1
|
Janjua D, Chaudhary A, Joshi U, Tripathi T, Bharti AC. Circulating tumor cells in solid malignancies: From advanced isolation technologies to biological understanding and clinical relevance in early diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2025; 1880:189236. [PMID: 39662757 DOI: 10.1016/j.bbcan.2024.189236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors and travel through the body via circulation, eventually settling to form micrometastases under favorable conditions. Numerous studies have identified CTCs as a negative prognostic indicator for survival across various cancer types. CTCs mirror the current heterogeneity and genetic and biological state of tumors, making their study invaluable for understanding tumor progression, cell senescence, and cancer dormancy. However, their isolation and characterization still poses a major challenge that limits their clinical translation. A wide array of methods, each with different levels of specificity, utility, cost, and sensitivity, have been developed to isolate and characterize CTCs. Moreover, innovative techniques are emerging to address the limitations of existing methods. In this review, we provide insights into CTC biology addressing spectra of markers employed for molecular analysis and functional characterization. It also emphasizes current label-dependent and label-independent isolation procedures, addressing their strengths and limitations. SIGNIFICANCE: A comprehensive overview of CTC biology, their molecular and functional characterization, along with their current clinical utility will help in understanding the present-day extent to which the clinical potential of CTCs is getting tapped in personalized medicine.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
2
|
Chen H, Osman SY, Moose DL, Vanneste M, Anderson JL, Henry MD, Anand RK. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis. LAB ON A CHIP 2023; 23:2586-2600. [PMID: 37185977 PMCID: PMC10228177 DOI: 10.1039/d2lc01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/17/2023]
Abstract
This paper describes a dielectrophoretic method for selection of circulating melanoma cells (CMCs), which lack reliable identifying surface antigens and are extremely rare in blood. This platform captures CMCs individually by dielectrophoresis (DEP) at an array of wireless bipolar electrodes (BPEs) aligned to overlying nanoliter-scale chambers, which isolate each cell for subsequent on-chip single-cell analysis. To determine the best conditions to employ for CMC isolation in this DEP-BPE platform, the static and dynamic dielectrophoretic response of established melanoma cell lines, melanoma cells from patient-derived xenografts (PDX) and peripheral blood mononuclear cells (PBMCs) were evaluated as a function of frequency using two established DEP platforms. Further, PBMCs derived from patients with advanced melanoma were compared with those from healthy controls. The results of this evaluation reveal that each DEP method requires a distinct frequency to achieve capture of melanoma cells and that the distribution of dielectric properties of PBMCs is more broadly varied in and among patients versus healthy controls. Based on this evaluation, we conclude that 50 kHz provides the highest capture efficiency on our DEP-BPE platform while maintaining a low rate of capture of unwanted PBMCs. We further quantified the efficiency of single-cell capture on the DEP-BPE platform and found that the efficiency diminished beyond around 25% chamber occupancy, thereby informing the minimum array size that is required. Importantly, the capture efficiency of the DEP-BPE platform for melanoma cells when using optimized conditions matched the performance predicted by our analysis. Finally, isolation of melanoma cells from contrived (spike-in) and clinical samples on our platform using optimized conditions was demonstrated. The capture and individual isolation of CMCs, confirmed by post-capture labeling, from patient-derived samples suggests the potential of this platform for clinical application.
Collapse
Affiliation(s)
- Han Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Sommer Y Osman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Devon L Moose
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Michael D Henry
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Pathology, Urology and Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
3
|
Lin CC, Yang CY, Hung TC, Wang CH, Wei SW, Schiro P, Tseng JY, Lin CH, Jiang JK. MiSelect R System: the validation of a new detection system of CTCs and their correlation with prognosis in non-metastatic CRC patients. Sci Rep 2023; 13:4773. [PMID: 36959311 PMCID: PMC10036555 DOI: 10.1038/s41598-023-31346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
Circulating tumor cells (CTCs) in blood are accepted as a prognostic marker for patients with metastatic colorectal cancer (CRC). However, there is limited data on the use of CTCs as a prognostic marker for non-metastatic patients. In the current study, we used a rare cell automated analysis platform, the MiSelect R System, to enumerate CTCs from blood in non-metastatic CRC patients, and corelated the number of CTCs with the clinical staging and survival. The presence of CTCs in mesenteric vein blood (MVB) samples from 101 CRC patients was significantly associated with T stage. Patients with 1 or more CTCs per 8 mL of MVB exhibited significantly worse disease-free survival (DFS) and cancer-specific survival (CSS) compared to patient without CTCs. The presence of CTCs before surgery is an independent marker for both DFS and CSS. CTC presence after surgical resection is also a prognostic marker. CTCs are a potentially useful prognostic and predictive biomarker in non-metastatic CRC patients that may further stratify patient's risk status within different stages of disease.
