1
|
Chang JJ, Du C, Jamadgni D, Pauls A, Martin A, Wei L, Ward T, Lu M, Thuo MM. Guided ad infinitum assembly of mixed-metal oxide arrays from a liquid metal. MATERIALS HORIZONS 2025; 12:770-778. [PMID: 39629605 DOI: 10.1039/d4mh01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bottom-up nano- to micro-fabrication is crucial in modern electronics and optics. Conventional multi-scale array fabrication techniques, however, are facing challenges in reconciling the contradiction between the pursuit of better device performance and lowering the fabrication cost and/or energy consumption. Here, we introduce a facile mixed-metal array fabrication method based on guided self-assembly of polymerizing organometallic adducts derived from the passivating oxides of a ternary liquid metal to create mixed metal wires. Driven by capillary action and evaporation-driven Marangoni convection, large-area, high-quality organometallic nano- to micro-wire arrays were fabricated. Calcination converts the organometallics into oxides (semiconductors) without compromising wire continuity or array periodicity. Exploiting capillary bridges on a preceding layer, hierarchical arrays were made. Similarly, exploiting the conformity of the liquid to the mold, arrays with complex geometries were made. Given the periodicity and high refractive index of these arrays, we observe guided mode resonance while their complex band structures enable fabrication of diodes or gates. This work demonstrates a simple, affordable approach to opto-electronics based on self-assembling arrays.
Collapse
Affiliation(s)
- Julia J Chang
- North Carolina State University, Department of Materials Science & Engineering, Raleigh, NC 27695, USA.
| | - Chuanshen Du
- Iowa State University, Department of Materials Science & Engineering, Ames, Iowa 50011, USA
| | - Dhanush Jamadgni
- North Carolina State University, Department of Materials Science & Engineering, Raleigh, NC 27695, USA.
| | - Alana Pauls
- North Carolina State University, Department of Materials Science & Engineering, Raleigh, NC 27695, USA.
| | - Andrew Martin
- North Carolina State University, Department of Materials Science & Engineering, Raleigh, NC 27695, USA.
| | - Le Wei
- Iowa State University, Department of Electrical and Computer Engineering, Ames, Iowa 50011, USA
| | - Thomas Ward
- Iowa State University, Department of Aerospace Engineering, Ames, Iowa 50011, USA
| | - Meng Lu
- Iowa State University, Department of Electrical and Computer Engineering, Ames, Iowa 50011, USA
| | - Martin M Thuo
- North Carolina State University, Department of Materials Science & Engineering, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Wang H, Yuan B, Zhu X, Shan X, Chen S, Ding W, Cao Y, Dong K, Zhang X, Guo R, Yao Y, Wang B, Tang J, Liu J. Multi-stimulus perception and visualization by an intelligent liquid metal-elastomer architecture. SCIENCE ADVANCES 2024; 10:eadp5215. [PMID: 38787948 PMCID: PMC11122678 DOI: 10.1126/sciadv.adp5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Multi-stimulus responsive soft materials with integrated functionalities are elementary blocks for building soft intelligent systems, but their rational design remains challenging. Here, we demonstrate an intelligent soft architecture sensitized by magnetized liquid metal droplets that are dispersed in a highly stretchable elastomer network. The supercooled liquid metal droplets serve as microscopic latent heat reservoirs, and their controllable solidification releases localized thermal energy/information flows for enabling programmable visualization and display. This allows the perception of a variety of information-encoded contact (mechanical pressing, stretching, and torsion) and noncontact (magnetic field) stimuli as well as the visualization of dynamic phase transition and stress evolution processes, via thermal and/or thermochromic imaging. The liquid metal-elastomer architecture offers a generic platform for designing soft intelligent sensing, display, and information encryption systems.
Collapse
Affiliation(s)
- Hongzhang Wang
- Institute of Materials Research, Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Bo Yuan
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Xiyu Zhu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaohui Shan
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Sen Chen
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wenbo Ding
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Yingjie Cao
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kaichen Dong
- Institute of Materials Research, Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Xudong Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Rui Guo
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuchen Yao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bo Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Jing Liu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
3
|
Castilla-Amorós L, Chien TCC, Pankhurst JR, Buonsanti R. Modulating the Reactivity of Liquid Ga Nanoparticle Inks by Modifying Their Surface Chemistry. J Am Chem Soc 2022; 144:1993-2001. [DOI: 10.1021/jacs.1c12880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Tzu-Chin Chang Chien
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James R. Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|