1
|
Song XM, Yu WY, Meng TT, Chi TX, Liu XH, Ni S, Bai FY, Zhao Z. Uncovering the degradation kinetics and mechanisms of difluoroacetone in the atmosphere and at the air-water interface by the OH radical and Cl atom: a theoretical investigation. Phys Chem Chem Phys 2025. [PMID: 40364772 DOI: 10.1039/d5cp00279f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The environmental and health risks of fluorinated compounds have attracted more and more attention due to their essential roles in the human body and potential contributions to greenhouse effects. Herein, the degradation mechanisms, kinetics properties, subsequent transformations, and atmospheric lifetimes of difluoroacetone (CF2HC(O)CH3) initiated by the Cl atom and OH radical were investigated in the atmosphere and at the air-water interface. The reaction coefficients and product branching ratios (or regioselectivity) for H-abstraction channels were calculated and analyzed within the range of 200-800 K by using multi-structural canonical variational transition state theory with small curvature tunneling (MS-CVT/SCT). At 297 K, the total rate coefficients of CF2HC(O)CH3 with the OH radical and Cl atom are, respectively, 1.39 × 10-14 and 8.04 × 10-14 cm3 molecule-1 s-1, which are consistent with the existing experimental data. In the presence of HO2, O2, and NO, CF2HC(O)CH3 can convert into COF2 and CO2 as end products. Our findings indicate that the OH radical plays a more significant role in determining the atmospheric lifetime of CF2HC(O)CH3 than the Cl atom. At the air-water interface, the H-abstraction reaction of CF2HC(O)CH3 induced by the OH radical occurs more rapidly at the -CH3 site (0.50 ps) than at the -CF2H site (2.50 ps), which is opposite to the selectivity of the gas-phase reaction. This study contributes to understanding the evolution mechanism of fluorinated acetone in a complex environment and improves our understanding of atmospheric chemical effects on aerosol surfaces.
Collapse
Affiliation(s)
- Xiao-Ming Song
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Wan-Ying Yu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Ting-Ting Meng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Tai-Xing Chi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Xiang-Huan Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, People's Republic of China
| |
Collapse
|
2
|
Lai EY, Ackermann L, Johansson MJ. A unified approach to meta-selective methylation, mono-, di- and trifluoromethylation of arenes. Chem Sci 2025:d5sc01367d. [PMID: 40236595 PMCID: PMC11995027 DOI: 10.1039/d5sc01367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Matched molecular series (MMS) are series of molecules that differ only by a single modification at a specific site. The synthesis of MMS is a desirable strategy in drug discovery campaigns. Small aliphatic motifs, notably methyl, mono-, di- and trifluoromethyl substituents (C1 units), are known to have profound effects on the physiochemical properties and/or potency of drug candidates. In this context, we herein report a unique strategy for achieving direct meta-selective methylation, mono-, di-, and trifluoromethylation from the same parent compound. This approach takes advantage of a highly meta-selective ruthenium(ii)-catalyzed alkylation, followed by a subsequent photocatalyzed protodecarboxylation or silver-mediated fluorodecarboxylation to reveal the (fluoro)methyl moiety. This method enables the late-stage access to MMS in small molecules bearing a variety of orienting groups as well as bio-relevant molecules containing complex functionalities, bypassing the need for de novo synthesis to access individual compounds in a series. Moreover, key physiochemical properties of drug candidates were successfully modulated, highlighting opportunities to accelerate medicinal chemistry programs in a sustainable fashion.
Collapse
Affiliation(s)
- Elisa Y Lai
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg Pepparedsleden 1 431 50 Mölndal Sweden
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg Pepparedsleden 1 431 50 Mölndal Sweden
| |
Collapse
|
3
|
Zhong S, Yu Z, Zhu Y, Shi L. Catalytic Fluorination of α-Branched Ketones with Nucleophilic Fluorine. Org Lett 2025; 27:3452-3458. [PMID: 40125966 DOI: 10.1021/acs.orglett.5c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
We herein disclose the first example of metal-free, redox-umpolung-enabled catalytic fluorination of α-branched ketones with nucleophilic fluorine by the judicious choice of an oxidant. The strategic use of cyclopropyl malonoyl peroxide in hypervalent iodine(III) catalysis expands the modularity and generality in the construction of α-fluorinated ketones with ideally orthogonal reactivity space, avoiding competing oxidation processes. Characteristic for this transformation is its operational simplicity, mild reaction conditions, and gram-scale synthetic ability.
Collapse
Affiliation(s)
- Shengyu Zhong
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiyou Yu
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuze Zhu
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Shi
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Ryan P, Iftikhar R, Hunter L. Origami with small molecules: exploiting the C-F bond as a conformational tool. Beilstein J Org Chem 2025; 21:680-716. [PMID: 40196389 PMCID: PMC11973591 DOI: 10.3762/bjoc.21.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
When present within an organic molecule, the C-F bond tends to align in predictable ways with neighbouring functional groups, due to stereoelectronic effects such as hyperconjugation and electrostatic attraction/repulsion. These fluorine-derived conformational effects have been exploited to control the shapes, and thereby enhance the properties, of a wide variety of functional molecules including pharmaceutical agents, liquid crystals, fragrance chemicals, organocatalysts, and peptides. This comprehensive review summarises developments in this field during the period 2010-2024.
Collapse
Affiliation(s)
- Patrick Ryan
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Ramsha Iftikhar
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
5
|
Wang M, Prasad A, Garrison NG, Rao P, Kwon HK, Siegler MA, Lectka T. Catalysis of Free C-C Bond Rotation: C-F---H-X H-Bonds Find a Catalytic Role. J Am Chem Soc 2025; 147:5577-5582. [PMID: 39925218 DOI: 10.1021/jacs.4c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
There are few dynamic processes in organic chemistry that are more central to the molecular structure than C-C bond rotation. It is notable, however, that there exist few (if any) cases in which its hindered variants can actually be catalyzed. In this communication, we report a unique model system for the clear documentation of the catalysis of 360° C-C bond rotation that employs a transient but key N-H---F-C hydrogen bond as a linchpin and secondary "dual" charge-induced n → π* interactions and ion pairing effects that bolster catalysis.
Collapse
Affiliation(s)
- Muyuan Wang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Aarush Prasad
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Nathaniel G Garrison
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Prabodh Rao
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Hyeok-Kyu Kwon
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Cogswell TJ, Lewis RJ, Sköld C, Nordqvist A, Ahlqvist M, Knerr L. The effect of gem-difluorination on the conformation and properties of a model macrocyclic system. Chem Sci 2024; 15:19770-19776. [PMID: 39568894 PMCID: PMC11575594 DOI: 10.1039/d4sc05424e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Conformational control of drug candidates to engineer improved potency and ADME properties is an ongoing area of research. Macrocyclic rings tend to offer a greater degree of rigidity than non-cyclised small molecules, and, as a result they are perfect platforms to instil conformational controls. In this study, the difluoroalkoxyphenyl moiety is examined as a tool to alter the conformation of macrocycles. A fluorinated and non-fluorinated macrocyclic matched pair is compared in terms of conformation preferences and related ADME properties. The synthesised macrocycles are found to give similar major conformations exhibiting a trans amide in the macrocyclic backbone. However, for the fluorinated macrocycle, the major trans amide conformation is in equilibrium with a cis amide minor conformation, seen by 1H NMR in a 4 : 1 ratio of trans/cis. The conformational fits for the minor fluorinated isomer demonstrate the out of plane preference of the difluoroalkoxy system encouraging the amide within the macrocycle backbone to adopt a cis conformation. The fluorinated macrocycle was less metabolically stable compared to the non-fluorinated, postulated to be a result of the interconversion of trans amide to the cis amide, which potentially could be more readily metabolised.
