1
|
Long J, Wang T, Zhong H, Jiao M, Morandi B, He L, Cheng GJ, Fang X. One-Step Process for the Regiodivergent Double Hydrocyanation of 1,3-Butadiene. Angew Chem Int Ed Engl 2025; 64:e202422337. [PMID: 39714549 DOI: 10.1002/anie.202422337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
In industry, the two important nitrile starting materials, adiponitrile and 2-methylglutaronitrile, are primarily manufactured through the well-known DuPont process, which consists of a tandem sequence including first hydrocyanation, isomerization and second hydrocyanation. However, this mature process has the intrinsic defects of step efficiency and regioselectivity. Herein, we report a nickel-catalyzed divergent, one-step double hydrocyanation of 1,3-butadiene to produce either adiponitrile or 2-methylglutaronitrile in high regioselectivity. The key to this success lies in the highly tunable binding pockets of the bidentate phosphite ligands, which creates a geometrically defined coordination space around the nickel center. The first hydrocyanation that produces either the linear or branched alkenyl nitrile was identified as the selectivity-determining step. Organometallic studies confirm the formation of well-defined diphosphite nickel diene complexes in solution, and the role of ligands in dictating regioselectivity was further rationalized by DFT computations. This result provides the first example of a highly selective nickel-catalyzed synthesis of adiponitrile and 2-methylglutaronitrile from butadiene, and it also represents a high-level of catalyst-controlled regioselectivity via the fine-tuning of ligand pocket geometry.
Collapse
Affiliation(s)
- Jinguo Long
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Ting Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Hongyu Zhong
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Mingdong Jiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Lin He
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Xianjie Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| |
Collapse
|
2
|
Lokolkar MS, Jagtap PA, Bhanage BM. Pd-catalysed synthesis of oxomalonamides through adjacent triple carbonylation of tertiary amines. Chem Commun (Camb) 2024. [PMID: 38683119 DOI: 10.1039/d4cc00643g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The monocarbonylation and dicarbonylation reactions are well-established reactions in carbonylation chemistry. This work reports unusual oxidative adjacent triple carbonylation of the tertiary amine towards oxomalonamide synthesis using a Pd catalyst. The protocol involves the use of inert tertiary amines as an active reservoir of secondary amines through sp3 C-N bond activation using O2 as an ideal oxidant.
Collapse
Affiliation(s)
- Manjunath S Lokolkar
- Department of Chemistry, Institute of Chemical Technology, Mumbai-400019, India.
| | - Prafull A Jagtap
- Department of Chemistry, Institute of Chemical Technology, Mumbai-400019, India.
| | | |
Collapse
|
3
|
Yang J, Delolo FG, Spannenberg A, Jackstell R, Beller M. A Selective and General Cobalt‐Catalyzed Hydroaminomethylation of Olefins to Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Fábio G. Delolo
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Departamento de Química Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 31270-901 Belo Horizonte MG Brazil
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
4
|
Yang J, Delolo FG, Spannenberg A, Jackstell R, Beller M. A Selective and General Cobalt-Catalyzed Hydroaminomethylation of Olefins to Amines. Angew Chem Int Ed Engl 2021; 61:e202112597. [PMID: 34738697 PMCID: PMC9299624 DOI: 10.1002/anie.202112597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/10/2022]
Abstract
A new cobalt catalyst is presented for the domino hydroformylation-reductive amination reaction of olefins. The optimal Co-tert-BuPy-Xantphos catalyst shows good to excellent linear-to-branched (n/iso) regioselectivity for the reactions of aliphatic alkenes with aromatic amines under mild conditions. This system is far more selective than traditional cobalt(I) catalysts and even better than most known rhodium catalysts.
Collapse
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Fábio G Delolo
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|