1
|
Procházka P, Frezza F, Sánchez‐Grande A, Carrera M, Chen Q, Stará V, Kurowská A, Curiel D, Jelínek P, Čechal J. Monitoring On-Surface Chemical Reactions by Low-Energy Electron Microscopy: from Conformation Change to Ring Closure in 2D Molecular Gas. Chemistry 2025; 31:e202500561. [PMID: 39950395 PMCID: PMC11973855 DOI: 10.1002/chem.202500561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
On-surface synthesis is a promising strategy for the preparation of molecules that are not achievable otherwise. Understanding the mechanism of on-surface reactions requires knowledge of the molecular structure and possible organization of reactants into supramolecular assemblies during the reaction. Scanning probe techniques are essential for the unambiguous identification of the products and for determining their electronic and magnetic properties. However, these are generally not capable of imaging the surface at reaction conditions and, therefore, answering some of the key questions about the reaction mechanism. Here, we show that real-time low-energy electron microscopy (LEEM) can monitor the surface processes in real time and provide the necessary complementary mechanistic insights into on-surface reactions. We monitor the intramolecular ring-closure reaction of 1,3,5-tris(7-methyl-α-carbolin-6-yl)benzene on the Au(111) surface and show that it takes place in the 2D molecular gas phase at elevated temperatures. Products condense into separate islands upon cooling, enabling fast and efficient assessment of product yields. This makes LEEM an efficient tool for studying intramolecular chemical reactions.
Collapse
Affiliation(s)
- Pavel Procházka
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyPurkyňova 123612 00BrnoCzech Republic
| | - Federico Frezza
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200PragueCzech Republic
- Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PragueBřehová 78/711519Prague 1Czech Republic
| | - Ana Sánchez‐Grande
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200PragueCzech Republic
| | - Manuel Carrera
- Department of Organic ChemistryUniversity of MurciaCampus of Espinardo Murcia-30100Spain
| | - Qifan Chen
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200PragueCzech Republic
| | - Veronika Stará
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyPurkyňova 123612 00BrnoCzech Republic
| | - Anna Kurowská
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyPurkyňova 123612 00BrnoCzech Republic
| | - David Curiel
- Department of Organic ChemistryUniversity of MurciaCampus of Espinardo Murcia-30100Spain
| | - Pavel Jelínek
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200PragueCzech Republic
| | - Jan Čechal
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyPurkyňova 123612 00BrnoCzech Republic
- Institute of Physical EngineeringBrno University of TechnologyTechnická 2896/2616 69BrnoCzech Republic
| |
Collapse
|
2
|
Urdaniz C, Taherpour S, Yu J, Reina-Galvez J, Wolf C. Transition-Metal Phthalocyanines as Versatile Building Blocks for Molecular Qubits on Surfaces. J Phys Chem A 2025; 129:2173-2181. [PMID: 39979121 DOI: 10.1021/acs.jpca.4c07627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The search for molecular or colloidal building units capable of autonomously organized configurations has been a long-standing endeavor that has resulted in the development of innovative material categories, such as metal-organic and covalent organic or long-range molecular networks. In particular, the possibility of using molecules on surfaces to create specific architectures, for example, those containing nanostructures of S = 1/2 molecular spin, can enable versatile quantum materials and the exploration of future quantum devices. Transition-metal phthalocyanines are particularly attractive candidates as they are stable molecules that can host spin-bearing transition-metal ions in a planar conjugated ring. Here, we use density functional theory calculations to systematically study electronic and magnetic properties and hyperfine parameters for the whole series of 3d transition-metal atoms. We perform transport simulations of selected qubit candidates to further elucidate their suitability for molecular spin qubits on a surface.
Collapse
Affiliation(s)
- Corina Urdaniz
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Saba Taherpour
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Jisoo Yu
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Jose Reina-Galvez
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
3
|
Machida Y, Katsu A, De Feyter S, Tahara K. Regulating Rotational Dynamics of Co-Adsorbed Guest Molecules via Halogen Bonds in Functionalized Pores of Self-Assembled Molecular Networks at the Liquid-Solid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410652. [PMID: 39937130 PMCID: PMC11899523 DOI: 10.1002/smll.202410652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Understanding and controlling molecular rotation on surfaces is crucial for the development of molecular-scale artificial motors that operate at interfaces. Herein, it is reported the successful co-adsorption of guest molecules within the functionalized 2D pores of self-assembled molecular networks (SAMNs) through directional halogen bonding, as confirmed by scanning tunneling microscopy. Specifically, the porous SAMN formed by dehydrobenzo[12]annulene derivative DBA-Py with a pyridyl group at the termini of its three alkoxy chains, hosts an iodinated trigonal guest molecule, tris(4-iodophenyl)benzene (TIB), through a halogen bond between the nitrogen and iodine atoms. Within the pores, the TIB molecule exhibits rotational motion, preferentially residing at two locations. In contrast, within the pores formed by a mixture of DBA-Py and DBA-Ph, where DBA-Ph features three phenyl groups instead of pyridyl groups, the guest molecule preferentially resides in a single location. This behavior is attributed to the reduced number of energy minima within the pores owing to the decreased number of pyridyl units. Statistical analysis of the guest orientation suggests that the on-surface arrangement of DBA-Py and DBA-Ph is influenced by the guest molecule. This modular approach using functionalized pores in SAMNs provides an effective strategy for controlling molecular rotational behavior.
Collapse
Affiliation(s)
- Yoshihito Machida
- Department of Applied ChemistrySchool of Science and TechnologyMeiji University1‐1‐1 Higashimita, Tama‐kuKawasakiKanagawa214–8571Japan
| | - Akitoshi Katsu
- Department of Applied ChemistrySchool of Science and TechnologyMeiji University1‐1‐1 Higashimita, Tama‐kuKawasakiKanagawa214–8571Japan
| | - Steven De Feyter
- Division of Molecular Imaging and PhotonicsDepartment of ChemistryKU Leuven, Celestijnenlaan 200 FLeuven3001Belgium
- KU Leuven Institute for Micro- and Nanoscale IntegrationKU LeuvenLeuven3001Belgium
| | - Kazukuni Tahara
- Department of Applied ChemistrySchool of Science and TechnologyMeiji University1‐1‐1 Higashimita, Tama‐kuKawasakiKanagawa214–8571Japan
| |
Collapse
|
4
|
Zhao C, Wang Y, Jiang Y, Wu N, Wang H, Li T, Ouyang G, Liu M. Handedness-Inverted and Stimuli-Responsive Circularly Polarized Luminescent Nano/Micromaterials Through Pathway-Dependent Chiral Supramolecular Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403329. [PMID: 38625749 DOI: 10.1002/adma.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/18/2024]
Abstract
The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, this work reports that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which shows opposite and multistimuli responsive CPL signals. Specifically, NIHis display assembly-induced CPL from the polymorphic keto tautomer, which become predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals can be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical stimuli including grinding, acid fuming, and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol is developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering.
Collapse
Affiliation(s)
- Chenyang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ningning Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
5
|
Maeda M, De Feyter S, Tahara K. Chiral Solvent-Induced Homochiral Hierarchical Molecular Assemblies at the Liquid/Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15071-15079. [PMID: 38982679 DOI: 10.1021/acs.langmuir.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We herein investigate the formation of homochiral hierarchical self-assembled molecular networks (SAMNs) via chirality induction by the coadsorption of a chiral solvent at the liquid/graphite interface by means of scanning tunneling microscopy (STM). In a mixture of achiral solvents, 1-hexanoic acid, and 1,2,4-trichlorobenzene, an achiral dehydrobenzo[12]annulene (DBA) derivative with three alkoxy and three hydroxy groups in an alternating manner forms chiral hierarchical triangular cluster structures through dynamic self-sorting. Enantiomorphous domains appear in equal probability. On the other hand, in chiral 2-methyl-1-hexanoic acid as a solvent, this molecule produces (i) homochiral small triangular clusters at a low solute concentration, (ii) a chirality-biased hierarchical structure consisting of triangular cluster structures with different cluster sizes at a medium concentration, and (iii) a dense structure with no chirality bias at a high concentration. We attribute the concentration-dependent degree of the chirality transmission to the number of coadsorbed solvent molecules in the SAMNs and to the difference in nucleus structure and size in the initial stage of the SAMN formation.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, Leuven 3001, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
6
|
Joseph J, Raya J, Palmino F, Jeannoutot J, Berville M, Weiss J, Chérioux F, Wytko JA. Self-assembled viologens on HOPG: solid-state NMR and AFM unravel the location of the anions. NANOSCALE 2024; 16:13089-13095. [PMID: 38904940 DOI: 10.1039/d4nr00894d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The controlled growth of self-assembled networks on surfaces based on viologen salts is a major scientific challenge due to their unique electronic properties. The combination of solid-state NMR spectroscopy and atomic force microscopy at ambient conditions can unravel the fine organization of the supramolecular network on a graphitic surface by positioning the counter-ions relative to the viologen cation.