Collapse
Affiliation(s)
- T J Cogswell
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - R J Lewis
- Medicinal Chemistry, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - C Sköld
- Drug Design and Discovery, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574 SE751 23 Uppsala Sweden
| | - A Nordqvist
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - M Ahlqvist
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - L Knerr
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| |
Collapse
|
7
|
Namitharan K, Cellnik T, Mukanova A, Kim S, Healy AR. A Dual Role for the N-Perfluorobutanesulfinamide Auxiliary in an Asymmetric Decarboxylative Mannich Reaction. Org Lett 2024; 26:8810-8815. [PMID: 39348273 PMCID: PMC11494657 DOI: 10.1021/acs.orglett.4c03139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Herein, we demonstrate that the enhanced electrophilicity of N-perfluorobutanesulfinamide auxiliary-derived imines enables a highly selective decarboxylative Mannich reaction under mild conditions. The molecular sieves-mediated transformation tolerates a broad substrate scope and produces chiral β-amino thioesters in high yield. Additionally, we demonstrate that the N-perfluoroalkyl sulfinyl group can function as a phase tag for fluorous purification, thus enabling the rapid isolation of the chiral amine products by solid-phase extraction. The synthetic utility of this method is illustrated by the synthesis of sitagliptin, ruspolinone, and the natural product negamycin.
Collapse
Affiliation(s)
- Kayambu Namitharan
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab
Emirates (UAE)
| | - Torsten Cellnik
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab
Emirates (UAE)
| | - Assel Mukanova
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab
Emirates (UAE)
| | - Shinwon Kim
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab
Emirates (UAE)
| | - Alan R. Healy
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab
Emirates (UAE)
| |
Collapse
|
8
|
Egbaria N, Agbaria M, Borin VA, Hoffman RE, Bogoslavsky B, Schapiro I, Nairoukh Z. The Conformational Behaviour of Fluorinated Tetrahydrothiopyran. Chemistry 2024; 30:e202402260. [PMID: 38989892 DOI: 10.1002/chem.202402260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/12/2024]
Abstract
We present a comprehensive study on the conformational behavior of diversely substituted 4-fluorotetrahydrothiopyran derivatives. Through quantum chemical simulations including DFT as well as NBO and NPA analysis, we elucidate the pivotal role of electrostatic interactions, occasionally complemented by hyperconjugative interactions, in stabilizing axial fluorine conformers. Less polar conformers were occasionally obtained, attributed to the interplay of electrostatic and hyperconjugative interactions. Experimental validation through NMR spectroscopy aligns with the computational analysis, thus providing a coherent understanding of the structural dynamics of these compounds.
Collapse
Affiliation(s)
- Nwar Egbaria
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Mohamed Agbaria
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of, Jerusalem, 9190401, Jerusalem, Israel
| | - Roy E Hoffman
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Benny Bogoslavsky
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of, Jerusalem, 9190401, Jerusalem, Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| |
Collapse
|
9
|
Dhawa U, Lavrencic L, Hu X. Nickel-Catalyzed Enantio- and Diastereoselective Synthesis of Fluorine-Containing Vicinal Stereogenic Centers. ACS CENTRAL SCIENCE 2024; 10:1657-1666. [PMID: 39220696 PMCID: PMC11363326 DOI: 10.1021/acscentsci.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The construction of fluorinated architectures has been a topic of interest to medicinal chemists due to their unique ability to improve the pharmacokinetic properties of bioactive compounds. However, the stereoselective synthesis of fluoro-organic compounds with vicinal stereogenic centers is a challenge. Herein, we present a directing-groupfree nickel-hydride catalyzed hydroalkylation of fluoroalkenes to afford fluorinated motifs with two adjacent chiral centers in excellent yields and stereoselectivities. Our method provides expedient access to biologically relevant, highly enantioenriched organofluorine compounds. Furthermore, the strategy can be used for the diastereo- and enantioselective synthesis of vicinal difluorides, which have recently gained attention in the fields of organocatalysis and peptide mimics.
Collapse
Affiliation(s)
| | | | - Xile Hu
- Laboratory of Inorganic Synthesis
and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), ISIC-LSCI, Lausanne 1015, Switzerland
| |
Collapse
|
10
|
Rai Deka JK, Sahariah B, Sarma BK. Understanding the Cis-Trans Amide Bond Isomerization of N, N'-Diacylhydrazines to Develop Guidelines for A Priori Prediction of Their Most Stable Solution Conformers. J Org Chem 2024; 89:10419-10433. [PMID: 36700530 DOI: 10.1021/acs.joc.2c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
N,N'-diacylhydrazines (R1CO-NR3-NR4-COR2) are a class of small molecules with a wide range of applications in chemistry and biology. They are structurally unique in the sense that their two amide groups are connected via a N-N single bond, and as a result, these molecules can exist in eight different isomeric forms. Four of these are amide isomers [trans-trans (t-t), trans-cis (t-c), cis-trans (c-t), and cis-cis (c-c)] arising from C-N bond restricted rotation. In addition, each of these amide isomers can exist in two different isomeric forms due to N-N bond restricted rotation, especially when R3 and R4 groups are relatively bigger. Herein, we have systematically investigated the conformations of 55 N,N'-diacylhydrazines using a combination of solution NMR spectroscopy, X-ray crystallography, and density functional theory calculations. Our data suggest that when the substituents R3 and R4 on the nitrogen atoms are both hydrogens. These molecules prefer twisted trans-trans (t-t) (>90%) geometries (H-N-C═O ∼ 180°), whereas the N-alkylated and N,N'-dialkylated molecules prefer twisted trans-cis (t-c) geometries. Herein, we have analyzed the stabilization of the various isomers of these molecules in light of steric and stereoelectronic effects. We provide a guideline to a priori predict the most stable conformers of the N,N'-diacylhydrazines just by examining their substituents (R1-R4).