Collapse
Affiliation(s)
- Chun-Chi Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, No.201, Shipai Rd. Sec. 2, Beitou Dist., Taipei City, 112, Taiwan
| | - Chih-Yung Yang
- Department of Teaching and Research, Taipei City Hospital, Taipei City, 104, Taiwan
| | - Tzu-Chao Hung
- MiCareo Taiwan Co., Ltd., 5F., No. 69, Ln. 77, Xing Ai Rd., Neihu Dist., Taipei City, 114, Taiwan
| | - Chun-Hung Wang
- MiCareo Taiwan Co., Ltd., 5F., No. 69, Ln. 77, Xing Ai Rd., Neihu Dist., Taipei City, 114, Taiwan
| | - Sheng-Wen Wei
- MiCareo Taiwan Co., Ltd., 5F., No. 69, Ln. 77, Xing Ai Rd., Neihu Dist., Taipei City, 114, Taiwan
| | - Perry Schiro
- MiCareo Taiwan Co., Ltd., 5F., No. 69, Ln. 77, Xing Ai Rd., Neihu Dist., Taipei City, 114, Taiwan
| | - Ju-Yu Tseng
- MiCareo Taiwan Co., Ltd., 5F., No. 69, Ln. 77, Xing Ai Rd., Neihu Dist., Taipei City, 114, Taiwan.
| | - Chi-Hung Lin
- Department of Biological Science and Technology, National Yang-Ming Chiao-Tung University, Hsinchu, 300, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei City, 112, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao-Tung University, Taipei City, 112, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, No.201, Shipai Rd. Sec. 2, Beitou Dist., Taipei City, 112, Taiwan.
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei City, 112, Taiwan.
| |
Collapse
|
4
|
Li L, Li S, Wang J, Wen X, Yang M, Chen H, Guo Q, Wang K. Extracellular ATP-activated hybridization chain reaction for accurate and sensitive detection of cancer cells. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Li K, Luo S, Guan S, Situ B, Wu Y, Ou Z, Tao M, Zheng L, Cai Z. Tetrahedral framework nucleic acids linked CRISPR/Cas13a signal amplification system for rare tumor cell detection. Talanta 2022; 247:123531. [PMID: 35623245 DOI: 10.1016/j.talanta.2022.123531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
The sensitive and accurate detection of rare tumor cells provides precise diagnosis and dynamic assessment information in various tumor spectrums. However, rare tumor cells assay is still a challenge due to the exceedingly rare presence in the blood. In this research, we develop a fluorescent approach for the identification of rare tumor cells based on a combination of immunosorbent capture and a three-step signal amplification strategy. First, rare tumor cells are captured by immunoadsorption on 96-well plates. Second, self-synthesized tetrahedral framework nucleic acids (tFNAs) spontaneously anchor into the lipid bilayer of rare tumor cells, resulting in a "one to more" amplification effect. Then, the double-stranded DNA (dsDNA) binds to the vertices of the tFNAs and generates a large amount of target RNA by T7 polymerase, which is the secondary signal amplification. Finally, the target RNA activates the collateral cleavage ability of CRISPR/Cas13a, and the reporter RNA is cleaved for third signal amplification. The detection limit of the proposed method is down to 1 cell mL-1. Furthermore, the tFNAs-Cas13a system is also shown to be capable of detecting rare tumor cells in spiked-in samples and clinical blood samples. This platform enables speedy detection of rare tumor cells with high sensitivity and good specificity, and shows great potential for tumor diagnosis.
Collapse
Affiliation(s)
- Kerun Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shihua Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shujuan Guan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yuan Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Maliang Tao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China; Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Foshan, 528300, Guangdong Province, China.
| | - Zhen Cai
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
6
|
Yu Z, Jin J, Shui L, Chen H, Zhu Y. Recent advances in microdroplet techniques for single-cell protein analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Pang W, Ding S, Lin L, Wang C, Lei M, Xu J, Wang X, Qu J, Wei X, Gu B. Noninvasive and real-time monitoring of Au nanoparticle promoted cancer metastasis using in vivo flow cytometry. BIOMEDICAL OPTICS EXPRESS 2021; 12:1846-1857. [PMID: 33996202 PMCID: PMC8086442 DOI: 10.1364/boe.420123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Cancer is the second leading cause of mortality globally, while cancer metastasis, which accounts for about 90% of cancer-related mortality, presents an extremely poor prognosis. Thus, various nanomedicines were designed and synthesized for cancer treatment, but nanomaterials could lead to endothelial leakiness and consequently facilitate intravasation and extravasation of cancer cells to form circulating tumor cells (CTCs), which were regarded as the potential metastatic seeds, possibly accelerating cancer metastasis. Neither possible metastatic sites were observed nor rare CTCs could be measured using common methods at the early stage of cancer metastasis, it is urgent to explore new technology to dynamically monitor nanomedicine promoted cancer metastasis with high sensitivity, which would be beneficial for cancer treatment as well as design and synthesis of nanomedicine. Herein, a novel optical biopsy tool i.e. in vivo flow cytometry (IVFC) was constructed to noninvasively and real-time monitor CTCs of tumor-bearing mice treated with various concentrations of Au nanoparticles. The in vivo experimental results demonstrated the promoted CTCs were Au nanoparticles dose-dependent consistent with the in vitro results, which showed Au nanoparticles induced dose-dependent gaps in the blood vessel endothelial walls to accelerate CTCs formation, making IVFC a promising biopsy tool in fundamental, pre-clinical and clinical investigation of nanomedicine and cancer metastasis.