Collapse
Affiliation(s)
- Jean Joseph
- Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France.
| | - Jésus Raya
- Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France.
| | - Frank Palmino
- Université Franche-Comté, CNRS, FEMTO-ST, 25000 Besançon, France.
| | | | - Mathilde Berville
- Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France.
| | - Jean Weiss
- Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France.
| | | | - Jennifer A Wytko
- Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France.
| |
Collapse
|
7
|
Yurtsever A, Hirata K, Kojima R, Miyazawa K, Miyata K, Kesornsit S, Zareie H, Sun L, Maeda K, Sarikaya M, Fukuma T. Dynamics of Molecular Self-Assembly of Short Peptides at Liquid-Solid Interfaces - Effect of Charged Amino Acid Point Mutations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400653. [PMID: 38385848 DOI: 10.1002/smll.202400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Self-organizing solid-binding peptides on atomically flat solid surfaces offer a unique bio/nano hybrid platform, useful for understanding the basic nature of biology/solid coupling and their practical applications. The surface behavior of peptides is determined by their molecular folding, which is influenced by various factors and is challenging to study. Here, the effect of charged amino acids is studied on the self-assembly behavior of a directed evolution selected graphite-binding dodecapeptide on graphite surface. Two mutations, M6 and M8, are designed to introduce negatively and positively charged moieties, respectively, at the anchoring domain of the wild-type (WT) peptide, affecting both binding and assembly. The questions addressed here are whether mutant peptides exhibit molecular crystal formation and demonstrate molecular recognition on the solid surface based on the specific mutations. Frequency-modulated atomic force microscopy is used for observations of the surface processes dynamically in water at molecular resolution over several hours at the ambient. The results indicate that while the mutants display distinct folding and surface behavior, each homogeneously nucleates and forms 2D self-organized patterns, akin to the WT peptide. However, their growth dynamics, domain formation, and crystalline lattice structures differ significantly. The results represent a significant step toward the rational design of bio/solid interfaces, potent facilitators of a variety of future implementations.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kaito Hirata
- Institute for Frontier Science and Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ryohei Kojima
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuki Miyata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Sanhanut Kesornsit
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hadi Zareie
- Dentomimetix, Inc., Fluke Hall, University of Washington, Seattle, WA, 98195, USA
| | - Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuhiro Maeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Mehmet Sarikaya
- Dentomimetix, Inc., Fluke Hall, University of Washington, Seattle, WA, 98195, USA
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
8
|
Honda K, Tahara K. Heptagonal Molecular Tiling via Self-Assembly of Heptagonal Phenylene-Ethynylene Macrocycle at the Liquid-Solid Interface. Chemistry 2024; 30:e202400926. [PMID: 38567873 DOI: 10.1002/chem.202400926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 05/01/2024]
Abstract
The molecular-level scrutinization of on-surface tiling garners considerable interest among scientists. Herein, we demonstrate molecular-level heptagonal tiling using the self-assembly of a heptagonal meta-phenylene-ethynylene macrocycle featuring 14 long alkoxy substituents at the liquid-graphite interface using scanning tunneling microscopy. This heptagonal macrocycle produces an antiparallel pattern at the 1-phenyloctane-graphite interface through van der Waals interactions between the alkoxy chains. This pattern resembles the densely packed pattern of heptagonal tiles, albeit with variations in the orientations and spacing of heptagonal cores owing to intermolecular interactions between the alkoxy chains. Conversely, at the 1,2,4-trichlorobenzene-graphite interface, the heptagonal molecule forms an oblique pattern composed of four independent molecular orientations. This phenomenon arises from core distortion induced by the coadsorption of the solvent molecules within the intrinsic macrocyclic pores. This study elucidates the design strategy - specifically, the choice of heptagonal molecular building block - for heptagonal tiling and fills a crucial gap in the field of two-dimensional crystal engineering.
Collapse
Affiliation(s)
- Kento Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
9
|
Pan WC, Mützel C, Haldar S, Hohmann H, Heinze S, Farrell JM, Thomale R, Bode M, Würthner F, Qi J. Diboraperylene Diborinic Acid Self-Assembly on Ag(111)-Kagome Flat Band Localized States Imaged by Scanning Tunneling Microscopy and Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202400313. [PMID: 38316614 DOI: 10.1002/anie.202400313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Replacement of sp2-hybridized carbon in polycyclic aromatic hydrocarbons (PAHs) by boron affords electron-deficient π-scaffolds due to the vacant pz-orbital of three-coordinate boron with the potential for pronounced electronic interactions with electron-rich metal surfaces. Using a diboraperylene diborinic acid derivative as precursor and a controlled on-surface non-covalent synthesis approach, we report on a self-assembled chiral supramolecular kagome network on an Ag(111) surface stabilized by intermolecular hydrogen-bonding interactions at low temperature. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a flat band at ca. 0.33 eV above the Fermi level which is localized at the molecule center, in good agreement with tight-binding model calculations of flat bands characteristic for kagome lattices.
Collapse
Affiliation(s)
- Wun-Chang Pan
- Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Carina Mützel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Soumyajyoti Haldar
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
| | - Hendrik Hohmann
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stefan Heinze
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
| | - Jeffrey M Farrell
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Department of Chemistry, National Taiwan University, Roosevelt Road, 10617, Taipei, Taiwan
| | - Ronny Thomale
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Bode
- Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Jing Qi
- Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
10
|
Kimura S, Hattori T, Ye C, Okada M, Kondo S, Sakurama Y, Saito A, Krukowski P, Osuga H, Kuwahara Y. STM/TERS observation of ( M)-type diphenyl[7]thiaheterohelicene on Ag(111). Phys Chem Chem Phys 2024; 26:7658-7663. [PMID: 38369923 DOI: 10.1039/d3cp05813a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The chiral recognition of a self-assembled structure of enantiopure (M)-type 2,13-diphenyl[7]thiaheterohelicene ((M)-Ph-[7]TH) was investigated on a Ag(111) substrate by scanning tunnelling microscopy (STM) and tip-enhanced Raman spectroscopy (TERS). In contrast to previous research of thiaheterohelicene and its derivatives showing zigzag row formation on the Ag(111) substrate, the hexagonal ordered structure was observed by STM. The obtained TERS spectra of (M)-Ph-[7]TH were consistent with the Raman spectra calculated on the basis of density functional theory (DFT), which suggests that (M)-Ph-[7]TH was adsorbed on the substrate without decomposition. The sample bias voltage dependence of STM images combined with the calculated molecular orbitals of (M)-Ph-[7]TH indicates that a phenyl ring was observed as a protrusion at +3.0 V, whereas the helicene backbone was observed at +0.5 V. From these results, a possible model of the hexagonal structure was proposed. Owing to the phenyl ring, the van der Waals interaction between (M)-Ph-[7]TH and the substrate becomes strong. This leads to the formation of the hexagonal structure with the same symmetry as the substrate.
Collapse
Affiliation(s)
- Sho Kimura
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 5650871, Japan.
| | - Takuma Hattori
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 5650871, Japan.
| | - Changqing Ye
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 5650871, Japan.
| | - Masaki Okada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 5650871, Japan.
| | - Satoshi Kondo
- Faculty of Systems Engineering, Wakayama University, Wakayama 6408510, Japan
| | - Yui Sakurama
- Faculty of Systems Engineering, Wakayama University, Wakayama 6408510, Japan
| | - Akira Saito
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 5650871, Japan.
| | - Pawel Krukowski
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, 90-236 Lodz, Poland
| | - Hideji Osuga
- Faculty of Systems Engineering, Wakayama University, Wakayama 6408510, Japan
| | - Yuji Kuwahara
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 5650871, Japan.
| |
Collapse
|
11
|
Stähler C, Reynaerts R, Rinkovec T, Verstraete L, Heideman GH, Minoia A, Harvey JN, Mali KS, De Feyter S, Feringa BL. Highly Ordered Co-Assembly of Bisurea Functionalized Molecular Switches at the Solid-Liquid Interface. Chemistry 2024:e202303994. [PMID: 38323675 DOI: 10.1002/chem.202303994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Immobilization of stimulus-responsive systems on solid surfaces is beneficial for controlled signal transmission and adaptive behavior while allowing the characterization of the functional interface with high sensitivity and high spatial resolution. Positioning of the stimuli-responsive units with nanometer-scale precision across the adaptive surface remains one of the bottlenecks in the extraction of cooperative function. Nanoscale organization, cooperativity, and amplification remain key challenges in bridging the molecular and the macroscopic worlds. Here we report on the design, synthesis, and scanning tunneling microscopy (STM) characterization of overcrowded alkene photoswitches merged in self-assembled networks physisorbed at the solid-liquid interface. A detailed anchoring strategy that ensures appropriate orientation of the switches with respect to the solid surface through the use of bis-urea groups is presented. We implement a co-assembly strategy that enables the merging of the photoswitches within physisorbed monolayers of structurally similar 'spacer' molecules. The self-assembly of the individual components and the co-assemblies was examined in detail using (sub)molecular resolution STM which confirms the robust immobilization and controlled orientation of the photoswitches within the spacer monolayers. The experimental STM data is supported by detailed molecular mechanics (MM) simulations. Different designs of the switches and the spacers were investigated which allowed us to formulate guidelines that enable the precise organization of the photoswitches in crystalline physisorbed self-assembled molecular networks.
