1
|
Zhang Q, Huang Y, Dai Z, Li Y, Li Z, Lai R, Wei F, Shao F. Covalent Organic Framework Membranes: Synthesis Strategies and Separation Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27605-27628. [PMID: 40305289 DOI: 10.1021/acsami.5c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Covalent organic frameworks (COFs) have emerged as highly promising materials for membrane separations due to their high porosity, tunable pore sizes, ordered crystalline structures, and exceptional chemical stability. With these features, COF membranes possess greater selectivity and permeability than conventional materials, making them the preferred choice in various fields, including membrane separations. Fascinating research endeavors have emerged encompassing fabrication strategies for COF-based membranes and their diverse separation applications. Hence, this review summarizes the latest advancements in COF synthesis, including COF powders and continuous COF-based membranes and their applications in separation membranes. Special consideration was given to regulation strategies for the performance optimization of COF membranes in separation applications, such as pore size, hydrophilicity/hydrophobicity, surface charge, crystallinity, and stability. Furthermore, applications of COF membranes in water treatment, metal ion separation, organic solvent nanofiltration, and gas separation are comprehensively reviewed. Finally, the research results and future prospects for the development of COF membranes are discussed. Future research may be focused on the following key directions: (1) single-crystal COF fabrication, (2) cost-effective membrane preparation, (3) subnanometer pore engineering, (4) advanced characterization techniques, and (5) AI-assisted development.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | - Yu Huang
- Suzhou Laboratory, Suzhou 215100, China
| | - Zhendong Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | - Youqi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | | | | | - Facai Wei
- Suzhou Laboratory, Suzhou 215100, China
| | - Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| |
Collapse
|
2
|
Ji Y, Li H, Dong J, Lin J, Lin Z. Super-hydrophilic sulfonate-modified covalent organic framework nanosheets for efficient separation and enrichment of glycopeptides. J Chromatogr A 2023; 1699:464020. [PMID: 37104947 DOI: 10.1016/j.chroma.2023.464020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Highly efficient extraction of glycopeptides prior to mass spectrometry detection is extremely crucial for glycoproteomic research, especially in disease biomarker research. Reported here is the first time by applying two-dimensional (2D) covalent organic framework (COFs) nanosheets for highly efficient enrichment of glycopeptides. Particularly, by incorporating hydrophilic monomers through a bottom-up strategy, the 2D COF nanosheets (denoted as NUS-9) displayed an ultra-high graft density of sulfonic groups and super-hydrophilicity. In addition, because of the large surface area, low steric hindrance, high chemical stability, and abundant accessibility sites of 2D COF nanosheets, NUS-9 exhibited remarkable efficiency for glycopeptide enrichment, involving excellent detection sensitivity (0.01 fmol μL-1), outstanding enrichment capability, and good enrichment selectivity (1:1500, horseradish peroxidase (HRP) tryptic digest to bovine serum albumin (BSA) tryptic digest), and recovery (92.2 ± 2.0%). Moreover, the NUS-9 was able to unambiguously detect 631 endogenous glycopeptides from human saliva, demonstrating an unparalleled high efficiency in glycopeptide enrichment. Gene ontology analyses of proteins from human saliva enriched by NUS-9 demonstrated its potential for comprehensive glycoproteome analysis.
Collapse
Affiliation(s)
- Yin Ji
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jinghan Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jiashi Lin
- College of Physical Education, Jimei University, Xiamen, Fujian, 361021, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
3
|
Huang T, Jiang H, Douglin JC, Chen Y, Yin S, Zhang J, Deng X, Wu H, Yin Y, Dekel DR, Guiver MD, Jiang Z. Single Solution-Phase Synthesis of Charged Covalent Organic Framework Nanosheets with High Volume Yield. Angew Chem Int Ed Engl 2023; 62:e202209306. [PMID: 36395246 DOI: 10.1002/anie.202209306] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Covalent organic framework nanosheets (COF-NSs) are emerging building blocks for functional materials, and their scalable fabrication is highly desirable. Current synthetic methods suffer from low volume yields resulting from confined on-surface/at-interface growth space and complex multiple-phase synthesis systems. Herein, we report the synthesis of charged COF-NSs in open space using a single-phase organic solution system, achieving magnitudes higher volume yields of up to 18.7 mg mL-1 . Charge-induced electrostatic repulsion forces enable in-plane anisotropic secondary growth from initial discrete and disordered polymers into large and crystalline COF-NSs. The charged COF-NS colloidal suspensions are cast into thin and compact proton exchange membranes (PEMs) with lamellar morphology and oriented crystallinity, displaying outstanding proton conductivity, negligible dimensional swelling, and good H2 /O2 fuel cell performance.