Collapse
Affiliation(s)
- Wen Pang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Contributed equally to this work
| | - Shihui Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Contributed equally to this work
| | - Liyun Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chen Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Man Lei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiale Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xintong Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xunbin Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Bobo Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
8
|
Xu S, Wu L, Qin Y, Jiang Y, Sun K, Holcomb C, Gravett MG, Vojtech L, Schiro PG, Chiu DT. Sequential Ensemble-Decision Aliquot Ranking Isolation and Fluorescence In Situ Hybridization Identification of Rare Cells from Blood by Using Concentrated Peripheral Blood Mononuclear Cells. Anal Chem 2021; 93:3196-3201. [PMID: 33528996 PMCID: PMC9901914 DOI: 10.1021/acs.analchem.0c04629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Isolation and analysis of circulating rare cells is a promising approach for early detection of cancer and other diseases and for prenatal diagnosis. Isolation of rare cells is usually difficult due to their heterogeneity as well as their low abundance in peripheral blood. We previously reported a two-stage ensemble-decision aliquot ranking platform (S-eDAR) for isolating circulating tumor cells from whole blood with high throughput, high recovery rate (>90%), and good purity (>70%), allowing detection of low surface antigen-expressing cancer cells linked to metastasis. However, due to the scarcity of these cells, large sample volumes and large quantities of antibodies were required to isolate sufficient cells for downstream analysis. Here, we drastically increased the number of nucleated cells analyzed by first concentrating peripheral blood mononuclear cells (PBMCs) from whole blood by density gradient centrifugation. The S-eDAR platform was capable of isolating rare cells from concentrated PBMCs (108/mL, equivalent to processing ∼20 mL of whole blood in the 1 mL sample volume used by our instrument) at a high recovery rate (>85%). We then applied the S-eDAR platform for isolating rare fetal nucleated red blood cells (fNRBCs) from concentrated PBMCs spiked with umbilical cord blood cells and confirmed fNRBC recovery by immunostaining and fluorescence in situ hybridization, demonstrating the potential of the S-eDAR system for isolating rare fetal cells from maternal PBMCs to improve noninvasive prenatal diagnosis.
Collapse
Affiliation(s)
- Shihan Xu
- Department of Bioengineering, University of Washington, Seattle, WA, USA,Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Li Wu
- Department of Chemistry, University of Washington, Seattle, WA, USA,School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China
| | - Yuling Qin
- Department of Chemistry, University of Washington, Seattle, WA, USA,School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Kai Sun
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Chenee Holcomb
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Michael G. Gravett
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Lucia Vojtech
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | | | - Daniel T. Chiu
- Department of Bioengineering, University of Washington, Seattle, WA, USA,Department of Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Zhang X, Lu X, Gao W, Wang Y, Jia C, Cong H. A label-free microfluidic chip for the highly selective isolation of single and cluster CTCs from breast cancer patients. Transl Oncol 2021; 14:100959. [PMID: 33248414 PMCID: PMC7704402 DOI: 10.1016/j.tranon.2020.100959] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022] Open
Abstract
Our results showed that this new chip had an important clinical value of patients with metastatic breast cancer. CTCs count showed good prospects in monitoring cancer prognosis and guiding future individualized treatment. We have manufactured a new microfluidic chip to isolate and identify CTCs and CTCs clusters with high throughput.
Background Circulating tumor cells (CTCs) existing in peripheral blood can be used to predict the prognosis and survival of cancer patients. The study was designed to detect circulating tumor cells and circulating tumor single cell genes by applying microfluidic chip technology. It was used to explore the clinical application value in breast cancer. Methods We have developed a size-based CTCs sorting microfluidic chip, which contains a hexagonal array and a micro-pipe channel array to isolate and confirm both single CTCs and CTCs clusters. The sorting performance of the as-fabricated chip was tested by analyzing the clinical samples collected from 129 breast cancer patients and 50 healthy persons. Results In this study, the chip can detect different immunophenotypes of CTCs in breast cancer patients. It was found that the new microfluidic device had high sensitivity (73.6%) and specificity (82.0%) in detecting CTCs. By detecting the blood samples of 129 breast cancer patients and 50 healthy blood donors, it was found that the number of CTCs was not associated with clinical factors such as age, gender, pathological type, and tumor size of breast cancer patients (P > 0.05), but was associated with TNM staging of breast cancer, with or without metastasis (P < 0.005). There was a statistically significant difference in the number of CTCs between luminal A (ER+/PR+/HER2-) and HER-2+ (ER-/PR-/HER2+) (P < 0.05). The best cut-off level distinguished by CTC between the breast cancer patients and the healthy persons was 3.5 cells/mL, with 0.845 for AUC-ROC, 0.790–0.901 for 95% CI, 73.6% for sensitivity, and 82% for specificity (P = 0.000). The combination of CTC, CEA, CA125 and CA153 can provide more effective breast cancer screening. Conclusions The CTCs analysis method presented here doesn't rely on the specific antibody, such as anti-EpCAM, which would avoid the missed inspection caused by antibody-relied methods and offer more comprehensive biological information for clinical breast cancer diagnosis and treatment.
Collapse
|
10
|
Tian C, Xu X, Wang Y, Li D, Lu H, Yang Z. Development and Clinical Prospects of Techniques to Separate Circulating Tumor Cells from Peripheral Blood. Cancer Manag Res 2020; 12:7263-7275. [PMID: 32884342 PMCID: PMC7434565 DOI: 10.2147/cmar.s248380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Detection of circulating tumor cells (CTC) is an important liquid biopsy technique that has advanced considerably in recent years. To further advance the development of technology for curing cancer, several CTC technologies have been proposed by various research groups. Despite their potential role in early cancer diagnosis and prognosis, CTC methods are currently used for research purposes only, and very few methods have been accepted for clinical applications because of difficulties, including CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Although current CTC technologies have not been truly implemented, they possess high potential as future clinical diagnostic techniques for individualized cancer. Here, we review current developments in CTC separation technology. We also explore new CTC detection methods based on telomerase and nanomaterials, such as in vivo flow cytometry. In addition, we discuss the difficulties that must be overcome before CTC can be applied in clinical settings.