Collapse
Affiliation(s)
- Cosima Stähler
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Robby Reynaerts
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Tamara Rinkovec
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Lander Verstraete
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
- imec, Kapeldreef 75, 3001, Leuven, Belgium
| | - G Henrieke Heideman
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Andrea Minoia
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Jeremy N Harvey
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
12
|
Hurtado CS, Bastien G, Rončević I, Dračínský M, Tortorici T, Rogers CT, Michl J, Kaleta J. Regular arrays of C 60-based molecular rotors mounted on the surface of tris( o-phenylenedioxy)cyclotriphosphazene nanocrystals. Chem Commun (Camb) 2024; 60:960-963. [PMID: 37955197 DOI: 10.1039/d3cc04559e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Dielectric spectroscopy has been used to determine the barriers of rotation of surface-mounted fullerenes (2.3 ± 0.1 and 4.3 ± 0.1 kcal mol-1). In order to achieve this, a C60 derivative equipped with an anchoring group designed to form a surface inclusion with the hexagonal form of tris(o-phenylenedioxy)cyclotriphosphazene (TPP) has been synthesized. Solid-state NMR analysis revealed that approximately 50% of the surface-mounted molecules have a chemical environment different from the others suggesting two distinct insertion modes. These observations correlate with results of DFT calculations.
Collapse
Affiliation(s)
- Carina Santos Hurtado
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic.
| | - Guillaume Bastien
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic.
| | - Igor Rončević
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic.
| | - Teddy Tortorici
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Charles T Rogers
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic.
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic.
| |
Collapse
|
13
|
Song L, Wang J, Zhu H, Huang P, Lin H, Chi L, Li Q. Synthesis of Large-Scale High-Quality Metal-Organic Frameworks on Cu(100) via Hierarchical Dehydrogenation Reactions. J Phys Chem Lett 2023; 14:11286-11291. [PMID: 38063416 DOI: 10.1021/acs.jpclett.3c02878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Thermal stimulus has been considered as a promising strategy for controlling on-surface reactions, allowing the formation of diverse products on metal substrates. Here, we successfully achieve hierarchical dehydrogenation reactions of amino groups on a Cu(100) surface. By carefully adjusting the experimental parameters, we synthesize large-scale and low-defect density surface metal-organic frameworks on copper surfaces. Our work sheds light on a controllable route for the synthesis of high-quality metal-organic coordination supramolecular structures via on-surface chemistry.
Collapse
Affiliation(s)
- Luying Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Junbo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Huaming Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Peipei Huang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, P. R. China
| | - Qing Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
14
|
Adamek M, Pastukh O, Laskowska M, Karczmarska A, Laskowski Ł. Nanostructures as the Substrate for Single-Molecule Magnet Deposition. Int J Mol Sci 2023; 25:52. [PMID: 38203222 PMCID: PMC10778921 DOI: 10.3390/ijms25010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Anchoringsingle-molecule magnets (SMMs) on the surface of nanostructures is gaining particular interest in the field of molecular magnetism. The accurate organization of SMMs on low-dimensional substrates enables controlled interactions and the possibility of individual molecules' manipulation, paving the route for a broad range of nanotechnological applications. In this comprehensive review article, the most studied types of SMMs are presented, and the quantum-mechanical origin of their magnetic behavior is described. The nanostructured matrices were grouped and characterized to outline to the reader their relevance for subsequent compounding with SMMs. Particular attention was paid to the fact that this process must be carried out in such a way as to preserve the initial functionality and properties of the molecules. Therefore, the work also includes a discussion of issues concerning both the methods of synthesis of the systems in question as well as advanced measurement techniques of the resulting complexes. A great deal of attention was also focused on the issue of surface-molecule interaction, which can affect the magnetic properties of SMMs, causing molecular crystal field distortion or magnetic anisotropy modification, which affects quantum tunneling or magnetic hysteresis, respectively. In our opinion, the analysis of the literature carried out in this way will greatly help the reader to design SMM-nanostructure systems.
Collapse
Affiliation(s)
| | | | - Magdalena Laskowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (M.A.); (O.P.); (Ł.L.)
| | | | | |
Collapse
|
15
|
Sato Y, De Feyter S, Tahara K. Formation of Supramolecular Heterostacks at the Liquid-Solid Interface: Impact of Symmetry Mismatching on Structural Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16825-16832. [PMID: 37967133 DOI: 10.1021/acs.langmuir.3c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The construction of intricate three-dimensional (3D) nanoarchitectures on surfaces through molecular self-assembly attracts attention not only from a crystal engineering viewpoint but also because of its potential in a range of applications, given the current interest in van der Waals heterostructures. We herein report the formation of porous structures on alkane buffer layers on graphite. A dehydrobenzo[12]annulene (DBA) derivative having six decyloxy chains forms hexagonal structures on n-pentacontane and n-hexacontane buffer layers through van der Waals interactions at the 1-octanoic acid/graphite interface. The structural features are very similar to those on the graphite surface, except for the slight structural distortion, which is attributed to the p2 symmetry of the buffer layer underneath. Moreover, based on the observation of small clusters of the DBA molecules, we discussed the nucleation and structural growth of the DBA network on a buffer layer. Finally, a hierarchical multicomponent structure was formed through the coadsorption of a heteromolecular cluster formed by a hydrogen-bonded isophthalic acid cyclic hexamer hosting a coronene molecule on the buffer layer. This study on supramolecular heterostacks provides insights into the construction of intricate 3D nanoarchitectures using self-assembly at interfaces.
Collapse
Affiliation(s)
- Yuta Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
16
|
Maeda M, Sato K, De Feyter S, Tahara K. Homochiral hierarchical molecular assemblies through dynamic combination of conformational states of a single chiral building block at the liquid/solid interface. NANOSCALE 2023. [PMID: 37997169 DOI: 10.1039/d3nr04042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We herein report the construction of homochiral, hierarchical self-assembled molecular networks (SAMNs) at the liquid/graphite interface using a single molecular building block, a chiral dehydrobenzo[12]annulene (cDBA) derivative with three chiral alkoxy and three hydroxy groups positioned in an alternating manner on the DBA core. The cDBA molecules form homochiral hierarchical SAMNs consisting of triangular clusters of several sizes, the size of which can be tuned by solvent polarity and solute concentration, reaching periodicities as large as 9.3 nm. We demonstrate the successful transmission of chirality information from the single molecular level to the hierarchical SAMN level, in a process that is mediated by dynamic self-sorting.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Kazuya Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
17
|
Wilczek LA, Geiser JD, Fang C, Hicks EG, Dube L, Hipps KW, Zimmt MB. Polymerization of Physisorbed Molecular Monolayers via Overhanging Alkynyl Chains: Characterization of Polymerization Kinetics and Monolayer Durability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16457-16471. [PMID: 37946515 DOI: 10.1021/acs.langmuir.3c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Monolayers self-assembled by triphenyleneethynylene (TPE) compounds bearing two terminal alkynyl chains were polymerized by Glaser-Hay (G-H) alkyne coupling at the acetonitrile-HOPG interface. The alkynyl chains extend into the solution due to the monolayer's dense-packed morphology. Reacting substructures that have no morphology-determining roles is a potential strategy for preserving monolayer morphology throughout polymerization. Monolayer G-H reaction kinetics and polymerized monolayer durability were characterized by using mass spectrometry and fluorescence. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) and time-of-flight (TOF) MS were used to identify TPE-oligomers in the monolayer and to track the monolayer populations of TPE-monomer, -dimer, and -trimer as a function of G-H reaction duration. Comparison of the observed kinetics to a Monte Carlo simulation provided evidence of step-growth polymerization. The durability of polymerized monolayers depended strongly on the length of the alkynyl chains linked by G-H reaction. Polymerized T6y monolayers (O(CH2)3C≡CH alkynyl chains) desorbed minimally during 16-h immersion in 90 °C o-dichlorobenzene (oDCB), whereas polymerized T8y (O(CH2)5C≡CH alkynyl chains) and polymerized T11y (O(CH2)8C≡CH alkynyl chains), desorbed 33 and 60%, respectively, of their TPE units after 4 h in 90 °C oDCB. All the polymerized monolayers are much more durable than unpolymerized monolayers, which desorb quantitatively from HOPG when rinsed with 25 μL of oDCB. Polymerized T6y monolayer is a highly durable anchor that may be adapted to build multilayer structures "permanently" attached to the HOPG surface. The alkynyl chain length dependence may be useful for tuning polymerized TPE monolayer durability for specific applications.
