1
|
Wang H, Zhang X, Zhang W, Zhou M, Jiang HL. Heteroatom-Doped Ag 25 Nanoclusters Encapsulated in Metal-Organic Frameworks for Photocatalytic Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202401443. [PMID: 38407530 DOI: 10.1002/anie.202401443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Atomically precise metal nanoclusters (NCs) with unique optical properties and abundant catalytic sites are promising in photocatalysis. However, their light-induced instability and the difficulty of utilizing the photogenerated carriers for photocatalysis pose significant challenges. Here, MAg24 (M=Ag, Pd, Pt, and Au) NCs doped with diverse single heteroatoms have been encapsulated in a metal-organic framework (MOF), UiO-66-NH2, affording MAg24@UiO-66-NH2. Strikingly, compared with Ag25@UiO-66-NH2, the MAg24@UiO-66-NH2 doped with heteroatom exhibits much enhanced activity in photocatalytic hydrogen production, among which AuAg24@UiO-66-NH2 presents the best activity up to 3.6 mmol g-1 h-1, far superior to all other counterparts. Moreover, they display excellent photocatalytic recyclability and stability. X-ray photoelectron spectroscopy and ultrafast transient absorption spectroscopy demonstrate that MAg24 NCs encapsulated into the MOF create a favorable charge transfer pathway, similar to a Z-scheme heterojunction, when exposed to visible light. This promotes charge separation, along with optimized Ag electronic state, which are responsible for the superior activity in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiyuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Fang Z, Yue X, Li F, Xiang Q. Functionalized MOF-Based Photocatalysts for CO 2 Reduction. Chemistry 2023; 29:e202203706. [PMID: 36606747 DOI: 10.1002/chem.202203706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Metal-organic frameworks (MOFs) materials have become a research forefront in the field of photocatalytic CO2 reduction attributed to their ultra-high specific surface area, adjustable structure, and abundant catalytic active sites. Particularly, MOFs can be facilely tuned to match CO2 photoreduction by utilizing post-modification of metal nodes, functionalization of organic linkers, and combination with other active materials. Herein, the recent advances in the construction strategy of MOF-based photocatalysts materials for CO2 reduction are highlighted. Some systematic modification strategies on MOF-based photocatalysts are also discussed, such as modification of metal sites and organic ligands, construction of heterojunction, introduction of single/dual-atom, and strain engineering. Finally, the future development directions of MOF-based photocatalysts in the field of CO2 reduction are presented.
Collapse
Affiliation(s)
- Zhaohui Fang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaoyang Yue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fang Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
3
|
Zhou Z, Liu X, Ma JG, Cheng P. MOF-Incorporated Binuclear N-Heterocyclic Carbene-Cobalt Catalyst for Efficient Conversion of CO 2 to Formamides. CHEMSUSCHEM 2022; 15:e202201386. [PMID: 35959848 DOI: 10.1002/cssc.202201386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Environmental problem caused by carbon emission is of widespread concern. Involving CO2 as C1 resource into chemical synthesis is one of the most attractive ways for carbon recycling. Herein, the first example of host-guest composites featuring metal-organic framework (MOF)-encapsulated binuclear N-heterocyclic carbene (NHC) complex, Co2 @MIL101, was developed with the molecularly dispersed [Co(IPr)Br]2 (μ-Br)2 (Co2 ) loading in the cage of MIL-101(Cr) via a "ligand-in-dimer-trap" strategy, which was comprehensively investigated through various techniques including synchrotron X-ray absorption, electron microscopy, X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and others. The noble-metal-free double-sites catalyst Co2 @MIL101 exhibited promising stability, activity, efficiency, reusability, and substrate adaptability for converting CO2 into various formamides with amines and hydrosilanes and achieved the best performance for one of the most useful formamides, N-methyl-N-phenylformamide (MFA), among the recyclable catalysts at ambient conditions, providing a reliable approach to successfully unify the advantages of both homo- and heterogeneous catalysts. Density functional theory calculations were applied to illustrate the superior activity of the binuclear NHC complex center as double-sites catalyst toward the activation of CO2 .
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiao Liu
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Chen S, Li W, Jiang W, Yang J, Zhu J, Wang L, Ou H, Zhuang Z, Chen M, Sun X, Wang D, Li Y. MOF Encapsulating N‐Heterocyclic Carbene‐Ligated Copper Single‐Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shenghua Chen
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wen‐Hao Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology China Academy of Space Technology Beijing 100094 P. R. China
| | - Jiarui Yang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials School of Material Science and Engineering Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Honghui Ou
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Zechao Zhuang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 P. R. China
| | - Xiaohui Sun
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
5
|
Chen S, Li WH, Jiang W, Yang J, Zhu J, Wang L, Ou H, Zhuang Z, Chen M, Sun X, Wang D, Li Y. MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew Chem Int Ed Engl 2021; 61:e202114450. [PMID: 34767294 DOI: 10.1002/anie.202114450] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/26/2022]
Abstract
The exploitation of highly efficient carbon dioxide reduction (CO2 RR) electrocatalyst for methane (CH4 ) electrosynthesis has attracted great attention for the intermittent renewable electricity storage but remains challenging. Here, N-heterocyclic carbene (NHC)-ligated copper single atom site (Cu SAS) embedded in metal-organic framework is reported (2Bn-Cu@UiO-67), which can achieve an outstanding Faradaic efficiency (FE) of 81 % for the CO2 reduction to CH4 at -1.5 V vs. RHE with a current density of 420 mA cm-2 . The CH4 FE of our catalyst remains above 70 % within a wide potential range and achieves an unprecedented turnover frequency (TOF) of 16.3 s-1 . The σ donation of NHC enriches the surface electron density of Cu SAS and promotes the preferential adsorption of CHO* intermediates. The porosity of the catalyst facilitates the diffusion of CO2 to 2Bn-Cu, significantly increasing the availability of each catalytic center.
Collapse
Affiliation(s)
- Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiaohui Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|