Collapse
Affiliation(s)
- Jugal Kishore Rai Deka
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Bani Kanta Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| |
Collapse
|
11
|
Wang ZX, Xu Y, Gilmour R. Regioselective fluorination of allenes enabled by I(I)/I(III) catalysis. Nat Commun 2024; 15:5770. [PMID: 38982181 PMCID: PMC11233658 DOI: 10.1038/s41467-024-50227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
The prominence and versatility of propargylic fluorides in medicinal chemistry, coupled with the potency of F/H and F/OH bioisosterism, has created a powerful impetus to develop efficient methods to facilitate their construction. Motivated by the well-established conversion of propargylic alcohols to allenes, an operationally simple, organocatalysis-based strategy to process these abundant unsaturated precursors to propargylic fluorides would be highly enabling: this would consolidate the bioisosteric relationship that connects propargylic alcohols and fluorides. Herein, we describe a highly regioselective fluorination of unactivated allenes based on I(I)/I(III) catalysis in the presence of an inexpensive HF source that serves a dual role as both nucleophile and Brønsted acid activator. This strategy enables a variety of secondary and tertiary propargylic fluorides to be prepared: these motifs are prevalent across the bioactive small molecule spectrum. Facile product derivatisation, concise synthesis of multi-vicinal fluorinated products together with preliminary validation of enantioselective catalysis are disclosed. The expansive potential of this platform is also demonstrated through the highly regioselective organocatalytic oxidation, chlorination and arylation of allenes. It is envisaged that the transformation will find application in molecular design and accelerate the exploration of organofluorine chemical space.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Yameng Xu
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
12
|
Xin J, Lu X, Cao J, Wu W, Liu Q, Wang D, Zhou X, Ding D. Fluorinated Organic Polymers for Cancer Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404645. [PMID: 38678386 DOI: 10.1002/adma.202404645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/22/2024] [Indexed: 04/30/2024]
Abstract
In the realm of cancer therapy, the spotlight is on nanoscale pharmaceutical delivery systems, especially polymer-based nanoparticles, for their enhanced drug dissolution, extended presence in the bloodstream, and precision targeting achieved via surface engineering. Leveraging the amplified permeation and retention phenomenon, these systems concentrate therapeutic agents within tumor tissues. Nonetheless, the hurdles of systemic toxicity, biological barriers, and compatibility with living systems persist. Fluorinated polymers, distinguished by their chemical idiosyncrasies, are poised for extensive biomedical applications, notably in stabilizing drug metabolism, augmenting lipophilicity, and optimizing bioavailability. Material science heralds the advent of fluorinated polymers that, by integrating fluorine atoms, unveil a suite of drug delivery merits: the hydrophobic traits of fluorinated alkyl chains ward off lipid or protein disruption, the carbon-fluorine bond's stability extends the drug's lifecycle in the system, and a lower alkalinity coupled with a diminished ionic charge bolsters the drug's ability to traverse cellular membranes. This comprehensive review delves into the utilization of fluorinated polymers for oncological pharmacotherapy, elucidating their molecular architecture, synthetic pathways, and functional attributes, alongside an exploration of their empirical strengths and the quandaries they encounter in both experimental and clinical settings.
Collapse
Affiliation(s)
- Jingrui Xin
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Lu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Weihui Wu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Poole W, Peron F, Fox SJ, Wells N, Skylaris CK, Essex JW, Kuprov I, Linclau B. Conformational Analysis of 1,3-Difluorinated Alkanes. J Org Chem 2024; 89:8789-8803. [PMID: 38820049 PMCID: PMC11197103 DOI: 10.1021/acs.joc.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Fluorine substitution can have a profound impact on molecular conformation. Here, we present a detailed conformational analysis of how the 1,3-difluoropropylene motif (-CHF-CH2-CHF-) determines the conformational profiles of 1,3-difluoropropane, anti- and syn-2,4-difluoropentane, and anti- and syn-3,5-difluoroheptane. It is shown that the 1,3-difluoropropylene motif strongly influences alkane chain conformation, with a significant dependence on the polarity of the medium. The conformational effect of 1,3-fluorination is magnified upon chain extension, which contrasts with vicinal difluorination. Experimental evidence was obtained from NMR analysis, where polynomial complexity scaling simulation algorithms were necessary to enable J-coupling extraction from the strong second-order spectra, particularly for the large 16-spin systems of the difluorinated heptanes. These results improve our understanding of the conformational control toolkit for aliphatic chains, yield simple rules for conformation population analysis, and demonstrate quantum mechanical time-domain NMR simulations for liquid state systems with large numbers of strongly coupled spins.
Collapse
Affiliation(s)
- William
G. Poole
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Florent Peron
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Stephen J. Fox
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Neil Wells
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Chris-Kriton Skylaris
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Ilya Kuprov
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan
281-S4, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Berrino E, Cantin T, Artault M, Beck S, Jessen C, Marrot J, Guégan F, Mingot A, Kornath A, Thibaudeau S. Accumulation, Characterization and Reactivity of Chiral Ammonium-Carboxonium Dications in Superacid. Angew Chem Int Ed Engl 2024; 63:e202404066. [PMID: 38587216 DOI: 10.1002/anie.202404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
The accumulation of chiral ammonium-oxocarbenium dications in superacid is evidenced by low-temperature NMR spectroscopy, X-ray diffraction analysis and confirmed by DFT calculations. Its potential for the diastereoselective remote hydrofunctionalization of non-activated alkene is also explored.
Collapse
Affiliation(s)
- Emanuela Berrino
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Thomas Cantin
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Maxime Artault
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Stefanie Beck
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377, München, Germany
| | - Christoph Jessen
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377, München, Germany
| | - Jérôme Marrot
- UMR CNRS 8180, 45 avenue des États-Unis, 78035, Versailles Cedex, France
| | - Frédéric Guégan
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Agnès Mingot
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| | - Andreas Kornath
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377, München, Germany
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel, Brunet, 86073 Poitiers cedex 9, France
| |
Collapse
|
15
|
Ruyet L, Roblick C, Häfliger J, Wang ZX, Stoffels TJ, Daniliuc CG, Gilmour R. Catalytic Ring Expanding Difluorination: An Enantioselective Platform to Access β,β-Difluorinated Carbocycles. Angew Chem Int Ed Engl 2024; 63:e202403957. [PMID: 38482736 DOI: 10.1002/anie.202403957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Cyclic β,β-difluoro-carbonyl compounds have a venerable history as drug discovery leads, but limitations in the synthesis arsenal continue to impede chemical space exploration. This challenge is particularly acute in the arena of fluorinated medium rings where installing the difluoromethylene unit subtly alters the ring conformation by expanding the internal angle (∠C-CF2-C>∠C-CH2-C): this provides a handle to modulate physicochemistry (e.g. pKa). To reconcile this disparity, a highly modular ring expansion has been devised that leverages simple α,β-unsaturated esters and amides, and processes them to one-carbon homologated rings with concomitant geminal difluorination (6 to 10 membered rings, up to 95 % yield). This process is a rare example of the formal difluorination of an internal alkene and is enabled by sequential I(III)-enabled O-activation. Validation of enantioselective catalysis in the generation of unprecedented medium ring scaffolds is reported (up to 93 : 7 e.r.) together with X-ray structural analyses and product derivatization.
Collapse
Affiliation(s)
- Louise Ruyet
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Christoph Roblick
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Joel Häfliger
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Zi-Xuan Wang
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Tobias Jürgen Stoffels
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
16
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
17
|
Liu DP, Zhang XS, Liu S, Hu XG. Dehydroxylative radical N-glycosylation of heterocycles with 1-hydroxycarbohydrates enabled by copper metallaphotoredox catalysis. Nat Commun 2024; 15:3401. [PMID: 38649350 PMCID: PMC11035684 DOI: 10.1038/s41467-024-47711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
N-Glycosylated heterocycles play important roles in biological systems and drug development. The synthesis of these compounds heavily relies on ionic N-glycosylation, which is usually constrained by factors such as labile glycosyl donors, precious metal catalysts, and stringent conditions. Herein, we report a dehydroxylative radical method for synthesizing N-glycosides by leveraging copper metallaphotoredox catalysis, in which stable and readily available 1-hydroxy carbohydrates are activated for direct N-glycosylation. Our method employs inexpensive photo- and copper- catalysts and can tolerate some extent of water. The reaction exhibits a broad substrate scope, encompassing 76 examples, and demonstrates high stereoselectivity, favoring 1,2-trans selectivity for furanoses and α-selectivity for pyranoses. It also exhibits high site-selectivity for substrates containing multiple N-atoms. The synthetic utility is showcased through the late-stage functionalization of bioactive compounds and pharmaceuticals like Olaparib, Axitinib, and Metaxalone. Mechanistic studies prove the presence of glycosyl radicals and the importance of copper metallaphotoredox catalysis.