Collapse
Affiliation(s)
- Luke A Wilczek
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Joseph D Geiser
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chen Fang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Emily G Hicks
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Lacie Dube
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - K W Hipps
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Matthew B Zimmt
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
18
|
Hamadeh A, Palmino F, Mathurin J, Deniset-Besseau A, Grosnit L, Luzet V, Jeannoutot J, Dazzi A, Chérioux F. Toward conformational identification of molecules in 2D and 3D self-assemblies on surfaces. Commun Chem 2023; 6:246. [PMID: 37951991 PMCID: PMC10640604 DOI: 10.1038/s42004-023-01036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
The design of supramolecular networks based on organic molecules deposited on surfaces, is highly attractive for various applications. One of the remaining challenges is the expansion of monolayers to well-ordered multilayers in order to enhance the functionality and complexity of self-assemblies. In this study, we present an assessment of molecular conformation from 2D to 3D supramolecular networks adsorbed onto a HOPG surface under ambient conditions utilizing a combination of scanning probe microscopies and atomic force microscopy- infrared (AFM-IR). We have observed that the infrared (IR) spectra of the designed molecules vary from layer to layer due to the modifications in the dihedral angle between the C=O group and the neighboring phenyl ring, especially in the case of a 3D supramolecular network consisting of multiple layers of molecules.
Collapse
Affiliation(s)
- Ali Hamadeh
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France
| | - Frank Palmino
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France
| | - Jérémie Mathurin
- Université de Paris-Saclay, Institut de Chimie-Physique, F-91400, Orsay, France
| | | | - Louis Grosnit
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France
| | - Vincent Luzet
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France
| | | | - Alexandre Dazzi
- Université de Paris-Saclay, Institut de Chimie-Physique, F-91400, Orsay, France
| | - Frédéric Chérioux
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France.
| |
Collapse
|
19
|
Wang C, Song X, Wang Y, Xu R, Gao X, Shang C, Lei P, Zeng Q, Zhou Y, Chen B, Li P. A Solution-Processable Porphyrin-Based Hydrogen-Bonded Organic Framework for Photoelectrochemical Sensing of Carbon Dioxide. Angew Chem Int Ed Engl 2023; 62:e202311482. [PMID: 37675976 DOI: 10.1002/anie.202311482] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Detecting CO2 in complex gas mixtures is challenging due to the presence of competitive gases in the ambient atmosphere. Photoelectrochemical (PEC) techniques offer a solution, but material selection and specificity remain limiting. Here, we constructed a hydrogen-bonded organic framework material based on a porphyrin tecton decorated with diaminotriazine (DAT) moieties. The DAT moieties on the porphyrin molecules not only facilitate the formation of complementary hydrogen bonds between the tectons but also function as recognition sites in the resulting porous HOF materials for the selective adsorption of CO2 . In addition, the in-plane growth of FDU-HOF-2 into anisotropic molecular sheets with large areas of up to 23000 μm2 and controllable thickness between 0.298 and 2.407 μm were realized in yields of over 89 % by a simple solution-processing method. The FDU-HOF-2 can be directly grown and deposited onto different substrates including silica, carbon, and metal oxides by self-assembly in situ in formic acid. As a proof of concept, a screen-printing electrode deposited with FDU-HOF-2 was fabricate as a label-free photoelectrochemical (PEC) sensor for CO2 detection. Such a signal-off PEC sensor exhibits low detection limit for CO2 (2.3 ppm), reusability (at least 30 cycles), and long-term working stability (at least 30 days).
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Rui Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiangyu Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Cheng Shang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Department of Chemistry and International Institute of Nanotechnology, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Department of Chemistry and International Institute of Nanotechnology, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
20
|
Jiménez-Martín A, Gallardo A, de la Torre B. Coverage-modulated halogen bond geometry transformation in supramolecular assemblies. NANOSCALE 2023; 15:16354-16361. [PMID: 37786923 DOI: 10.1039/d3nr03899h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Halogen bonding (HB) has emerged as a promising route for designing supramolecular assemblies due to its directional nature and versatility in modifying interactions through the choice of halogens and molecular entities. Despite this, methods for tuning these interactions on surfaces, particularly in terms of directionality, are limited. In this study, we present a strategy for tuning the directionality of self-assembly processes in homomolecular organic compounds on inert metal surfaces. A variety of halogen-halogen geometries can promote highly-extended one-dimensional or two-dimensional self-assembly depending on the molecular coverage. Our results indicate that under lower molecular coverage conditions, robust one-dimensional (1D) structures promote the self-assembly of halogen-bonded molecules on Au(111). At certain coverage, a transformation from type-I to synthon halogen bonding is observed, leading to an extended hexagonal pattern of molecular assembly. The atomistic details of the structures are experimentally studied using high-resolution atomic force microscopy and supported by first-principle calculations. We employed DFT to evaluate the interplay between electrostatics and dispersion forces driving both type-I and synthon assemblies. The results reveal a halogen-bond geometry transformation induced by a subtle balance of molecule-molecule interaction. Finally, we investigate the capability of the halogen-bonded supramolecular assembly to periodically confine electronic quantum states and single atoms. Our findings demonstrate the versatility of sigma-bonding in regulating molecular assembly and provide new insights for tailoring functional molecular structures on an inert metal substrate.
Collapse
Affiliation(s)
- Alejandro Jiménez-Martín
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 78371 Olomouc, Czech Republic.
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Aurelio Gallardo
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
- IMDEA Nanoscience, 28049 Madrid, Spain.
| | - Bruno de la Torre
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 78371 Olomouc, Czech Republic.
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
| |
Collapse
|
21
|
Maeda M, Oda K, Hisaki I, Tahara K. Influence of core size on self-assembled molecular networks composed of C3h-symmetric building blocks through hydrogen bonding interactions: structural features and chirality. RSC Adv 2023; 13:29512-29521. [PMID: 37822655 PMCID: PMC10562897 DOI: 10.1039/d3ra05762c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The effect of the core size on the structure and chirality of self-assembled molecular networks was investigated using two aromatic carboxylic acid derivatives with frameworks displaying C3h symmetry, triphenylene derivative H3TTCA and dehydrobenzo[12]annulene (DBA) derivative DBACOOH, each having three carboxy groups per molecule. Scanning tunneling microscopy observations at the 1-heptanoic acid/graphite interface revealed H3TTCA exclusively forming a chiral honeycomb structure, and DBACOOH forming three structures (type I, II, and III structures) depending on its concentration and whether the system is subjected to annealing treatment. Hydrogen bonding interaction patterns and chirality were carefully analyzed based on a modeling study using molecular mechanics simulations. Moreover, DBACOOH forms chiral honeycomb structures through the co-adsorption of guest molecules. Structural diversity observed for DBACOOH is attributed to its relatively large core size, with this feature modulating the balance between molecule-molecule and molecule-substrate interactions.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Kotoka Oda
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
22
|
Liu S, Norikane Y, Kikkawa Y. Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:872-892. [PMID: 37674543 PMCID: PMC10477993 DOI: 10.3762/bjnano.14.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
Nanoarchitectonics has attracted increasing attention owing to its potential applications in nanomachines, nanoelectronics, catalysis, and nanopatterning, which can contribute to overcoming global problems related to energy and environment, among others. However, the fabrication of ordered nanoarchitectures remains a challenge, even in two dimensions. Therefore, a deeper understanding of the self-assembly processes and substantial factors for building ordered structures is critical for tailoring flexible and desirable nanoarchitectures. Scanning tunneling microscopy is a powerful tool for revealing the molecular conformations, arrangements, and orientations of two-dimensional (2D) networks on surfaces. The fabrication of 2D assemblies involves non-covalent interactions that play a significant role in the molecular arrangement and orientation. Among the non-covalent interactions, dispersion interactions that derive from alkyl chain units are believed to be weak. However, alkyl chains play an important role in the adsorption onto substrates, as well as in the in-plane intermolecular interactions. In this review, we focus on the role of alkyl chains in the formation of ordered 2D assemblies at the solid/liquid interface. The alkyl chain effects on the 2D assemblies are introduced together with examples documented in the past decades.
Collapse
Affiliation(s)
- Suyi Liu
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8571, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yasuo Norikane
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8571, Japan
| | - Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
23
|
Zhang C, Zhou X, Zhu C, Zong Y, Cao H. STM studies on porphyrins and phthalocyanines at the liquid/solid interface for molecular-scale electronics. Dalton Trans 2023; 52:11017-11024. [PMID: 37529933 DOI: 10.1039/d3dt01518a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Porphyrins and phthalocyanines are promising candidates for single-molecule electronics. Among the many characterization tools, scanning tunneling microscopy (STM) represents a very powerful one to gain insight into the electronic properties at the molecular level, by correlating the charge transport behaviours of π-conjugated molecules with ultrahigh resolution imaging. In view of the sophistication of molecular self-assembly in the presence of a solution phase, in this frontier, we focus on STM studies on porphyrins and phthalocyanines at the liquid/solid interface, placing emphasis on the electronic and magnetic properties, as well as the switching behaviour of surface-confined or surface-anchored molecules. Furthermore, we have also addressed the topics of potential that can be exploited in this area.