Collapse
Affiliation(s)
- Cheng Tian
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Xinhua Xu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Yuke Wang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Dailong Li
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Haiyan Lu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Ziwei Yang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| |
Collapse
|
11
|
Yang Y, Mao G, Ji X, He Z. DNA-templated quantum dots and their applications in biosensors, bioimaging, and therapy. J Mater Chem B 2019; 8:9-17. [PMID: 31750850 DOI: 10.1039/c9tb01870k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past 10 years, DNA functionalized quantum dots (QDs) have attracted considerable attention in sensing and imaging of disease-relevant biological targets, as well as cancer therapy. Considerable efforts have been devoted to obtaining DNA functionalized QDs with enhanced stability and quantum yield. Here, we focus on a one-pot method, in which phosphorothioate-modified DNA is used as the co-ligand on the basis of the strong binding of sulfur and Cd2+. After a short summary of the preparation of DNA-templated QDs, versatile bioapplications based on the constructed ratiometric fluorescent probes, nanobeacons and multiple bottom-up assemblies will be discussed. A substantial part of the review will focus on these applications, ranging from small molecule, biological macromolecule, cancer cell and pathogen sensing to in vitro and in vivo imaging. Besides, drug or siRNA delivery based on DNA-templated QD assemblies will also be briefly discussed here.
Collapse
Affiliation(s)
- Yeling Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
12
|
Johnson ES, Xu S, Yu HM, Fang WF, Qin Y, Wu L, Wang J, Zhao M, Schiro PG, Fujimoto B, Chen JL, Chiu DT. Isolating Rare Cells and Circulating Tumor Cells with High Purity by Sequential eDAR. Anal Chem 2019; 91:14605-14610. [PMID: 31646861 PMCID: PMC9847251 DOI: 10.1021/acs.analchem.9b03690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isolation and analysis of circulating tumor cells (CTCs) from the blood of patients at risk of metastatic cancers is a promising approach to improving cancer treatment. However, CTC isolation is difficult due to low CTC abundance and heterogeneity. Previously, we reported an ensemble-decision aliquot ranking (eDAR) platform for the rare cell and CTC isolation with high throughput, greater than 90% recovery, and high sensitivity, allowing detection of low surface antigen-expressing cells linked to metastasis. Here we demonstrate a sequential eDAR platform capable of isolating rare cells from whole blood with high purity. This improvement in purity is achieved by using a sequential sorting and flow stretching design in which whole blood is sorted and fluid elements are stretched using herringbone features and the parabolic flow profile being sorted a second time. This platform can be used to collect single CTCs in a multiwell plate for downstream analysis.
Collapse
Affiliation(s)
- Eleanor S. Johnson
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Shihan Xu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States,Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Hui-Min Yu
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Wei-Feng Fang
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Yuling Qin
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Li Wu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Jiasi Wang
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Mengxia Zhao
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Perry G. Schiro
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Bryant Fujimoto
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Jui-Lin Chen
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States,Department of Bioengineering, University of Washington, Seattle, Washington, United States
| |
Collapse
|
13
|
De T, Goyal S, Balachander G, Chatterjee K, Kumar P, Babu K G, Rangarajan A. A Novel Ex Vivo System Using 3D Polymer Scaffold to Culture Circulating Tumor Cells from Breast Cancer Patients Exhibits Dynamic E-M Phenotypes. J Clin Med 2019; 8:E1473. [PMID: 31527416 PMCID: PMC6780381 DOI: 10.3390/jcm8091473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023] Open
Abstract
The majority of the cancer-associated deaths is due to metastasis-the spread of tumors to other organs. Circulating tumor cells (CTCs), which are shed from the primary tumor into the circulation, serve as precursors of metastasis. CTCs have now gained much attention as a new prognostic and diagnostic marker, as well as a screening tool for patients with metastatic disease. However, very little is known about the biology of CTCs in cancer metastasis. An increased understanding of CTC biology, their heterogeneity, and interaction with other cells can help towards a better understanding of the metastatic process, as well as identify novel drug targets. Here we present a novel ex vivo 3D system for culturing CTCs from breast cancer patient blood samples using porous poly(ε-caprolactone) (PCL) scaffolds. As a proof of principle study, we show that ex vivo culture of 12/16 (75%) advanced stage breast cancer patient blood samples were enriched for CTCs identified as CK+ (cytokeratin positive) and CD45- (CD45 negative) cells. The deposition of extracellular matrix proteins on the PCL scaffolds permitted cellular attachment to these scaffolds. Detection of Ki-67 and bromodeoxyuridine (BrdU) positive cells revealed proliferating cell population in the 3D scaffolds. The CTCs cultured without prior enrichment exhibited dynamic differences in epithelial (E) and mesenchymal (M) composition. Thus, our 3D PCL scaffold system offers a physiologically relevant model to be used for studying CTC biology as well as for individualized testing of drug susceptibility. Further studies are warranted for longitudinal monitoring of epithelial-mesenchymal transition (EMT) in CTCs for clinical association.
Collapse
Affiliation(s)
- Tamasa De
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | - Shina Goyal
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India.
| | - Gowri Balachander
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore.
| | - Kaushik Chatterjee
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560066, India.
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| | - Govind Babu K
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India.