Collapse
Affiliation(s)
- Da-Peng Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiao-Sen Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Shuai Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
18
|
Guo T, Yang G, Li Y, Liu C, Yang F, Hou D, Sun H, Zheng Y, Lin X, Liu L. Crystallization-induced emission from F-doped carbon dots. NANOSCALE ADVANCES 2024; 6:1997-2001. [PMID: 38633051 PMCID: PMC11019493 DOI: 10.1039/d4na00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Herein, F-doped CDs with bright red SSF were synthesized by a solvothermal method using trifluoroethanol as the solvent and m-hydroxybenzaldehyde as the carbon source. Strong F-F interactions are vital for inducing crystallization, and solid luminescence is achieved by blocking the nonradiative energy dissipation pathways of crystalline organizations.
Collapse
Affiliation(s)
- Tingxuan Guo
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University 300 Bailong Road Kunming 650224 Yunnan China
| | - Gaixia Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University 300 Bailong Road Kunming 650224 Yunnan China
| | - Yan Li
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University 300 Bailong Road Kunming 650224 Yunnan China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University 300 Bailong Road Kunming 650224 Yunnan China
| | - Fulin Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University 300 Bailong Road Kunming 650224 Yunnan China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University 300 Bailong Road Kunming 650224 Yunnan China
| | - Hao Sun
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University 300 Bailong Road Kunming 650224 Yunnan China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University 300 Bailong Road Kunming 650224 Yunnan China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University 300 Bailong Road Kunming 650224 Yunnan China
| | - Lanxiang Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, National Forestry and Grassland Administration Kunming 650233 China
| |
Collapse
|
19
|
Clover A, Jones AP, Berger RF, Kaminsky W, O’Neil GW. Regioselective Fluorohydrin Synthesis from Allylsilanes and Evidence for a Silicon-Fluorine Gauche Effect. J Org Chem 2024; 89:4309-4318. [PMID: 38457664 PMCID: PMC11002936 DOI: 10.1021/acs.joc.3c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Allylsilanes can be regioselectively transformed into the corresponding 3-silylfluorohydrin in good yield using a sequence of epoxidation followed by treatment with HF·Et3N with or without isolation of the intermediate epoxide. Various silicon-substitutions are tolerated, resulting in a range of 2-fluoro-3-silylpropan-1-ol products from this method. Whereas other fluorohydrin syntheses by epoxide opening using HF·Et3N generally require more forcing conditions (e.g., higher reaction temperature), opening of allylsilane-derived epoxides with this reagent occurs at room temperature. We attribute this rate acceleration along with the observed regioselectivity to a β-silyl effect that stabilizes a proposed cationic intermediate. The use of enantioenriched epoxides indicates that both SN1- and SN2-type mechanisms may be operable depending on substitution at silicon. Conformational analysis by NMR and theory along with a crystal structure obtained by X-ray diffraction points to a preference for silicon and fluorine to be proximal to one another in the products, perhaps favored due to electrostatic interactions.
Collapse
Affiliation(s)
- Alexie
W. Clover
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98229, United States
| | - Adam P. Jones
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98229, United States
| | - Robert F. Berger
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98229, United States
| | - Werner Kaminsky
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gregory. W. O’Neil
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98229, United States
| |
Collapse
|
20
|
Kim HE, Song M, Hwang S, Chung WJ. Access to Multifunctionalized Tetrasubstituted Carbon Centers Bearing up to Three Different Heteroatoms via Tandem Geminal Chlorofluorination of 1,2-Dicarbonyl Compounds. Org Lett 2023. [PMID: 38032312 DOI: 10.1021/acs.orglett.3c03527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The incorporation of noncarbon heteroatoms into organic molecules typically instills characteristic and often valuable functionalities. The copresence of different heteroatoms can further broaden their utility through the synergistic cooperative effects, which may even lead to the discovery of formerly unavailable properties that are not just a simple accumulation of each function. However, despite increasing interest in the controllable installation of heteroatoms, it has been extremely challenging to construct carbon centers having three different heteroatoms in a synthetically useful manner. In this work, our group's tandem geminal chlorofluorination (Cl, F) strategy was applied to rationally designed heteroatom-bearing 1,2-dicarbonyl substrates, including α-keto thioesters (S), α-keto N-acylindoles (N), and α-keto acylsilane (Si), which resulted in the practical production of doubly or triply heterofunctionalized tetrasubstituted carbon centers with excellent site-selectivity.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Mugeon Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sunjoo Hwang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
21
|
Stünkel T, Siebold K, Okumatsu D, Murata K, Ruyet L, Daniliuc CG, Gilmour R. para-Selective dearomatization of phenols by I(i)/I(iii) catalysis-based fluorination. Chem Sci 2023; 14:13574-13580. [PMID: 38033893 PMCID: PMC10685341 DOI: 10.1039/d3sc05952a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
The regio- and enantio-selective dearomatization of phenols has been achieved by I(i)/I(iii) catalysis enabled fluorination. The process is highly para-selective, guiding the fluoride nucleophile to the distal C4 position of the substrate to generate fluorinated cyclohexadienones in an operationally simple manner. Extensive optimization has revealed key parameters that orchestrate enantioselectivity in this historically challenging transformation. A range of diversely substituted substrates are disclosed (20 examples, up to 92 : 8 e.r.) and the reaction displays efficiency that is competitive with the current state of the art in hydroxylation chemistry: this provides a preparative platform to enable OH to F bioisosterism to be explored. Finally, the utility of the products in accessing densely functionalized cyclic scaffolds with five contiguous stereocenters is disclosed together with crystallographic analyses to unveil fluorine-carbonyl non-covalent interactions.
Collapse
Affiliation(s)
- Timo Stünkel
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Kathrin Siebold
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Daichi Okumatsu
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Kazuki Murata
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Louise Ruyet
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
22
|
Wang ZX, Livingstone K, Hümpel C, Daniliuc CG, Mück-Lichtenfeld C, Gilmour R. Regioselective, catalytic 1,1-difluorination of enynes. Nat Chem 2023; 15:1515-1522. [PMID: 37845310 PMCID: PMC10624631 DOI: 10.1038/s41557-023-01344-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Fluorinated small molecules are prevalent across the functional small-molecule spectrum, but the scarcity of naturally occurring sources creates an opportunity for creative endeavour in developing routes to access these important materials. Iodine(I)/iodine(III) catalysis has proven to be particularly well-suited to this task, enabling abundant alkene substrates to be readily intercepted by in situ-generated λ3-iodanes and processed to high-value (di)fluorinated products. These organocatalysis paradigms often emulate metal-based processes by engaging the π bond and, in the case of styrenes, facilitating fluorinative phenonium-ion rearrangements to generate difluoromethylene units. Here we demonstrate that enynes are competent proxies for styrenes, thereby mitigating the recurrent need for aryl substituents, and enabling highly versatile homopropargylic difluorides to be generated in an operationally simple manner. The scope of the method is disclosed, together with application in target synthesis (>30 examples, up to >90% yield).