Collapse
Affiliation(s)
- Chunmei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Xin Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Chunlei Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Yufen Zong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Hai Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
24
|
Abad J, Martínez JI, Gómez P, Más-Montoya M, Rodríguez L, Cossaro A, Verdini A, Floreano L, Martín-Gago JA, Curiel D, Méndez J. Two-Dimensional Self-Assembly Driven by Intermolecular Hydrogen Bonding in Benzodi-7-azaindole Molecules on Au(111). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11591-11599. [PMID: 37377501 PMCID: PMC10291637 DOI: 10.1021/acs.jpcc.3c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Indexed: 06/29/2023]
Abstract
The control of molecular structures at the nanoscale plays a critical role in the development of materials and applications. The adsorption of a polyheteroaromatic molecule with hydrogen bond donor and acceptor sites integrated in the conjugated structure itself, namely, benzodi-7-azaindole (BDAI), has been studied on Au(111). Intermolecular hydrogen bonding determines the formation of highly organized linear structures where surface chirality, resulting from the 2D confinement of the centrosymmetric molecules, is observed. Moreover, the structural features of the BDAI molecule lead to the formation of two differentiated arrangements with extended brick-wall and herringbone packing. A comprehensive experimental study that combines scanning tunneling microscopy, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory theoretical calculations has been performed to fully characterize the 2D hydrogen-bonded domains and the on-surface thermal stability of the physisorbed material.
Collapse
Affiliation(s)
- José Abad
- Applied
Physics Department, Technical University
of Cartagena, c/ Dr. Fleming s/n, 30202 Cartagena, Spain
| | - José I. Martínez
- Department
of Low Dimensional Systems, Institute of
Materials Science of Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Paula Gómez
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Miriam Más-Montoya
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Luis Rodríguez
- Department
of Low Dimensional Systems, Institute of
Materials Science of Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Albano Cossaro
- CNR-IOM,
Laboratorio TASC, 34149 Trieste, Italy
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste I-34149, Italy
| | | | | | - José A. Martín-Gago
- Department
of Low Dimensional Systems, Institute of
Materials Science of Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Curiel
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Javier Méndez
- Department
of Low Dimensional Systems, Institute of
Materials Science of Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
25
|
Liu JW, Wang Y, Kang LX, Zhao Y, Xing GY, Huang ZY, Zhu YC, Li DY, Liu PN. Two-Dimensional Crystal Transition from Radialene to Cumulene on Ag(111) via Retro-[2 + 1] Cycloaddition. J Am Chem Soc 2023. [PMID: 37289993 DOI: 10.1021/jacs.3c00962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) crystal-to-crystal transition is an important method in crystal engineering because of its ability to directly create diverse crystal materials from one crystal. However, steering a 2D single-layer crystal-to-crystal transition on surfaces with high chemo- and stereoselectivity under ultra-high vacuum conditions is a great challenge because the transition is a complex dynamic process. Here, we report a highly chemoselective 2D crystal transition from radialene to cumulene with retention of stereoselectivity on Ag(111) via retro-[2 + 1] cycloaddition of three-membered carbon rings and directly visualize the transition process involving a stepwise epitaxial growth mechanism by the combination of scanning tunneling microscopy and non-contact atomic force microscopy. Using progression annealing, we found that isocyanides on Ag(111) at a low annealing temperature underwent sequential [1 + 1 + 1] cycloaddition and enantioselective molecular recognition based on C-H···Cl hydrogen bonding interactions to form 2D triaza[3]radialene crystals. In contrast, a higher annealing temperature induced the transformation of triaza[3]radialenes to generate trans-diaza[3]cumulenes, which were further assembled into 2D cumulene-based crystals through twofold N-Ag-N coordination and C-H···Cl hydrogen bonding interactions. By combining the observed distinct transient intermediates and density functional theory calculations, we demonstrate that the retro-[2 + 1] cycloaddition reaction proceeds via the ring opening of a three-membered carbon ring, sequential dechlorination/hydrogen passivation, and deisocyanation. Our findings provide new insights into the growth mechanism and dynamics of 2D crystals and have implications for controllable crystal engineering.
Collapse
Affiliation(s)
- Jian-Wei Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Xia Kang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guang-Yan Xing
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zheng-Yang Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ya-Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
26
|
Xie R, Hu Y, Lee SL. A Paradigm Shift from 2D to 3D: Surface Supramolecular Assemblies and Their Electronic Properties Explored by Scanning Tunneling Microscopy and Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300413. [PMID: 36922729 DOI: 10.1002/smll.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Indexed: 06/15/2023]
Abstract
Exploring supramolecular architectures at surfaces plays an increasingly important role in contemporary science, especially for molecular electronics. A paradigm of research interest in this context is shifting from 2D to 3D that is expanding from monolayer, bilayers, to multilayers. Taking advantage of its high-resolution insight into monolayers and a few layers, scanning tunneling microscopy/spectroscopy (STM/STS) turns out a powerful tool for analyzing such thin films on a solid surface. This review summarizes the representative efforts of STM/STS studies of layered supramolecular assemblies and their unique electronic properties, especially at the liquid-solid interface. The superiority of the 3D molecular networks at surfaces is elucidated and an outlook on the challenges that still lie ahead is provided. This review not only highlights the profound progress in 3D supramolecular assemblies but also provides researchers with unusual concepts to design surface supramolecular structures with increasing complexity and desired functionality.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
27
|
Noh K, Colazzo L, Urdaniz C, Lee J, Krylov D, Devi P, Doll A, Heinrich AJ, Wolf C, Donati F, Bae Y. Template-directed 2D nanopatterning of S = 1/2 molecular spins. NANOSCALE HORIZONS 2023; 8:624-631. [PMID: 36752198 DOI: 10.1039/d2nh00375a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular spins are emerging platforms for quantum information processing. By chemically tuning their molecular structure, it is possible to prepare a robust environment for electron spins and drive the assembly of a large number of qubits in atomically precise spin-architectures. The main challenges in the integration of molecular qubits into solid-state devices are (i) minimizing the interaction with the supporting substrate to suppress quantum decoherence and (ii) controlling the spatial distribution of the spins at the nanometer scale to tailor the coupling among qubits. Herein, we provide a nanofabrication method for the realization of a 2D patterned array of individually addressable Vanadyl Phthalocyanine (VOPc) spin qubits. The molecular nanoarchitecture is crafted on top of a diamagnetic monolayer of Titanyl Phthalocyanine (TiOPc) that electronically decouples the electronic spin of VOPc from the underlying Ag(100) substrate. The isostructural TiOPc interlayer also serves as a template to regulate the spacing between VOPc spin qubits on a scale of a few nanometers, as demonstrated using scanning tunneling microscopy, X-ray circular dichroism, and density functional theory. The long-range molecular ordering is due to a combination of charge transfer from the metallic substrate and strain in the TiOPc interlayer, which is attained without altering the pristine VOPc spin characteristics. Our results pave a viable route towards the future integration of molecular spin qubits into solid-state devices.
Collapse
Affiliation(s)
- Kyungju Noh
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Luciano Colazzo
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Corina Urdaniz
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Jaehyun Lee
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Denis Krylov
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Parul Devi
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Andrin Doll
- Swiss Light Source (SLS), Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Fabio Donati
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Yujeong Bae
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| |
Collapse
|
28
|
Aoi S, Hirose S, Soeda W, Kaneko H, Mali KS, De Feyter S, Tahara K. Spatially Controlled Aryl Radical Grafting of Graphite Surfaces Guided by Self-Assembled Molecular Networks of Linear Alkane Derivatives: The Importance of Conformational Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5986-5994. [PMID: 37068184 DOI: 10.1021/acs.langmuir.2c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The covalent functionalization of carbon surfaces with nanometer-scale precision is of interest because of its potential in a range of applications. We herein report the controlled grafting of graphite surfaces using electrochemically generated aryl radicals templated by self-assembled molecular networks (SAMNs) of bisalkylurea derivatives. A bisalkylurea derivative having two butoxy units acts as a template for the covalent functionalization of aryl groups in between self-assembled rows of this molecule. In contrast, grafting occurs without a spatial order when an SAMN of bis(tetradecyl)urea was used as a template. This indicates that a degree of dynamics at the alkyl termini is required to favor controlled covalent attachment, a situation that is suppressed by strong intrarow intermolecular interactions resulting from the hydrogen bonding of the urea groups, but favored by terminal short alkoxy groups. The present information is useful for understanding the mechanism of the template-guided aryl radical grafting and the molecular design of new generations of template molecules.