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
14
|
Specific cell capture and noninvasive release via moderate electrochemical oxidation of boronic ester linkage. Biosens Bioelectron 2019; 138:111316. [DOI: 10.1016/j.bios.2019.111316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
|
15
|
Yu D, Tang L, Dong Z, Loftis KA, Ding Z, Cheng J, Qin B, Yan J, Li W. Effective reduction of non-specific binding of blood cells in a microfluidic chip for isolation of rare cancer cells. Biomater Sci 2019; 6:2871-2880. [PMID: 30246818 DOI: 10.1039/c8bm00864g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high purity of target cells enriched from blood samples plays an important role in the clinical detection of diseases. However, non-specific binding of blood cells in the isolated cell samples can complicate downstream molecular and genetic analysis. In this work, we report a simple solution to non-specific binding of blood cells by modifying the surface of microchips with a multilayer nanofilm, with the outmost layer containing both PEG brushes for reducing blood cell adhesion and antibodies for enriching target cells. This layer-by-layer (LbL) polysaccharide nanofilm was modified with neutravindin and then conjugated with a mixture of biotinylated PEG molecules and biotinylated antibodies. Using EpCAM-expressing and HER2-expressing cancer cells in blood as model platforms, we were able to dramatically reduce the non-specific binding of blood cells to approximately 1 cell per mm2 without sacrificing the high capture efficiency of the microchip. To support the rational extension of this approach to other applications for cell isolation and blood cell resistance, we conducted extensive characterization on the nanofilm formation and degradation, antifouling with PEG brushes and introducing functional antibodies. This simple, yet effective, approach can be applied to a variety of microchip applications that require high purity of sample cells containing minimal contamination from blood cells.
Collapse
Affiliation(s)
- Dan Yu
- Department of Critical Care Medicine, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen K, Dopico P, Varillas J, Zhang J, George TJ, Fan ZH. Integration of Lateral Filter Arrays with Immunoaffinity for Circulating-Tumor-Cell Isolation. Angew Chem Int Ed Engl 2019; 58:7606-7610. [PMID: 30958635 PMCID: PMC6534423 DOI: 10.1002/anie.201901412] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 01/06/2023]
Abstract
Circulating tumor cells (CTCs) are an important biomarker for cancer prognosis and treatment monitoring. However, the heterogeneity of the physical and biological properties of CTCs limits the efficiency of various approaches used to isolate small numbers of CTCs from billions of normal blood cells. To address this challenge, we developed a lateral filter array microfluidic (LFAM) device to integrate size-based separation with immunoaffinity-based CTC isolation. The LFAM device consists of a serpentine main channel, through which most of a sample passes, and an array of lateral filters for CTC isolation. The unique device design produces a two-dimensional flow, which reduces nonspecific, geometric capture of normal cells as typically observed in vertical filters. The LFAM device was further functionalized by immobilizing antibodies that are specific to the target cells. The resulting devices captured pancreatic cancer cells spiked in blood samples with (98.7±1.2) % efficiency and were used to isolate CTCs from patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Kangfu Chen
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. BOX 116250, Gainesville, FL, 32611, USA
| | - Pablo Dopico
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. BOX 116250, Gainesville, FL, 32611, USA
| | - Jose Varillas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jinling Zhang
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. BOX 116250, Gainesville, FL, 32611, USA
| | - Thomas J George
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. BOX 116250, Gainesville, FL, 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
17
|
Chen K, Dopico P, Varillas J, Zhang J, George TJ, Fan ZH. Integration of Lateral Filter Arrays with Immunoaffinity for Circulating‐Tumor‐Cell Isolation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kangfu Chen
- Interdisciplinary Microsystems Group (IMG)Department of Mechanical and Aerospace EngineeringUniversity of Florida P.O. BOX 116250 Gainesville FL 32611 USA
| | - Pablo Dopico
- Interdisciplinary Microsystems Group (IMG)Department of Mechanical and Aerospace EngineeringUniversity of Florida P.O. BOX 116250 Gainesville FL 32611 USA
| | - Jose Varillas
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville FL 32611 USA
| | - Jinling Zhang
- Interdisciplinary Microsystems Group (IMG)Department of Mechanical and Aerospace EngineeringUniversity of Florida P.O. BOX 116250 Gainesville FL 32611 USA
| | - Thomas J. George
- Department of MedicineUniversity of Florida Gainesville FL 32610 USA
| | - Z. Hugh Fan
- Interdisciplinary Microsystems Group (IMG)Department of Mechanical and Aerospace EngineeringUniversity of Florida P.O. BOX 116250 Gainesville FL 32611 USA
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville FL 32611 USA
| |
Collapse
|
18
|
Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2019; 143:2936-2970. [PMID: 29796523 DOI: 10.1039/c7an01979c] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of tumor-related death, and the dispersal of tumor cells through the circulatory system is a critical step in the metastatic process. Early detection and analysis of circulating tumor cells (CTCs) is therefore important for early diagnosis, prognosis, and effective treatment of cancer, enabling favorable clinical outcomes in cancer patients. Accurate and reliable methods for isolating and detecting CTCs are necessary to obtain this clinical information. Over the past two decades, microfluidic technologies have demonstrated great potential for isolating and detecting CTCs from blood. The present paper reviews current advanced microfluidic technologies for isolating CTCs based on various biological and physical principles, and discusses their fundamental advantages and drawbacks for subsequent cellular and molecular assays. Owing to significant genetic heterogeneity among CTCs, microfluidic technologies for isolating individual CTCs have recently been developed. We discuss these single-cell isolation methods, as well as approaches to overcoming the limitations of current microfluidic CTC isolation technologies. Finally, we provide an overview of future innovative microfluidic platforms.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
19
|
Rostami P, Kashaninejad N, Moshksayan K, Saidi MS, Firoozabadi B, Nguyen NT. Novel approaches in cancer management with circulating tumor cell clusters. JOURNAL OF SCIENCE: ADVANCED MATERIALS AND DEVICES 2019; 4:1-18. [DOI: 10.1016/j.jsamd.2019.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Proc Natl Acad Sci U S A 2019; 116:2232-2236. [PMID: 30674677 PMCID: PMC6369805 DOI: 10.1073/pnas.1814102116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) play a fundamental role in cancer progression. However, in mice, limited blood volume and the rarity of CTCs in the bloodstream preclude longitudinal, in-depth studies of these cells using existing liquid biopsy techniques. Here, we present an optofluidic system that continuously collects fluorescently labeled CTCs from a genetically engineered mouse model (GEMM) for several hours per day over multiple days or weeks. The system is based on a microfluidic cell sorting chip connected serially to an unanesthetized mouse via an implanted arteriovenous shunt. Pneumatically controlled microfluidic valves capture CTCs as they flow through the device, and CTC-depleted blood is returned back to the mouse via the shunt. To demonstrate the utility of our system, we profile CTCs isolated longitudinally from animals over 4 days of treatment with the BET inhibitor JQ1 using single-cell RNA sequencing (scRNA-Seq) and show that our approach eliminates potential biases driven by intermouse heterogeneity that can occur when CTCs are collected across different mice. The CTC isolation and sorting technology presented here provides a research tool to help reveal details of how CTCs evolve over time, allowing studies to credential changes in CTCs as biomarkers of drug response and facilitating future studies to understand the role of CTCs in metastasis.