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Keith Livingstone
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Carla Hümpel
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Constantin G Daniliuc
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | | | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
- Cells in Motion (CiM) Interfaculty Center, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| |
Collapse
|
23
|
Campbell E, Jordan C, Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET). Chem Soc Rev 2023; 52:3599-3626. [PMID: 37171037 PMCID: PMC10243284 DOI: 10.1039/d3cs00037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/13/2023]
Abstract
Carbohydrate diversity is foundational in the molecular literacy that regulates cellular function and communication. Consequently, delineating and leveraging this structure-function interplay continues to be a core research objective in the development of candidates for biomedical diagnostics. A totemic example is the ubiquity of 2-deoxy-2-[18F]-fluoro-D-glucose (2-[18F]-FDG) as a radiotracer for positron emission tomography (PET), in which metabolic trapping is harnessed. Building on this clinical success, more complex sugars with unique selectivities are gaining momentum in molecular recognition and personalised medicine: this reflects the opportunities that carbohydrate-specific targeting affords in a broader sense. In this Tutorial Review, key milestones in the development of 2-[18F]-FDG and related glycan-based radiotracers for PET are described, with their diagnostic functions, to assist in navigating this rapidly expanding field of interdisciplinary research.
Collapse
Affiliation(s)
- Emma Campbell
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Christina Jordan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
24
|
Häfliger J, Ruyet L, Stübke N, Daniliuc CG, Gilmour R. Integrating I(I)/I(III) catalysis in reaction cascade design enables the synthesis of gem-difluorinated tetralins from cyclobutanols. Nat Commun 2023; 14:3207. [PMID: 37268631 DOI: 10.1038/s41467-023-38957-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Partially saturated, fluorine-containing rings are ubiquitous across the drug discovery spectrum. This capitalises upon the biological significance of the native structure and the physicochemical advantages conferred by fluorination. Motivated by the significance of aryl tetralins in bioactive small molecules, a reaction cascade has been validated to generate novel gem-difluorinated isosteres from 1,3-diaryl cyclobutanols in a single operation. Under the Brønsted acidity of the catalysis conditions, an acid-catalysed unmasking/fluorination sequence generates a homoallylic fluoride in situ. This species serves as the substrate for an I(I)/I(III) cycle and is processed, via a phenonium ion rearrangement, to an (isolable) 1,3,3-trifluoride. A final C(sp3)-F bond activation event, enabled by HFIP, forges the difluorinated tetralin scaffold. The cascade is highly modular, enabling the intermediates to be intercepted: this provides an expansive platform for the generation of structural diversity.
Collapse
Affiliation(s)
- Joel Häfliger
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Louise Ruyet
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nico Stübke
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
25
|
Bing JA, Johnston JN. Enantioselective Synthesis of cis- and trans-Cycloheptyl β-Fluoro Amines by Sequential aza-Henry Addition/Ring-Closing Metathesis. Org Lett 2023; 25:950-955. [PMID: 36735762 PMCID: PMC10240541 DOI: 10.1021/acs.orglett.2c04285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis of 7-membered carbocyclic β-fluoroamines is accomplished by a combination of the enantioselective aza-Henry reaction of aliphatic N-Boc imines and ring-closing metathesis. Use of reductive denitration gives both diastereomers of the β-fluoro amine carbocycle, each with high enantiomeric excess.
Collapse
Affiliation(s)
- Jade A. Bing
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Jeffrey N. Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
26
|
Smajlagic I, Johnston JN, Dudding T. Secondary Orbital Effect Involving Fluorine is Responsible for Substrate-Controlled Diastereodivergence in the Catalyzed syn-aza-Henry Reaction of α-Fluoronitroalkanes. Chemistry 2023; 29:e202204066. [PMID: 36607705 DOI: 10.1002/chem.202204066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
The fluorine atom is a powerful, yet enigmatic influence on chemical reactions. True to form, fluorine was recently discovered to effect diastereodivergence in an enantioselective aza-Henry reaction, resulting in a very rare case of syn-β-amino nitroalkane products. More bewildering was the observation of an apparent hierarchy of substituents within this substrate-controlled behavior: Ph>F>alkyl. These cases have now been examined comprehensively by computational methods, including both non-fluorinated and α-fluoro nitronate additions to aldimines catalyzed by a chiral bis(amidine) [BAM] proton complex. This study revealed the network of non-covalent interactions that dictate anti- (α-aryl) versus syn-selectivity (α-alkyl) using α-fluoronitronate nucleophiles, and an underlying secondary orbital interaction between fluorine and the activated azomethine.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON L2S 3A1, Canada
| | - Jeffrey N Johnston
- Department of Chemistry and Institute of Chemical Biology, Vanderbilt University Nashville, Tennessee, 37235, USA
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON L2S 3A1, Canada
| |
Collapse
|
27
|
Yu Y, Schäfer M, Daniliuc CG, Gilmour R. Catalytic, Regioselective 1,4-Fluorodifunctionalization of Dienes. Angew Chem Int Ed Engl 2023; 62:e202214906. [PMID: 36345795 PMCID: PMC10107283 DOI: 10.1002/anie.202214906] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 11/09/2022]
Abstract
A catalysis-based regioselective 1,4-fluorofunctionalization of trifluoromethyl substituted 1,3-dienes has been developed to access compact, highly functionalized products. The process allows E,Z-mixed dienes to be processed to a single E-alkene isomer, and leverages an inexpensive and operationally convenient I(I)/I(III) catalysis platform. The first example of catalytic 1,4-difluorination is disclosed and subsequently evolved to enable 1,4-hetero-difunctionalization, which allows δ-fluoro-alcohol and amine derivatives to be forged in a single operation. The protocol is compatible with a variety of nucleophiles including fluoride, nitriles, carboxylic acids, alcohols and even water thereby allowing highly functionalized products, with a stereocenter bearing both C(sp3 )-F and C(sp3 )-CF3 groups, to be generated rapidly. Scalability (up to 3 mmol), and facile post-reaction modifications are demonstrated to underscore the utility of the method in expanding organofluorine chemical space.
Collapse
Affiliation(s)
- You‐Jie Yu
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Michael Schäfer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
28
|
Zivkovic FG, D-T Nielsen C, Schoenebeck F. Access to N-CF 3 Formamides by Reduction of N-CF 3 Carbamoyl Fluorides. Angew Chem Int Ed Engl 2022; 61:e202213829. [PMID: 36308723 PMCID: PMC10099374 DOI: 10.1002/anie.202213829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The departure into unknown chemical space is essential for the discovery of new properties and function. We herein report the first synthetic access to N-trifluoromethylated formamides. The method involves the reduction of bench-stable NCF3 carbamoyl fluorides and is characterized by operational simplicity and mildness, tolerating a broad range of functional groups as well as stereocenters. The newly made N-CF3 formamide motif proved to be highly robust and compatible with diverse chemical transformations, underscoring its potential as building block in complex functional molecules.