Collapse
Affiliation(s)
- Sota Aoi
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shingo Hirose
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Wakana Soeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiromasa Kaneko
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
29
|
Yamagata K, Maeda M, Tessari Z, Mali KS, Tobe Y, De Feyter S, Tahara K. Solvent Mediated Nanoscale Quasi-Periodic Chirality Reversal in Self-Assembled Molecular Networks Featuring Mirror Twin Boundaries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207209. [PMID: 36683210 DOI: 10.1002/smll.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Grain boundaries in polycrystals have a prominent impact on the properties of a material, therefore stimulating the research on grain boundary engineering. Structure determination of grain boundaries of molecule-based polycrystals with submolecular resolution remains elusive. Reducing the complexity to monolayers has the potential to simplify grain boundary engineering and may offer real-space imaging with submolecular resolution using scanning tunneling microscopy (STM). Herein, the authors report the observation of quasi-periodic nanoscale chirality switching in self-assembled molecular networks, in combination with twinning, as revealed by STM at the liquid/solid interface. The width of the chiral domain structure peaks at 12-19 nm. Adjacent domains having opposite chirality are connected continuously through interdigitated alkoxy chains forming a 1D defect-free domain border, reflecting a mirror twin boundary. Solvent co-adsorption and the inherent conformational adaptability of the alkoxy chains turn out to be crucial factors in shaping grain boundaries. Moreover, the epitaxial interaction with the substrate plays a role in the nanoscale chirality reversal as well.
Collapse
Affiliation(s)
- Kyohei Yamagata
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Zeno Tessari
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Yoshito Tobe
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30030, Taiwan
- Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
30
|
Zhang S, Li J, Gan L, Ma L, Ma W, Zhang M, Cheng F, Deng K, Zeng Q. The self-assembly of a pair of low-symmetry tetracarboxylic acid molecules and their co-assembly with bridging molecules at the liquid-solid interface. NANOSCALE 2023; 15:4353-4360. [PMID: 36752732 DOI: 10.1039/d2nr06740d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The supramolecular self-assembly behavior of a pair of low-symmetry tetracarboxylic acid molecules (H4OBDB and H4ADDI) and their co-assembly behavior with TMA as a bridging molecule were studied at the liquid-solid interface. Scanning tunneling microscope (STM) observations revealed that H4OBDB and H4ADDI molecules both tend to form O-shaped dimers but end up forming different types of self-assembly structures. We also investigated the construction of two-component co-assembly structures by mixing H4OBDB or H4ADDI molecules with bridging molecules such as TMA. The two formed co-assembly structures are similar. Based on the analysis of the STM results and the density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.
Collapse
Affiliation(s)
- Siqi Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Jianqiao Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Linlin Gan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Lin Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Zong Y, Xu SM, Shi W, Lu C. Chiral Hierarchical Architecture Induced by Confinement-Assisted Living Supramolecular Polymerization of Simple Achiral Molecules. ACS NANO 2023; 17:3838-3846. [PMID: 36779509 DOI: 10.1021/acsnano.2c12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chiral supramolecular assembly (CSA) based on achiral molecules has provided important clues to understand the origin of biological chirality. However, a simple achiral monomer faces the challenge of chiral stacking with the absence of a chiral resource. The difficulty is that simple achiral monomer lacks steric repulsion to provide asymmetry during hierarchical assembly, which is a prerequisite for chiral stacking with an angle. Moreover, during chiral stacking of achiral molecules or units, the right-handed and left-handed chiral supramolecular isomers (CSIs) are equally formed due to the mirror-imaged conformation, which leads to chirality silence. Here, with the benefit of two-dimensional confinement space of layered double hydroxide (LDH), simple achiral molecules can be arranged to staggered bilayer arrays by imprinting the topological structure of LDH. Once LDH is removed, these staggered arrays can form asymmetric living seeds, which can further elongate to living units with the advantage of living supramolecular polymerization (LSP) by following off-pathway. Due to the asymmetry of living units, the possible chiral stacking outcomes, CSIs, are not mirror-imaged. With the increase of the molecular number in living units, the energy difference between CSIs can be amplified by self-replication of LSP, leading to handedness preference. Thus, the detectable CSA is mainly derived from the CSI with energetically favored hierarchical structure. Thus, our strategy breaks the stereotype that the complex molecular structure and symmetry breaking mechanism are necessary for the formation of detectable CSA by achiral molecules.
Collapse
Affiliation(s)
- Yingtong Zong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, 341000 Ganzhou, Jiangxi, P. R. China
| | - Si-Min Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, 341000 Ganzhou, Jiangxi, P. R. China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 450001 Zhengzhou, P. R. China
| |
Collapse
|
32
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
33
|
Liang J, Ouyang X, Cao Y. Interfacial and confined molecular-assembly of poly(3-hexylthiophene) and its application in organic electronic devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:619-632. [PMID: 36212681 PMCID: PMC9542436 DOI: 10.1080/14686996.2022.2125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Poly(3-hexylthiophene) (P3HT) is a typical conducting polymer widely used in organic thin-film transistors, polymer solar cells, etc., due to good processability and remarkable charging carrier and hole mobility. It is known that the ordered structure assembled by π-conjugated P3HT chains could promote the performance of electronic devices. Interfacial and confined molecular-assembly is one effective way to generate an ordered structure by tuning surface geometry and substrate interaction. Great efforts have been made to investigate the molecular chain assembly of P3HT on a curved surface that is confined to different geometry. In this report, we review the recent advances of the interfacial chain assembly of P3HT in a flat or curved confined space and its application to organic electronic devices. In principle, this interfacial assembly of P3HT at a nanoscale could improve the electronic properties, such as the current transport, power conversion efficiency, etc. Therefore, this review on interfacial and confined assembly of P3HT could give general implications for designing high-performance organic electronic devices.
Collapse
Affiliation(s)
- Junhao Liang
- Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Xing Ouyang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yan Cao
- Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangdong, China
| |
Collapse
|
34
|
Schulze Lammers B, López-Salas N, Stein Siena J, Mirhosseini H, Yesilpinar D, Heske J, Kühne TD, Fuchs H, Antonietti M, Mönig H. Real-Space Identification of Non-Noble Single Atomic Catalytic Sites within Metal-Coordinated Supramolecular Networks. ACS NANO 2022; 16:14284-14296. [PMID: 36053675 DOI: 10.1021/acsnano.2c04439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With regard to the development of single atom catalysts (SACs), non-noble metal-organic layers combine a large functional variability with cost efficiency. Here, we characterize reacted layers of melamine and melem molecules on a Cu(111) surface by noncontact atomic force microscopy (nc-AFM), X-ray photoelectron spectroscopy (XPS) and ab initio simulations. Upon deposition on the substrate and subsequent heat treatments in ultrahigh vacuum (UHV), these precursors undergo a stepwise dehydrogenation. After full dehydrogenation of the amino groups, the molecular units lie flat and are strongly chemisorbed on the copper substrate. We observe a particularly extreme interaction of the dehydrogenated nitrogen atoms with single copper atoms located at intermolecular sites. In agreement with the nc-AFM measurements performed with an O-terminated copper tip on these triazine- and heptazine-based copper nitride structures, our ab initio simulations confirm a pronounced interaction of oxygen species at these N-Cu-N sites. To investigate the related functional properties of our samples regarding the oxygen reduction reaction (ORR), we developed an electrochemical setup for cyclic voltammetry experiments performed at ambient pressure within a drop of electrolyte in a controlled O2 or N2 environment. Both copper nitride structures show a robust activity in irreversibly catalyzing the reduction of oxygen. The activity is assigned to the intermolecular N-Cu-N sites of the triazine- and heptazine-based copper nitrides or corresponding oxygenated versions (N-CuO-N, N-CuO2-N). By combining nc-AFM characterization on the atomic scale with a direct electrochemical proof of performance, our work provides fundamental insights about active sites in a technologically highly relevant reaction.
Collapse
Affiliation(s)
- Bertram Schulze Lammers
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Nieves López-Salas
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Julya Stein Siena
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hossein Mirhosseini
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Damla Yesilpinar
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Julian Heske
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Harry Mönig
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| |
Collapse
|
35
|
Cojal González JD, Iyoda M, Rabe JP. Resonant Electron Tunneling Induces Isomerization of π-Expanded Oligothiophene Macrocycles in a 2D Crystal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200557. [PMID: 35355440 PMCID: PMC9259718 DOI: 10.1002/advs.202200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Macrocyclic oligothiophenes and their π-expanded derivatives constitute versatile building blocks for the design of (supra)molecularly engineered active interfaces, owing to their structural, chemical, and optoelectronic properties. Here, it is demonstrated how resonant tunneling effect induces single molecular isomerization in a 2D crystal, self-assembled at solid-liquid interfaces under ambient conditions. Monolayers of a series of four π-expanded oligothiophene macrocycles are investigated by means of scanning tunneling microscopy and scanning tunneling spectroscopy (STS) at the interface between their octanoic acid solutions and the basal plane of highly oriented pyrolytic graphite. Current-voltage characteristics confirm the donor-type character of the macrocycles, with the highest occupied molecular orbital and the lowest unoccupied molecular orbital (LUMO) positions consistent with time-dependent density functional theory calculations. Cyclic STS measurements show the redox isomerization from Z,Z-8T6A to its isomer E,E-8T6A occurring in the 2D crystal, due to the formation of a negatively charged species when the tunneling current is in resonance with the LUMO of the macrocycle.