Collapse
|
21
|
Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat Biomed Eng 2019; 3:183-193. [PMID: 30948809 DOI: 10.1038/s41551-018-0343-6] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022]
Abstract
Non-invasive assays for early cancer screening are hampered by challenges in the isolation and profiling of circulating biomarkers. Here, we show that surface proteins from serum extracellular vesicles labelled with a panel of seven fluorescent aptamers can be profiled, via thermophoretic enrichment and linear discriminant analysis, for cancer detection and classification. In a cohort of 102 patients, including 6 cancer types at stages I-IV, the assay detected stage I cancers with 95% sensitivity (95% confidence interval (CI): 74-100%) and 100% specificity (95% CI: 80-100%), and classified the cancer type with an overall accuracy of 68% (95% CI: 59-77%). For patients who underwent prostate biopsies, the assay was superior to the analysis of prostate-specific antigen levels (area under the curve: 0.94 versus 0.68; 33 patients) for the discrimination of prostate cancer and benign prostate enlargement, and also in the assessment of biochemical cancer recurrence after radical prostatectomy. The assay is inexpensive, fast, and requires small serum volumes (<1 µl), and if validated in larger cohorts may facilitate cancer screening, classification and monitoring.
Collapse
|
22
|
Li T, Li N, Ma Y, Bai YJ, Xing CM, Gong YK. A blood cell repelling and tumor cell capturing surface for high-purity enrichment of circulating tumor cells. J Mater Chem B 2019; 7:6087-6098. [DOI: 10.1039/c9tb01649j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A red blood cell membrane mimetic surface decorated with FA and RGD ligands can efficiently capture tumor cells with high selectivity.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Nan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yao Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yun-Jie Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Cheng-Mei Xing
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| |
Collapse
|
23
|
Shen Z, Wu A, Chen X. Current detection technologies for circulating tumor cells. Chem Soc Rev 2018; 46:2038-2056. [PMID: 28393954 DOI: 10.1039/c6cs00803h] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells that circulate in the blood stream after being naturally shed from original or metastatic tumors, and can lead to a new fatal metastasis. CTCs have become a hotspot research field during the last decade. Detection of CTCs, as a liquid biopsy of tumors, can be used for early diagnosis of cancers, earlier evaluation of cancer recurrence and chemotherapeutic efficacy, and choice of individual sensitive anti-cancer drugs. Therefore, CTC detection is a crucial tool to fight against cancer. Herein, we classify the currently reported CTC detection technologies, introduce some representative samples for each technology, conclude the advantages and limitations, and give a future perspective including the challenges and opportunities of CTC detection.
Collapse
Affiliation(s)
- Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, Zhejiang 315201, China.
| | | | | |
Collapse
|
24
|
Wu LL, Tang M, Zhang ZL, Qi CB, Hu J, Ma XY, Pang DW. Chip-Assisted Single-Cell Biomarker Profiling of Heterogeneous Circulating Tumor Cells Using Multifunctional Nanospheres. Anal Chem 2018; 90:10518-10526. [DOI: 10.1021/acs.analchem.8b02585] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ling-Ling Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Jiao Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Xu-Yan Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
25
|
Circulating tumor microemboli: Progress in molecular understanding and enrichment technologies. Biotechnol Adv 2018; 36:1367-1389. [DOI: 10.1016/j.biotechadv.2018.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/16/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023]
|
26
|
Approach to classify, separate, and enrich objects in groups using ensemble sorting. Proc Natl Acad Sci U S A 2018; 115:5681-5685. [PMID: 29760051 DOI: 10.1073/pnas.1721929115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sorting of objects into groups is a fundamental operation, critical in the preparation and purification of populations of cells, crystals, beads, or droplets, necessary for research and applications in biology, chemistry, and materials science. Most of the efforts exploring such purification have focused on two areas: the degree of separation and the measurement precision required for effective separation. Conventionally, achieving good separation ultimately requires that the objects are considered one by one (which can be both slow and expensive), and the ability to measure the sorted objects by increasing sensitivity as well as reducing sorting errors. Here we present an approach to sorting that addresses both critical limitations with a scheme that allows us to approach the theoretical limit for the accuracy of sorting decisions. Rather than sorting individual objects, we sort the objects in ensembles, via a set of registers which are then in turn sorted themselves into a second symmetric set of registers in a lossless manner. By repeating this process, we can arrive at high sorting purity with a low set of constraints. We demonstrate both the theory behind this idea and identify the critical parameters (ensemble population and sorting time), and show the utility and robustness of our method with simulations and experimental systems spanning several orders of scale, sorting populations of macroscopic beads and microfluidic droplets. Our method is general in nature and simplifies the sorting process, and thus stands to enhance many different areas of science, such as purification, enrichment of rare objects, and separation of dynamic populations.