Collapse
Affiliation(s)
- Filip G Zivkovic
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christian D-T Nielsen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
29
|
Livingstone K, Siebold K, Meyer S, Martín-Heras V, Daniliuc CG, Gilmour R. Skeletal Ring Contractions via I(I)/I(III) Catalysis: Stereoselective Synthesis of cis-α,α-Difluorocyclopropanes. ACS Catal 2022; 12:14507-14516. [PMID: 36504915 PMCID: PMC9724094 DOI: 10.1021/acscatal.2c04511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Indexed: 11/12/2022]
Abstract
The clinical success of α,α-difluorocyclopropanes, combined with limitations in the existing synthesis portfolio, inspired the development of an operationally simple, organocatalysis-based strategy to access cis-configured derivatives with high levels of stereoselectivity (up to >20:1 cis:trans). Leveraging an I(I)/I(III)-catalysis platform in the presence of an inexpensive HF source, it has been possible to exploit disubstituted bicyclobutanes (BCBs) as masked cyclobutene equivalents for this purpose. In situ generation of this strained alkene, enabled by Brønsted acid activation, facilitates an unprecedented 4 → 3 fluorinative ring contraction, to furnish cis-α,α-difluorinated cyclopropanes in a highly stereoselective manner (up to 88% yield). Mechanistic studies are disclosed together with conformational analysis (X-ray crystallography and NMR) to validate cis-α,α-difluorocyclopropanes as isosteres of the 1,4-dicarbonyl moiety. Given the importance of this unit in biology and the foundational no → π* interactions that manifest themselves in this conformation (e.g., collagen), it is envisaged that the title motif will find application in focused molecular design.
Collapse
|
30
|
Guo W, Gharbaoui T, Lizza JR, Meng F, Wang Y, Xin M, Chen Y, Li J, Chen CY. Practical Asymmetric Synthesis of a Bicyclic Pyrrolidinol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenxing Guo
- Pharmablock USA, 777 Schwab Road, Unit D, Hatfield, Pennsylvania 19440, United States
| | - Tawfik Gharbaoui
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | - Joseph R. Lizza
- Pharmablock USA, 777 Schwab Road, Unit D, Hatfield, Pennsylvania 19440, United States
| | - Fanfan Meng
- Pharmablock Nanjing, 10 Xuefu Rd., Jiangbei New Area, Nanjing, Jiangsu 210032, P. R. China
| | - Yuanxian Wang
- Pharmablock Nanjing, 10 Xuefu Rd., Jiangbei New Area, Nanjing, Jiangsu 210032, P. R. China
| | - Maoshu Xin
- Pharmablock Nanjing, 10 Xuefu Rd., Jiangbei New Area, Nanjing, Jiangsu 210032, P. R. China
| | - Yuanpeng Chen
- Pharmablock Nanjing, 10 Xuefu Rd., Jiangbei New Area, Nanjing, Jiangsu 210032, P. R. China
| | - Jing Li
- Pharmablock USA, 777 Schwab Road, Unit D, Hatfield, Pennsylvania 19440, United States
| | - Cheng-yi Chen
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| |
Collapse
|
31
|
Deng Q, Gu J, Zhang H, Zhang Y, Meng X. Sustainable access to benzothiophene derivatives bearing a trifluoromethyl group via a three-component domino reaction in water. Org Biomol Chem 2022; 20:7424-7428. [PMID: 35822661 DOI: 10.1039/d2ob01034h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free three-component domino reaction was developed for the synthesis of benzothiophene fused pyrrolidones bearing a CF3 group for the first time. The notable advantages of this strategy over the existing methods include the use of water as a solvent at room temperature, transition metal-free conditions, a broad substrate scope, and easy scale-up synthesis. More importantly, the benzothiophene derivatives have been found to show potent anticancer activities using the Cell Counting Kit-8 (CCK-8) assay.
Collapse
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, NO.1399 Shichang West Road, Suzhou 215228, China
| | - Huan Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| | - Youlai Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| |
Collapse
|
32
|
Lauzon S, Ollevier T. Fluorine in metal-catalyzed asymmetric transformations: the lightest halogen causing a massive effect. Chem Sci 2022; 13:10985-11008. [PMID: 36320478 PMCID: PMC9516955 DOI: 10.1039/d2sc01096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/06/2022] [Indexed: 11/21/2022] Open
Abstract
This review aims at providing an overview of the most significant applications of fluorine-containing ligands reported in the literature starting from 2001 until mid-2021. The ligands are classified according to the nature of the donor atoms involved. This review highlights both metal-ligand interactions and the structure-reactivity relationships resulting from the presence of the fluorine atom or fluorine-containing substituents on chiral catalysts.
Collapse
Affiliation(s)
- Samuel Lauzon
- Département de Chimie, Université Laval 1045 Avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Thierry Ollevier
- Département de Chimie, Université Laval 1045 Avenue de la Médecine Québec QC G1V 0A6 Canada
| |
Collapse
|
33
|
Bilska-Markowska M, Jankowski W, Hoffmann M, Kaźmierczak M. Design and Synthesis of New α-hydroxy β-fluoro/β-trifluoromethyl and Unsaturated Phosphonates from Carbohydrate-Derived Building Blocks via Pudovik and Horner–Wadsworth–Emmons Reactions. Molecules 2022; 27:molecules27175404. [PMID: 36080169 PMCID: PMC9457578 DOI: 10.3390/molecules27175404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we present the application of fluorinated carbohydrate-derived building blocks for α-hydroxy β-fluoro/β-trifluoromethyl and unsaturated phosphonates synthesis. Pudovik and Horner–Wadsworth–Emmons reactions were applied to achieve this goal. The proposed pathway of the key reactions is supported by the experimental results, as well as quantum chemical calculations. The structure of the products was established by spectroscopic (1D, 2D NMR) and spectrometric (MS) techniques. Based on our data received, we claim that the progress of the Pudovik and HWE reactions is significantly influenced by the acidic protons present in the molecules as assessed by pKa values of the reagent.
Collapse
Affiliation(s)
- Monika Bilska-Markowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Wojciech Jankowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Correspondence:
| |
Collapse
|
34
|
Schäfer M, Stünkel T, Daniliuc CG, Gilmour R. Regio- and Enantioselective Intermolecular Aminofluorination of Alkenes via Iodine(I)/Iodine(III) Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205508. [PMID: 35583965 PMCID: PMC9400885 DOI: 10.1002/anie.202205508] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 12/12/2022]
Abstract
The regio- and enantio-selective, intermolecular vicinal fluoroamination of α-trifluoromethyl styrenes has been achieved by enantioselective II /IIII catalysis. Leveraging C2 -symmetric resorcinol-based aryl iodide catalysts, it has been possible to intercept the transient iodonium intermediate using simple nitriles, which function as both the solvent and nucleophile. In situ Ritter reaction provides direct access to the corresponding amides (up to 89 % yield, e.r. 93 : 7). This main group catalysis paradigm inverts the intrinsic regioselectivity of the uncatalyzed process, thereby providing facile access to tertiary, benzylic stereocenters bearing both CF3 and F groups. Privileged phenethylamine pharmacophores can be generated in which there is complete local partial charge inversion (CF3δ- /Fδ- versus CH3δ+ /Hδ+ ). Crystallographic analyses of representative β-fluoroamide products reveal highly pre-organized conformations that manifest the stereoelectronic gauche effect.