Collapse
Affiliation(s)
- José D. Cojal González
- Department of Physics and IRIS AdlershofHumboldt‐Universität zu BerlinNewtonstr. 15BerlinD‐12489Germany
| | - Masahiko Iyoda
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan UniversityHachiojiTokyo192‐0397Japan
| | - Jürgen P. Rabe
- Department of Physics and IRIS AdlershofHumboldt‐Universität zu BerlinNewtonstr. 15BerlinD‐12489Germany
| |
Collapse
|
36
|
Song X, Wang Y, Wang C, Wang D, Zhuang G, Kirlikovali KO, Li P, Farha OK. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. J Am Chem Soc 2022; 144:10663-10687. [PMID: 35675383 DOI: 10.1021/jacs.2c02598] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from strategically pre-designed molecular tectons with complementary hydrogen-bonding patterns, are rapidly evolving into a novel and important class of porous materials. In addition to their common features shared with other functionalized porous materials constructed from modular building blocks, the intrinsically flexible and reversible H-bonding connections endow HOFs with straightforward purification procedures, high crystallinity, solution processability, and recyclability. These unique advantages of HOFs have attracted considerable attention across a broad range of fields, including gas adsorption and separation, catalysis, chemical sensing, and electrical and optical materials. However, the relatively weak H-bonding interactions within HOFs can potentially limit their stability and potential use in further applications. To that end, this Perspective highlights recent advances in the development of chemically and thermally robust HOF materials and systematically discusses relevant design rules and synthesis strategies to access highly stable HOFs.
Collapse
Affiliation(s)
- Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guowei Zhuang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Kent O Kirlikovali
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
37
|
[2+2] Cyclo-Addition Reactions for Efficient Polymerization on a HOPG Surface at Ambient Conditions. NANOMATERIALS 2022; 12:nano12081334. [PMID: 35458042 PMCID: PMC9031210 DOI: 10.3390/nano12081334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022]
Abstract
Polymers obtained by on-surface chemistry have emerged as a class of promising materials. Here, we propose a new strategy to obtain self-assembled 1D polymers by using photochemical [2+2] cyclo-addition or by using a mild thermal annealing. All nanostructures are fully characterized by using scanning tunneling microscopy at ambient conditions on a graphite surface. We demonstrated that nature of the stimulus strongly alters the overall quality of the resulting polymers in terms of length and number of defects. This new way is an efficient method to elaborate on-surface self-assembled 1D polymers.
Collapse
|
38
|
Kawano SI, Nakaya M, Saitow M, Ishiguro A, Yanai T, Onoe J, Tanaka K. Thermally Stable Array of Discrete C 60s on a Two-Dimensional Crystalline Adlayer of Macrocycles both in Vacuo and under Ambient Pressure. J Am Chem Soc 2022; 144:6749-6758. [PMID: 35315659 DOI: 10.1021/jacs.1c13610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A periodic monolayer array of discrete C60s was generated on an atomically flat Au(111) surface with the aid of a template adlayer. The template was a two-dimensional (2D) array of molecular pits prepared on an Au(111) surface through 2D crystallization of shape-persistent macrocycles composed of four carbazole and four salphens/Ni-salphens with a 1 nm hollow. Scanning tunneling microscopy imaging under ultra-high vacuum revealed that the square-shaped macrocycles, with 1.5 nm sides, were arranged with a periodic spacing of approximately 4.0 nm on the Au(111) surface, where the orientation and periodicity of the macrocycles were dependent on their chemical structures. After sublimation of C60s onto the adlayer, a single C60 molecule was entrapped in each pit, and an ordered molecular array of C60s was attained with a pattern similar to that of the macrocycles. The periodic pattern of C60s on the surface was thermally stable up to approximately 200 °C, even under ambient pressure. Scanning tunneling spectroscopy suggested the existence of an electronic interaction between the C60s and the Au(111) surface that was influenced by the macrocycle template on the surface.
Collapse
Affiliation(s)
- Shin-Ichiro Kawano
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Masato Nakaya
- Department of Energy Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Atsuki Ishiguro
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Jun Onoe
- Department of Energy Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
39
|
Nakamura T, Yokaichiya T, Fedorov DG. Analysis of Guest Adsorption on Crystal Surfaces Based on the Fragment Molecular Orbital Method. J Phys Chem A 2022; 126:957-969. [PMID: 35080391 DOI: 10.1021/acs.jpca.1c10229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For gaining insights into interactions in periodic systems, an analysis is developed based on the fragment molecular orbital method combined with periodic boundary conditions. The adsorption energy is decomposed into guest and surface polarization and deformation energy, guest-surface and guest-guest interactions, and the vibrational free energy. The analysis is applied to the adsorption of guest molecules to Ih (001) ice surface. The cooperativity effects result in a non-linear change in the adsorption energy with coverage due to many-body effects. The role of dispersion is found to be dominant for guests with long hydrophobic tails. A rule is proposed relating the length of the alkyl tail with the formation of the guest layer. The computed binding enthalpies are in good agreement with experimental values. For high coverage, adsorbed molecules can form an ordered layer known as self-assembled monolayer.
Collapse
Affiliation(s)
- Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Tomoko Yokaichiya
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
40
|
Zhang S, Chen C, Li J, Ma C, Li X, Ma W, Zhang M, Cheng F, Deng K, Zeng Q. The self-assembly and pyridine regulation of a hydrogen-bonded dimeric building block formed by a low-symmetric aromatic carboxylic acid. NANOSCALE 2022; 14:2419-2426. [PMID: 35098290 DOI: 10.1039/d1nr07840b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The supramolecular self-assembly behavior of a low-symmetric aromatic carboxylic acid molecule (H5BHB) and its co-assembly behavior with a series of pyridine molecules (BPD, BPDYB and TPDYB) were studied at the heptanoic acid/HOPG liquid-solid interface. Scanning tunneling microscopy (STM) observations revealed that H5BHB molecules tend to form dimeric building blocks which then assemble into a close-packed structure. BPD, BPDYB and TPDYB pyridine molecules were all able to form a stable two-component co-assembled structure with the H5BHB molecule, and in these co-assembled structures, the H5BHB molecule still takes the form of a dimer. It was found that the pyridine molecules were able to regulate the self-assembly structure of the H5BHB molecule, and the molecular arrangement of the co-assembly structures varies with the shape of the pyridine molecules. Based on the analysis of the STM results and density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.
Collapse
Affiliation(s)
- Siqi Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Chen Chen
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Jianqiao Li
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Chunyu Ma
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Xiaokang Li
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Ke Deng
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Qingdao Zeng
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Kim YJ, Seo TH, Kim YH, Suh EK, Bae S, Hwang JY, Kim J, Kang Y, Kim MJ, Ahn S. Two-Dimensional Stacked Composites of Self-Assembled Alkane Layers and Graphene for Transparent Gas Barrier Films with Low Permeability. NANO LETTERS 2022; 22:286-293. [PMID: 34978186 DOI: 10.1021/acs.nanolett.1c03761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled alkane layers are introduced between graphene layers to physically block nanometer size defects in graphene and lateral gas pathways between graphene layers. A well-defined hexatriacontane (HTC) monolayer on graphene could cover nanometer-size defects because of the flexible nature and strong intermolecular van der Waals interactions of alkane, despite the roughness of graphene. In addition, HTC multilayers between graphene layers greatly improve their adhesion. This indicates that HTC multilayers between graphene layers can effectively block the lateral pathway between graphene layers by filling open space with close-packed self-assembled alkanes. By these mechanisms, alternately stacked composites of graphene and self-assembled alkane layers greatly increase the gas-barrier property to a water vapor transmission rate (WVTR) as low as 1.2 × 10-3 g/(m2 day), whereas stacked graphene layers generally show a WVTR < 0.5 g/(m2 day). Furthermore, the self-assembled alkane layers have superior crystallinity and wide bandgap, so they have little effect on the transmittance.