Collapse
Affiliation(s)
- Tong Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - John C Douglin
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yu Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuoyao Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Junfeng Zhang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Xiaojuan Deng
- Analysis and Testing Center, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yan Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel.,The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion, Israel Institute of Technology, Haifa, 3200003, Israel
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Guo Z, Wu H, Chen Y, Zhu S, Jiang H, Song S, Ren Y, Wang Y, Liang X, He G, Li Y, Jiang Z. Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO
2
Separation. Angew Chem Int Ed Engl 2022; 61:e202210466. [DOI: 10.1002/anie.202210466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zheyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 China
| | - Yu Chen
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- School of Environmental Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shiyi Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Shuqing Song
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Yuhan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yonghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Chemistry and Chemical Engineering Guangdong Laboratory School of Chemical Engineering and Technology Tianjin University Shantou 515031 China
| |
Collapse
|
5
|
Li C, Guggenberger P, Han SW, Ding WL, Kleitz F. Ultrathin Covalent Organic Framework Anchored on Graphene for Enhanced Organic Pollutant Removal. Angew Chem Int Ed Engl 2022; 61:e202206564. [PMID: 35639272 PMCID: PMC9541632 DOI: 10.1002/anie.202206564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 12/16/2022]
Abstract
Covalent organic frameworks (COFs) are of great potential as adsorbents owing to their tailorable functionalities, low density and high porosity. However, their intrinsically stacked two‐dimensional (2D) structure limits the full use of their complete surface for sorption, especially the internal pores. The construction of ultrathin COFs could increase the exposure of active sites to the targeted molecules in a pollutant environment. Herein, an ultrathin COF with a uniform thickness of ca. 2 nm is prepared employing graphene as the surface template. The resulting hybrid aerogel with an ultralow density (7.1 mg cm−3) exhibits the ability to remove organic dye molecules of different sizes with high efficiency. The three‐dimensional (3D) macroporous structure and well‐exposed adsorption sites permit rapid diffusion of solution and efficient adsorption of organic pollutants, thereby, greatly contributing to its enhanced uptake capacity. This work highlights the effect of COF layer thickness on adsorption performance.
Collapse
Affiliation(s)
- Changxia Li
- Department of Inorganic Chemistry-Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Patrick Guggenberger
- Department of Inorganic Chemistry-Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Seung Won Han
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| | - Wei-Lu Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Freddy Kleitz
- Department of Inorganic Chemistry-Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| |
Collapse
|
6
|
Guo Z, Wu H, Chen Y, Zhu S, Jiang H, Song S, Ren Y, Wang Y, Liang X, He G, Li Y, Jiang Z. Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zheyuan Guo
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Hong Wu
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yu Chen
- Tianjin University School of Environmental Science and Engineering CHINA
| | - Shiyi Zhu
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Haifei Jiang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Shuqing Song
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yanxiong Ren
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yuhan Wang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Xu Liang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Guangwei He
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yonghong Li
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Zhongyi Jiang
- Tianjin University School of Chemical Engineering and Technology Weijin Road 300072 Tianjin CHINA
| |
Collapse
|
7
|
Li C, Guggenberger P, Han SW, Ding WL, Kleitz F. Ultrathin Covalent Organic Framework Anchored on Graphene For Enhanced Organic Pollutant Removal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Changxia Li
- University of Vienna: Universitat Wien Department of Inorganic Chemistry - Functional Materials 1090 Vienna AUSTRIA
| | - Patrick Guggenberger
- University of Vienna: Universitat Wien Department of Inorganic Chemistry - Functional Materials 1090 Vienna AUSTRIA
| | - Seung Won Han
- IBS: Institute for Basic Science Center for Nanomaterials and Chemical Reactions Daejeon KOREA, REPUBLIC OF
| | - Wei-Lu Ding
- Chinese Academy of Sciences Institute of Process Engineering Beijing CHINA
| | - Freddy Kleitz
- University of Vienna Institute of Inorganic Chemistry – Functional Materials Währinger Straße 42 1090 Vienna AUSTRIA
| |
Collapse
|