Collapse
Affiliation(s)
- Michael Schäfer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Timo Stünkel
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
35
|
Cáceres-Castillo D, Mirón-López G, García-López M, Chan-Navarro R, Quijano-Quiñones R, Briceño-Vargas F, Cauich-Kumul R, Morales-Rojas H, Herrera-España A. Boronate Derivatives of Damnacanthal: Synthesis, Characterization, Optical Properties and Theoretical Calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Häfliger J, Sokolova OO, Lenz M, Daniliuc CG, Gilmour R. Stereocontrolled Synthesis of Fluorinated Isochromans via Iodine(I)/Iodine(III) Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205277. [PMID: 35536157 PMCID: PMC9401867 DOI: 10.1002/anie.202205277] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 12/19/2022]
Abstract
The success of saturated, fluorinated heterocycles in contemporary drug discovery provides a stimulus for creative endeavor in main group catalysis. Motivated by the ubiquity of isochromans across the bioactive small molecule spectrum, the prominence of the anomeric effect in regulating conformation, and the metabolic lability of the benzylic position, iodine(I)/iodine(III) catalysis has been leveraged for the stereocontrolled generation of selectively fluorinated analogs. To augment the current arsenal of fluorocyclization reactions involving carboxylic acid derivatives, the reaction of readily accessible 2-vinyl benzaldehydes is disclosed (up to >95 : 05 d.r. and 97 : 03 e.r.). Key stereoelectronic interactions manifest themselves in the X-ray crystal structures of the products, thereby validating the [CH2 -CHF] fragment as a stereoelectronic mimic of the [O-CH(OR)] acetal motif.
Collapse
Affiliation(s)
- Joel Häfliger
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Olga O. Sokolova
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Madina Lenz
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
37
|
Häfliger J, Sokolova OO, Lenz M, Daniliuc CG, Gilmour R. Stereokontrollierte Synthese von fluorierten Isochromanen durch Iod(I)/Iod(III)‐Katalyse. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel Häfliger
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Olga O. Sokolova
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Madina Lenz
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Ryan Gilmour
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
38
|
Molina Betancourt R, Bacheley L, Karapetyan A, Guillamot G, Phansavath P, Vidal V. An environmentally sustainable synthesis of enantioenriched CF3‐chromanol, indanol and tetralol derivatives by Rh‐catalyzed asymmetric transfer hydrogenation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Lucas Bacheley
- Chimie ParisTech - PSL: Ecole nationale superieure de chimie de Paris iCLeHS FRANCE
| | - Anzhela Karapetyan
- Chimie ParisTech - PSL: Ecole nationale superieure de chimie de Paris iCLeHS FRANCE
| | | | | | - Virginie Vidal
- Chimie ParisTech - PSL: Ecole nationale superieure de chimie de Paris Institute of Chemistry for Life & Health Sciences 11 rue Pierre et Marie Curie 75005 Paris FRANCE
| |
Collapse
|
39
|
Schäfer M, Stünkel T, Daniliuc CG, Gilmour R. Regio‐ and Enantioselective Intermolecular Aminofluorination of Alkenes via Iodine(I)/Iodine(III) Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Schäfer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch Chemisches Institut GERMANY
| | - Timo Stünkel
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch Chemisches Institut GERMANY
| | - Constantin G. Daniliuc
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch Chemisches Institut GERMANY
| | - Ryan Gilmour
- Westfaelische Wilhelms-Universitaet Muenster Organic Chemistry Institute Corrensstrasse 40 48149 Muenster GERMANY
| |
Collapse
|
40
|
Matsuda C, Igarashi R, Katagiri H, Murase T. Skeletal Transformation Triggered by C−F Bond Activation after Photochemical Rearrangement of Fluorinated [7]Helicenes. Chemistry 2022; 28:e202200132. [DOI: 10.1002/chem.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chikako Matsuda
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi Yamagata Yamagata 990-8560 Japan
| | - Ryo Igarashi
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi Yamagata Yamagata 990-8560 Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Takashi Murase
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi Yamagata Yamagata 990-8560 Japan
| |
Collapse
|
41
|
Bouayad-Gervais S, Nielsen CDT, Turksoy A, Sperger T, Deckers K, Schoenebeck F. Access to Cyclic N-Trifluoromethyl Ureas through Photocatalytic Activation of Carbamoyl Azides. J Am Chem Soc 2022; 144:6100-6106. [PMID: 35333063 DOI: 10.1021/jacs.2c02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report the mild activation of carbamoyl azides to the corresponding nitrenes using a blue light/[Ir]-catalyzed strategy, which enables stereospecific access to N-trifluoromethyl imidazolidinones and benzimidazolones. These novel structural motifs proved to be highly robust, allowing their downstream diversification. On the basis of our combined computational and experimental studies, we propose that an electron rebound with the excited metal catalyst is undergone, involving a reduction-triggered nitrogen loss, followed by oxidation to the corresponding carbamoyl nitrene and subsequent C-H insertion.
Collapse
Affiliation(s)
- Samir Bouayad-Gervais
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christian D-T Nielsen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Abdurrahman Turksoy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Kristina Deckers
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
42
|
Rodríguez RI, Sicignano M, Alemán J. Fluorinated Sulfinates as Source of Alkyl Radicals in the Photo-Enantiocontrolled β-Functionalization of Enals. Angew Chem Int Ed Engl 2022; 61:e202112632. [PMID: 34982505 DOI: 10.1002/anie.202112632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 12/13/2022]
Abstract
The generation of sulfonyl radicals has long been known as a flexible strategy in a wide range of different sulfonylative transformations. Meanwhile their use in alkylation processes has been somehow limited due to their inherent difficulty in evolving to less-stable radicals after sulfur dioxide extrusion. Herein we report a convenient strategy that involves gem-difluorinated sulfinates as an "upgrading-mask", allowing these precursors to decompose into their corresponding alkyl radicals. The electron-donor character of sulfinates in the formation of an electron donor-acceptor (EDA) complex with transient iminium ions is displayed, achieving the first example of a stereocontrolled light-driven insertion of gem-difluoro derivatives into unsaturated aldehydes. This methodology is compatible with flow conditions, maintaining identical levels of enantiocontrol.
Collapse
Affiliation(s)
- Ricardo I Rodríguez
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marina Sicignano
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
43
|
Rodríguez RI, Sicignano M, Alemán J. Fluorinated Sulfinates as Source of Alkyl Radicals in the Photo‐Enantiocontrolled β‐Functionalization of Enals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ricardo I. Rodríguez
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Marina Sicignano
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - José Alemán
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
44
|
Abstract
We disclose a silver-catalyzed trifluoromethoxylation of N-tosyl aziridines with trifluoromethyl arylsulfonate. The protocol is characterized by its mild conditions, simple operations, and good chemo- and regioselectivity. In addition, the trifluoromethoxylation of trisubstituted aziridines could construct C-OCF3 quaternary centers exclusively, which is quite rare. This method unlocks a new catalytic blueprint for accessing β-trifluoromethoxylated amines, which could be important building blocks in synthetic chemistry.
Collapse
Affiliation(s)
- Jingrui Xin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangyu Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Tian FX, Qu J. Studies on the Origin of the Stabilizing Effects of Fluorinated Alcohols and Weakly Coordinated Fluorine-Containing Anions on Cationic Reaction Intermediates. J Org Chem 2022; 87:1814-1829. [PMID: 35020378 DOI: 10.1021/acs.joc.1c02361] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many synthetic methods that use fluorinated alcohols as solvents have been reported, and the fluorinated alcohols have been found to be crucial to the success of these methods. In addition, there have been reports indicating that adding a weakly coordinated fluorine-containing anion, such as BF4-, PF6-, or SbF6-, to fluorinated alcohols can improve yields. The boosting effect of fluorinated alcohols is attributed mainly to hydrogen bond activation. A few studies have suggested that the very polar fluorinated alcohols can stabilize cationic reaction intermediates. However, how they do so and why weakly coordinated fluorine-containing anions improve yields have not been studied in depth. Here, we used quaternary ammonium cations, a quaternary phosphonium cation, and a triaryl-substituted carbocation as models for short-lived cationic intermediates and studied the possible interactions of these cations with fluorinated alcohols and BF4-, PF6-, or SbF6-. On the basis of the results, we propose that the C-F dipoles of fluorinated alcohols and the E-F dipoles (where E is B, P, or Sb) of weakly coordinated fluorine-containing anions stabilized these cations by intermolecular charge-dipole interactions. We deduced that in the same fashion the C-F and E-F dipoles can thermodynamically stabilize cationic reaction intermediates.