Collapse
Affiliation(s)
- Yoon-Jeong Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
- Department of Chemistry, Research Institute for Natural Sciences and Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae Hoon Seo
- Green Energy & Nano Technology R&D group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Yang Hui Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | | | - Sukang Bae
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Jun Yeon Hwang
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Jaewoo Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Youngjong Kang
- Department of Chemistry, Research Institute for Natural Sciences and Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Jong Kim
- Department of Chemistry, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Seokhoon Ahn
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
- Department of Chemistry, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
42
|
Ustinov EA, Gorbunov VA, Akimenko SS. Thermodynamics of self-assembled molecular layers of trimesic acid from fields-supported kinetic Monte Carlo simulation. Phys Chem Chem Phys 2022; 24:26111-26123. [DOI: 10.1039/d2cp03380a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A technique has been developed for calculating the thermodynamic characteristics of rigid self-assembled organic adsorption layers and the parameters of polymorphic transitions using two types of external fields and the kinetic Monte Carlo method.
Collapse
Affiliation(s)
- Eugene A. Ustinov
- Ioffe Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russian Federation
| | - Vitaly A. Gorbunov
- Ioffe Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russian Federation
- Omsk State Technical University, 11 Pr. Mira, Omsk, 644050, Russian Federation
| | - Sergey S. Akimenko
- Ioffe Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russian Federation
- Omsk State Technical University, 11 Pr. Mira, Omsk, 644050, Russian Federation
| |
Collapse
|
43
|
Single molecular insight into steric effect on C-terminal amino acids with various hydrogen bonding sites. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Maier S, Stöhr M. Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:950-956. [PMID: 34540518 PMCID: PMC8404214 DOI: 10.3762/bjnano.12.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Sabine Maier
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
45
|
On-Surface Synthesis of Ligands to Elaborate Coordination Polymers on an Au(111) Surface. NANOMATERIALS 2021; 11:nano11082102. [PMID: 34443932 PMCID: PMC8401198 DOI: 10.3390/nano11082102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
On-surface metal-organic polymers have emerged as a class of promising 2D materials. Here, we propose a new strategy to obtain coordination polymers by transforming supramolecular networks into coordination polymers by surface-assisted cyclo-dehydrogenation of organic building blocks. All nanostructures are fully characterized by using scanning tunneling microscopy under ultra-high vacuum on a gold surface. We demonstrated that the balance between molecule-molecule interaction and molecule-substrate interaction can be drastically modified by a strong modification of the geometry of the molecules thanks to a thermal annealing. This new way is an efficient method to elaborate on-surface coordination polymers.
Collapse
|
46
|
Bragança AM, Minoia A, Steeno R, Seibel J, Hirsch BE, Verstraete L, Ivasenko O, Müllen K, Mali KS, Lazzaroni R, De Feyter S. Detection and Stabilization of a Previously Unknown Two-Dimensional (Pseudo)polymorph using Lateral Nanoconfinement. J Am Chem Soc 2021; 143:11080-11087. [PMID: 34283574 DOI: 10.1021/jacs.1c04445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the detection and stabilization of a previously unknown two-dimensional (2D) pseudopolymorph of an alkoxy isophthalic acid using lateral nanoconfinement. The self-assembled molecular networks formed by the isophthalic acid derivative were studied at the interface between covalently modified graphite and an organic solvent. When self-assembled on graphite with moderate surface coverage of covalently bound aryl groups, a previously unknown metastable pseudopolymorph was detected. This pseudopolymorph, which was presumably "trapped" in between the surface bound aryl groups, underwent a time-dependent phase transition to the stable polymorph typically observed on pristine graphite. The stabilization of the pseudopolymorph was then achieved by using an alternative nanoconfinement strategy, where the domains of the pseudopolymorph could be formed and stabilized by restricting the self-assembly in nanometer-sized shallow compartments produced by STM-based nanolithography carried out on a graphite surface with a high density of covalently bound aryl groups. These experimental results are supported by molecular mechanics and molecular dynamics simulations, which not only provide important insight into the relative stabilities of the different structures, but also shed light onto the mechanism of the formation and stabilization of the pseudopolymorph under nanoscopic lateral confinement.
Collapse
Affiliation(s)
- Ana M Bragança
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Andrea Minoia
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Roelof Steeno
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Johannes Seibel
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Brandon E Hirsch
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Lander Verstraete
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Oleksandr Ivasenko
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
47
|
Whitelam S, Tamblyn I. Neuroevolutionary Learning of Particles and Protocols for Self-Assembly. PHYSICAL REVIEW LETTERS 2021; 127:018003. [PMID: 34270312 DOI: 10.1103/physrevlett.127.018003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Within simulations of molecules deposited on a surface we show that neuroevolutionary learning can design particles and time-dependent protocols to promote self-assembly, without input from physical concepts such as thermal equilibrium or mechanical stability and without prior knowledge of candidate or competing structures. The learning algorithm is capable of both directed and exploratory design: it can assemble a material with a user-defined property, or search for novelty in the space of specified order parameters. In the latter mode it explores the space of what can be made, rather than the space of structures that are low in energy but not necessarily kinetically accessible.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, Califronia 94720, USA
| | - Isaac Tamblyn
- National Research Council of Canada Ottawa, Ontario K1N 5A2, Canada Vector Institute for Artificial Intelligence Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
48
|
Steiner C, Fromm L, Gebhardt J, Liu Y, Heidenreich A, Hammer N, Görling A, Kivala M, Maier S. Host guest chemistry and supramolecular doping in triphenylamine-based covalent frameworks on Au(111). NANOSCALE 2021; 13:9798-9807. [PMID: 34028477 DOI: 10.1039/d0nr09140e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The post-synthetic modification of covalent organic frameworks (COFs) via host-guest chemistry is an important method to tailor their electronic properties for applications. Due to the limited structural control in the assembly of two-dimensional surface-supported COFs, supramolecular networks are traditionally used at present for host-guest experiments on surfaces, which lack structural and thermal stability, however. Here, we present a combined scanning tunneling microscopy and density functional theory study to understand the host-guest interaction in triphenylamine-based covalently-linked macrocycles and networks on Au(111). These triphenylamine-based structures feature carbonyl and hydrogen functionalized pores that create preferred adsorption sites for trimesic acid (TMA) and halogen atoms. The binding of the TMA through optimized hydrogen-bond interactions is corroborated by selective adsorption positions within the pores. Band structure calculations reveal that the strong intermolecular charge transfer through the TMA bonding reduces the band gap in the triphenylamine COFs, demonstrating the concept of supramolecular doping by host-guest interactions in surface-supported COFs. Halogen atoms selectively adsorb between two carbonyl groups at Au hollow sites. The mainly dispersive interaction of the halogens with the triphenylamine COF leads to a small downshift of the bands. Most of the halogens change their adsorption position selectively upon annealing near the desorption temperature. In conclusion, we demonstrate evidence for supramolecular doping via post-synthetic modification and to track chemical reactions in confined space.
Collapse
Affiliation(s)
- Christian Steiner
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gerasimova DP, Plemenkov VV, Lodochnikova OA. CRYSTAL STRUCTURE OF SULFINAMIDES
OF THE THIAZINE SERIES: FEATURES OF TRANSFERRING
THE OPEN-CHAIN SUPRAMOLECULAR SYNTHON
FROM THE RACEMIC TO HOMOCHIRAL ENVIRONMENT. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621060172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Wang H, Wang M, Liang X, Yuan J, Yang H, Wang S, Ren Y, Wu H, Pan F, Jiang Z. Organic molecular sieve membranes for chemical separations. Chem Soc Rev 2021; 50:5468-5516. [PMID: 33687389 DOI: 10.1039/d0cs01347a] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular separations that enable selective transport of target molecules from gas and liquid molecular mixtures, such as CO2 capture, olefin/paraffin separations, and organic solvent nanofiltration, represent the most energy sensitive and significant demands. Membranes are favored for molecular separations owing to the advantages of energy efficiency, simplicity, scalability, and small environmental footprint. A number of emerging microporous organic materials have displayed great potential as building blocks of molecular separation membranes, which not only integrate the rigid, engineered pore structures and desirable stability of inorganic molecular sieve membranes, but also exhibit a high degree of freedom to create chemically rich combinations/sequences. To gain a deep insight into the intrinsic connections and characteristics of these microporous organic material-based membranes, in this review, for the first time, we propose the concept of organic molecular sieve membranes (OMSMs) with a focus on the precise construction of membrane structures and efficient intensification of membrane processes. The platform chemistries, designing principles, and assembly methods for the precise construction of OMSMs are elaborated. Conventional mass transport mechanisms are analyzed based on the interactions between OMSMs and penetrate(s). Particularly, the 'STEM' guidelines of OMSMs are highlighted to guide the precise construction of OMSM structures and efficient intensification of OMSM processes. Emerging mass transport mechanisms are elucidated inspired by the phenomena and principles of the mass transport processes in the biological realm. The representative applications of OMSMs in gas and liquid molecular mixture separations are highlighted. The major challenges and brief perspectives for the fundamental science and practical applications of OMSMs are tentatively identified.
Collapse
Affiliation(s)
- Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4 117585, Singapore
| | - Shaoyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China and Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|