Collapse
|
27
|
Labib M, Mohamadi RM, Poudineh M, Ahmed SU, Ivanov I, Huang CL, Moosavi M, Sargent EH, Kelley SO. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nat Chem 2018; 10:489-495. [PMID: 29610463 PMCID: PMC5910253 DOI: 10.1038/s41557-018-0025-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Abstract
Cell-to-cell variation in gene expression creates a need for techniques that characterize expression at the level of individual cells. This is particularly true for rare circulating tumor cells (CTCs), in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis – single-cell mRNA cytometry – that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enables sorting of CTCs from normal hematopoietic cells. No PCR amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically-important sequences in prostate cancer specimens.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Reza M Mohamadi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mahla Poudineh
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Ivaylo Ivanov
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Ching-Lung Huang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Maral Moosavi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Edward H Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Institute for Biomedical and Biomaterials Engineering, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Jiang Y, Yu Z, Huang X, Chen R, Chen W, Zeng Y, Xu C, Min H, Zheng N, Cheng X. A multilayer lateral-flow microfluidic device for particle separation. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:40. [DOI: 10.1007/s10404-018-2053-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/28/2018] [Indexed: 01/03/2025]
|
29
|
Jan YJ, Chen JF, Zhu Y, Lu YT, Chen SH, Chung H, Smalley M, Huang YW, Dong J, Chen LC, Yu HH, Tomlinson JS, Hou S, Agopian VG, Posadas EM, Tseng HR. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev 2018; 125:78-93. [PMID: 29551650 PMCID: PMC5993593 DOI: 10.1016/j.addr.2018.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells shredded from either a primary tumor or a metastatic site and circulate in the blood as the potential cellular origin of metastasis. By detecting and analyzing CTCs, we will be able to noninvasively monitor disease progression in individual cancer patients and obtain insightful information for assessing disease status, thus realizing the concept of "tumor liquid biopsy". However, it is technically challenging to identify CTCs in patient blood samples because of the extremely low abundance of CTCs among a large number of hematologic cells. In order to address this challenge, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with remarkable efficiency. Four generations of NanoVelcro CTC assays have been developed over the past decade for a variety of clinical utilities. The 1st-gen NanoVelcro Chips, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, were created for CTC enumeration. The 2nd-gen NanoVelcro Chips (i.e., NanoVelcro-LMD), based on polymer nanosubstrates, were developed for single-CTC isolation in conjunction with the use of the laser microdissection (LMD) technique. By grafting thermoresponsive polymer brushes onto SiNS, the 3rd-gen Thermoresponsive NanoVelcro Chips have demonstrated the capture and release of CTCs at 37 and 4 °C respectively, thereby allowing for rapid CTC purification while maintaining cell viability and molecular integrity. Fabricated with boronic acid-grafted conducting polymer-based nanomaterial on chip surface, the 4th-gen NanoVelcro Chips (Sweet chip) were able to purify CTCs with well-preserved RNA transcripts, which could be used for downstream analysis of several cancer specific RNA biomarkers. In this review article, we will summarize the development of the four generations of NanoVelcro CTC assays, and the clinical applications of each generation of devices.
Collapse
Affiliation(s)
- Yu Jen Jan
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie-Fu Chen
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi-Tsung Lu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Szu Hao Chen
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Howard Chung
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Smalley
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; CytoLumina Technologies Corp., Los Angeles, CA, USA
| | - Yen-Wen Huang
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; CytoLumina Technologies Corp., Los Angeles, CA, USA
| | - Jiantong Dong
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Li-Ching Chen
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | - Hsiao-Hua Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - James S Tomlinson
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Center for Pancreatic Disease, University of California, Los Angeles, Los Angeles, CA, USA; Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, Los Angeles, CA, USA
| | - Shuang Hou
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vatche G Agopian
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Liver Transplantation and Hepatobiliary Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edwin M Posadas
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Barteneva NS, Vorobjev IA. Heterogeneity of Metazoan Cells and Beyond: To Integrative Analysis of Cellular Populations at Single-Cell Level. Methods Mol Biol 2018; 1745:3-23. [PMID: 29476460 DOI: 10.1007/978-1-4939-7680-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.
Collapse
Affiliation(s)
- Natasha S Barteneva
- PCMM-Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
- Department of Biology, School of Sciences and Technology, Nazarbayev University, Astana, Kazakhstan.