Collapse
Affiliation(s)
- Feng-Xian Tian
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin Qu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
46
|
Zhang K, Sheng X, Deiana L, Svensson Grape E, Inge K, Himo F, Cordova A. Solvent Dependency in Stereoselective δ‐Lactam Formation of Chiral α‐Fluoromalonate Derivatives: Stereodivergent Synthesis of Heterocycles with Fluorine Containing Quaternary Stereocenters Adjacent to Tertiary Stereocenters. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kaiheng Zhang
- Mittuniversitetet Fakulteten for naturvetenskap teknik och medier SWEDEN
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences CHINA
| | - Luca Deiana
- Stockholms Universitet Naturvetenskapliga fakulteten SWEDEN
| | | | - Ken Inge
- Stockholm University Faculty of Natural Sciences SWEDEN
| | | | - Armando Cordova
- Mittuniversitetet Fakulteten for naturvetenskap teknik och medier SWEDEN
| |
Collapse
|
47
|
Zhang M, Chen HW, Liu QQ, Gao FT, Li YX, Hu XG, Yu CY. De Novo Synthesis of Orthogonally-Protected C2-Fluoro Digitoxoses and Cymaroses: Development and Application for the Synthesis of Fluorinated Digoxin. J Org Chem 2021; 87:1272-1284. [PMID: 34964642 DOI: 10.1021/acs.joc.1c02592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inspired by Roush's pioneering work on rare sugars, we have developed a scalable, stereoselective, de novo synthesis of orthogonally protected C2-fluoro digitoxose and cymarose, utilizing Sharpless kinetic resolution and organocatalytic fluorination as key steps. The utility of this strategy is demonstrated by the synthesis of a fluorinated analogue of digoxin, which indicates the fluorine on the sugar ring may have a significant impact on biological activity.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.,Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Wei Chen
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Qing-Quan Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Feng-Teng Gao
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
48
|
Artault M, Vitse K, Martin-Mingot A, Thibaudeau S. Direct Superacid-Promoted Difluoroethylation of Aromatics. Chemistry 2021; 28:e202103926. [PMID: 34845770 DOI: 10.1002/chem.202103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/11/2022]
Abstract
Under superacid conditions, aromatic amines are directly and regioselectively 1,1-difluoroethylated. Low temperature in situ NMR studies confirmed the presence of benzylic α-fluoronium and α-chloronium ions as key intermediates in the reaction. This method has a wide substrate scope and can be applied to the late-stage functionalization of natural alkaloids and active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Maxime Artault
- IC2MP UMR CNRS 7285, Equipe "Synthèse Organique", Université de Poitiers, 4 rue Michel, Poitiers cedex 9, Brunet, 86073, France
| | - Kassandra Vitse
- IC2MP UMR CNRS 7285, Equipe "Synthèse Organique", Université de Poitiers, 4 rue Michel, Poitiers cedex 9, Brunet, 86073, France
| | - Agnès Martin-Mingot
- IC2MP UMR CNRS 7285, Equipe "Synthèse Organique", Université de Poitiers, 4 rue Michel, Poitiers cedex 9, Brunet, 86073, France
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285, Equipe "Synthèse Organique", Université de Poitiers, 4 rue Michel, Poitiers cedex 9, Brunet, 86073, France
| |
Collapse
|
49
|
Desrues T, Merad J, Andrei D, Pons J, Parrain J, Médebielle M, Quintard A, Bressy C. Impact of the Difluoromethylene Group in the Organocatalyzed Acylative Kinetic Resolution of α,α‐Difluorohydrins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Titouan Desrues
- Aix-Marseille Univ CNRS Centrale Marseille, iSm2 Marseille France
| | - Jérémy Merad
- Univ Lyon Université Lyon 1 CNRS INSA CPE-Lyon ICBMS UMR 5246 Bât. Lederer 1 rue Victor Grignard 69622 Villeurbanne France
| | - Daniela Andrei
- Univ Lyon Université Lyon 1 CNRS INSA CPE-Lyon ICBMS UMR 5246 Bât. Lederer 1 rue Victor Grignard 69622 Villeurbanne France
- Dominican University 7900 West Division Street River Forest IL 60305 USA
| | - Jean‐Marc Pons
- Aix-Marseille Univ CNRS Centrale Marseille, iSm2 Marseille France
| | - Jean‐Luc Parrain
- Aix-Marseille Univ CNRS Centrale Marseille, iSm2 Marseille France
| | - Maurice Médebielle
- Univ Lyon Université Lyon 1 CNRS INSA CPE-Lyon ICBMS UMR 5246 Bât. Lederer 1 rue Victor Grignard 69622 Villeurbanne France
| | - Adrien Quintard
- Aix-Marseille Univ CNRS Centrale Marseille, iSm2 Marseille France
| | - Cyril Bressy
- Aix-Marseille Univ CNRS Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
50
|
Desrues T, Merad J, Andrei D, Pons JM, Parrain JL, Médebielle M, Quintard A, Bressy C. Impact of the Difluoromethylene Group in the Organocatalyzed Acylative Kinetic Resolution of α,α-Difluorohydrins. Angew Chem Int Ed Engl 2021; 60:24924-24929. [PMID: 34473886 DOI: 10.1002/anie.202107041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/15/2022]
Abstract
Due to the omnipresence of chiral organofluorine compounds in pharmaceutical, agrochemical, and material chemistry, the development of enantioselective methods for their preparation is highly desirable. In the present study, the enantioselective organocatalyzed acylation of α,α-difluorohydrins using a commercially available chiral isothiourea is reported through a kinetic resolution (KR) process. It reveals that the difluoromethylene moiety (C(sp3 )F2 ) can serve as a directing group through electrostatic fluorine-cation interactions, greatly improving the enantioselectivity of the KR. In this context, a broad range of fluorinated alcohols such as valuable 4,4-difluoro-1,3-diols could be synthesized with exquisite enantiocontrol (typically >99:1 er). Turning to 2,2-difluoro-1,3-diols, we also demonstrated that aromatic and fluorinated groups were mutually compatible to provide the expected enantioenriched adducts with >99:1 er.
Collapse
Affiliation(s)
- Titouan Desrues
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jérémy Merad
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bât. Lederer, 1 rue Victor Grignard, 69622, Villeurbanne, France
| | - Daniela Andrei
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bât. Lederer, 1 rue Victor Grignard, 69622, Villeurbanne, France.,Dominican University, 7900 West Division Street, River Forest, IL, 60305, USA
| | - Jean-Marc Pons
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Luc Parrain
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Maurice Médebielle
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bât. Lederer, 1 rue Victor Grignard, 69622, Villeurbanne, France
| | - Adrien Quintard
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Cyril Bressy
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|