1
|
Atxabal U, Fernández A, Moure MJ, Sobczak K, Nycholat C, Almeida-Marrero V, Oyenarte I, Paulson JC, de la Escosura A, Torres T, Reichardt NC, Jiménez-Barbero J, Ereño-Orbea J. Quantifying Siglec-sialylated ligand interactions: a versatile 19F-T 2 CPMG filtered competitive NMR displacement assay. Chem Sci 2024; 15:10612-10624. [PMID: 38994400 PMCID: PMC11234860 DOI: 10.1039/d4sc01723d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are integral cell surface proteins crucial for the regulation of immune responses and the maintenance of immune tolerance through interactions with sialic acids. Siglecs recognize sialic acid moieties, usually found at the end of N-glycan and O-glycan chains. However, the different Siglecs prefer diverse presentations of the recognized sialic acid, depending on the type of glycosidic linkage used to link to the contiguous Gal/GalNAc or sialic acid moieties. This fact, together with possible O- or N-substitutions at the recognized glycan epitope significantly influences their roles in various immune-related processes. Understanding the molecular details of Siglec-sialoglycan interactions is essential for unraveling their specificities and for the development of new molecules targeting these receptors. While traditional biophysical methods like isothermal titration calorimetry (ITC) have been utilized to measure binding between lectins and glycans, contemporary techniques such as surface plasmon resonance (SPR), microscale thermophoresis (MST), and biolayer interferometry (BLI) offer improved throughput. However, these methodologies require chemical modification and immobilization of at least one binding partner, which can interfere the recognition between the lectin and the ligand. Since Siglecs display a large range of dissociation constants, depending on the (bio)chemical nature of the interacting partner, a general and robust method that could monitor and quantify binding would be highly welcomed. Herein, we propose the application of an NMR-based a competitive displacement assay, grounded on 19F T2-relaxation NMR and on the design, synthesis, and use of a strategic spy molecule, to assess and quantify sialoside ligand binding to Siglecs. We show that the use of this specific approach allows the quantification of Siglec binding for natural and modified sialosides, multivalent sialosides, and sialylated glycoproteins in solution, which differ in binding affinities in more than two orders of magnitude, thus providing invaluable insights into sialoglycan-mediated interactions.
Collapse
Affiliation(s)
- Unai Atxabal
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Andrea Fernández
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Glycotechnology Laboratory, CIC biomaGUNE Paseo Miramon 194 San Sebastian 20014 Spain
| | - Maria Jesús Moure
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Klaudia Sobczak
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Corwin Nycholat
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Verónica Almeida-Marrero
- Department of Organic Chemistry, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Iker Oyenarte
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - James C Paulson
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia C/Faraday 9 28049 Madrid Spain
| | - Niels C Reichardt
- Glycotechnology Laboratory, CIC biomaGUNE Paseo Miramon 194 San Sebastian 20014 Spain
- CIBER-BBN Paseo Miramon 194 San Sebastian 20014 Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV 48940 Leioa Bizkaia Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias 28029 Madrid Spain
| | - June Ereño-Orbea
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
2
|
Selivanovitch E, Ostwalt A, Chao Z, Daniel S. Emerging Designs and Applications for Biomembrane Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:339-366. [PMID: 39018354 PMCID: PMC11913122 DOI: 10.1146/annurev-anchem-061622-042618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nature has inspired the development of biomimetic membrane sensors in which the functionalities of biological molecules, such as proteins and lipids, are harnessed for sensing applications. This review provides an overview of the recent developments for biomembrane sensors compatible with either bulk or planar sensing applications, namely using lipid vesicles or supported lipid bilayers, respectively. We first describe the individual components required for these sensing platforms and the design principles that are considered when constructing them, and we segue into recent applications being implemented across multiple fields. Our goal for this review is to illustrate the versatility of nature's biomembrane toolbox and simultaneously highlight how biosensor platforms can be enhanced by harnessing it.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Alexis Ostwalt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
3
|
Sut TN, Park H, Koo DJ, Yoon BK, Jackman JA. Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization. SENSORS 2022; 22:s22145185. [PMID: 35890865 PMCID: PMC9316181 DOI: 10.3390/s22145185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
The exceptional strength and stability of noncovalent avidin-biotin binding is widely utilized as an effective bioconjugation strategy in various biosensing applications, and neutravidin and streptavidin proteins are two commonly used avidin analogues. It is often regarded that the biotin-binding abilities of neutravidin and streptavidin are similar, and hence their use is interchangeable; however, a deeper examination of how these two proteins attach to sensor surfaces is needed to develop reliable surface functionalization options. Herein, we conducted quartz crystal microbalance-dissipation (QCM-D) biosensing experiments to investigate neutravidin and streptavidin binding to biotinylated supported lipid bilayers (SLBs) in different pH conditions. While streptavidin binding to biotinylated lipid receptors was stable and robust across the tested pH conditions, neutravidin binding strongly depended on the solution pH and was greater with increasingly acidic pH conditions. These findings led us to propose a two-step mechanistic model, whereby streptavidin and neutravidin binding to biotinylated sensing interfaces first involves nonspecific protein adsorption that is mainly influenced by electrostatic interactions, followed by structural rearrangement of adsorbed proteins to specifically bind to biotin functional groups. Practically, our findings demonstrate that streptavidin is preferable to neutravidin for constructing SLB-based sensing platforms and can improve sensing performance for detecting antibody–antigen interactions.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Hyeonjin Park
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
- Correspondence: (B.K.Y.); (J.A.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
- Correspondence: (B.K.Y.); (J.A.J.)
| |
Collapse
|