to be moderate to low yielding in this regard (10-40 %).
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
2
|
Cagide C, Marizcurrena JJ, Vallés D, Alvarez B, Castro-Sowinski S. A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain. Appl Microbiol Biotechnol 2023; 107:1707-1724. [PMID: 36773063 DOI: 10.1007/s00253-023-12405-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
DyP (dye-decolorizing peroxidase) enzymes are hemeproteins that catalyze the H2O2-dependent oxidation of various molecules and also carry out lignin degradation, albeit with low activity. We identified a dyp gene in the genome of an Antarctic cold-tolerant microbe (Pseudomonas sp. AU10) that codes for a class B DyP. The recombinant protein (rDyP-AU10) was produced using Escherichia coli as a host and purified. We found that rDyP-AU10 is mainly produced as a dimer and has characteristics that resemble psychrophilic enzymes, such as high activity at low temperatures (20 °C) when using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 as substrates, thermo-instability, low content of arginine, and a catalytic pocket surface larger than the DyPs from some mesophilic and thermophilic microbes. We also report the steady-state kinetic parameters of rDyP-AU10 for ABTS, hydroquinone, and ascorbate. Stopped-flow kinetics revealed that Compound I is formed with a rate constant of (2.07 ± 0.09) × 106 M-1 s-1 at pH 5 and that this is the predominant species during turnover. The enzyme decolors dyes and modifies kraft lignin, suggesting that this enzyme may have potential use in bioremediation and in the cellulose and biofuel industries. KEY POINTS: • An Antarctic Pseudomonas strain produces a dye-decolorizing peroxidase. • The recombinant enzyme (rDyP-AU10) was produced in E. coli and purified. • rDyP-AU10 showed high activity at low temperatures. • rDyP-AU10 is potentially useful for biotechnological applications.
Collapse
Affiliation(s)
- Célica Cagide
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Juan José Marizcurrena
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Diego Vallés
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
3
|
Kwon H, Basran J, Pathak C, Hussain M, Freeman SL, Fielding AJ, Bailey AJ, Stefanou N, Sparkes HA, Tosha T, Yamashita K, Hirata K, Murakami H, Ueno G, Ago H, Tono K, Yamamoto M, Sawai H, Shiro Y, Sugimoto H, Raven EL, Moody PCE. XFEL Crystal Structures of Peroxidase Compound II. Angew Chem Int Ed Engl 2021; 60:14578-14585. [PMID: 33826799 PMCID: PMC8251747 DOI: 10.1002/anie.202103010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/07/2023]
Abstract
Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV =O or FeIV -OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV =O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Å and 1.50 Å crystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.
Collapse
Affiliation(s)
- Hanna Kwon
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Chinar Pathak
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Mahdi Hussain
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Samuel L. Freeman
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFUK
| | - Anna J. Bailey
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Natalia Stefanou
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Hazel A. Sparkes
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Keitaro Yamashita
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- Present address: MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB1 0QHUK
| | - Kunio Hirata
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Go Ueno
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hideo Ago
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | | | - Hitomi Sawai
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | - Yoshitsugu Shiro
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | | | - Emma L. Raven
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Peter C. E. Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| |
Collapse
|
4
|
Kwon H, Basran J, Pathak C, Hussain M, Freeman SL, Fielding AJ, Bailey AJ, Stefanou N, Sparkes HA, Tosha T, Yamashita K, Hirata K, Murakami H, Ueno G, Ago H, Tono K, Yamamoto M, Sawai H, Shiro Y, Sugimoto H, Raven EL, Moody PCE. XFEL Crystal Structures of Peroxidase Compound II. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:14699-14706. [PMID: 38505375 PMCID: PMC10947387 DOI: 10.1002/ange.202103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 03/21/2024]
Abstract
Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV=O or FeIV-OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV=O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Å and 1.50 Å crystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.
Collapse
Affiliation(s)
- Hanna Kwon
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Chinar Pathak
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Mahdi Hussain
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Samuel L. Freeman
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFUK
| | - Anna J. Bailey
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Natalia Stefanou
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Hazel A. Sparkes
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Keitaro Yamashita
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- Present address: MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB1 0QHUK
| | - Kunio Hirata
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Go Ueno
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hideo Ago
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | | | - Hitomi Sawai
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | - Yoshitsugu Shiro
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | | | - Emma L. Raven
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Peter C. E. Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| |
Collapse
|