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Technology, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
31
|
Lim JT, Yoon YS, Lee WY, Jeong JT, Kim GS, Kim TG, Lee SK. Microfluidic channel-coupled 3D quartz nanohole arrays for high capture and release efficiency of BT20 cancer cells. NANOSCALE 2017; 9:17224-17232. [PMID: 29068023 DOI: 10.1039/c7nr04961g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanostructured materials, such as silicon nanowires, quartz nanostructures, and polymer-modified nanostructures, are a promising new class of materials for the capture and enumeration of very rare tumor cells, including circulating tumor cells (CTCs), to examine their biological characteristics in whole blood of cancer patients. These cells can then be used for transplantation, anti-tumor cell therapy, and cell-secreted protein studies. It is believed that 3-dimensional (3D) nanostructured substrates efficiently enhance cell capture yields due to the increased local contacts between the 3D nanostructures and extracellular extensions of the tumor cells. Recent studies have been performed with enhanced cell capture yields thanks to various nanostructured platforms; however, there remains an urgent need both to capture and release viable rare tumor cells for further molecular (i.e., protein) analysis and to develop patient-specific drugs. Here, we first demonstrate that our 3D quartz nanohole array (QNHA) tumor cell capture and release system allows us not only to selectively capture rare tumor cells, but also to release the cells with high capture and release rates. This system was developed using streptavidin (STR)-functionalized QNHA (STR-QNHA) with a microfluidic channel. Our system has ideal cell-separation yields of as high as 85-91% and high release rates of >90% for the BT20 cell line. We suggest that the use of a microfluidic channel technique coupled with a STR-QNHA cell capture and release chip (STR-QNHA cell chip) would be a powerful and simple process to evaluate the capture, enumeration, and release of CTCs from patient whole blood for studying further cell therapy and tumor-cell-secreted molecules.
Collapse
Affiliation(s)
- Jung-Taek Lim
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
32
|
Li M, Anand RK. High-Throughput Selective Capture of Single Circulating Tumor Cells by Dielectrophoresis at a Wireless Electrode Array. J Am Chem Soc 2017; 139:8950-8959. [PMID: 28609630 DOI: 10.1021/jacs.7b03288] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We demonstrate continuous high-throughput selective capture of circulating tumor cells by dielectrophoresis at arrays of wireless electrodes (bipolar electrodes, BPEs). The use of BPEs removes the requirement of ohmic contact to individual array elements, thus enabling otherwise unattainable device formats. Capacitive charging of the electrical double layer at opposing ends of each BPE allows an AC electric field to be transmitted across the entire device. Here, two such designs are described and evaluated. In the first design, BPEs interconnect parallel microchannels. Pockets extruding from either side of the microchannels volumetrically control the number of cells captured at each BPE tip and enhance trapping. High-fidelity single-cell capture was achieved when the pocket dimensions were matched to those of the cells. A second, open design allows many non-targeted cells to pass through. These devices enable high-throughput capture of rare cells and single-cell analysis.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry, Iowa State University , Ames, Iowa 50010, United States
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University , Ames, Iowa 50010, United States
| |
Collapse
|
33
|
Rawal S, Yang YP, Cote R, Agarwal A. Identification and Quantitation of Circulating Tumor Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:321-343. [PMID: 28301753 DOI: 10.1146/annurev-anchem-061516-045405] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Circulating tumor cells (CTCs) are shed from the primary tumor into the circulatory system and act as seeds that initiate cancer metastasis to distant sites. CTC enumeration has been shown to have a significant prognostic value as a surrogate marker in various cancers. The widespread clinical utility of CTC tests, however, is still limited due to the inherent rarity and heterogeneity of CTCs, which necessitate robust techniques for their efficient enrichment and detection. Significant recent advances have resulted in technologies with the ability to improve yield and purity of CTC enrichment as well as detection sensitivity. Current efforts are largely focused on the translation and standardization of assays to fully realize the clinical utility of CTCs. In this review, we aim to provide a comprehensive overview of CTC enrichment and detection techniques with an emphasis on novel approaches for rapid quantification of CTCs.
Collapse
Affiliation(s)
- Siddarth Rawal
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
| | - Yu-Ping Yang
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
- Department of Biochemistry and Molecular Biology, University of Miami, Coral Gables, Florida 33146
| | - Richard Cote
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
- Department of Biochemistry and Molecular Biology, University of Miami, Coral Gables, Florida 33146
| | - Ashutosh Agarwal
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida 33146;
| |
Collapse
|
34
|
Hao N, Zhang JX. Microfluidic Screening of Circulating Tumor Biomarkers toward Liquid Biopsy. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1320763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
35
|
Kelley SO. Advancing Ultrasensitive Molecular and Cellular Analysis Methods to Speed and Simplify the Diagnosis of Disease. Acc Chem Res 2017; 50:503-507. [PMID: 28945395 DOI: 10.1021/acs.accounts.6b00497] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diagnosing disease at the molecular level rapidly and with a high level of sensitivity and specificity is a critical capability for modern medicine. Rapid detection of small numbers of biomarkers of early disease in complex, heterogeneous clinical specimens represents a Holy Grail that will have a significant impact on human health.
Collapse
Affiliation(s)
- Shana O. Kelley
- Departments of Chemistry,
Biochemistry, and Pharmaceutical Sciences and the Institute for Biomaterials
and Biomedical Engineering, University of Toronto, Toronto, Canada M5S 3M2
| |
Collapse
|
36
|
Song Y, Tian T, Shi Y, Liu W, Zou Y, Khajvand T, Wang S, Zhu Z, Yang C. Enrichment and single-cell analysis of circulating tumor cells. Chem Sci 2017; 8:1736-1751. [PMID: 28451298 PMCID: PMC5396552 DOI: 10.1039/c6sc04671a] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/07/2016] [Indexed: 12/28/2022] Open
Abstract
Up to 90% of cancer-related deaths are caused by metastatic cancer. Circulating tumor cells (CTCs), a type of cancer cell that spreads through the blood after detaching from a solid tumor, are essential for the establishment of distant metastasis for a given cancer. As a new type of liquid biopsy, analysis of CTCs offers the possibility to avoid invasive tissue biopsy procedures with practical implications for diagnostics. The fundamental challenges of analyzing and profiling CTCs are the extremely low abundances of CTCs in the blood and the intrinsic heterogeneity of CTCs. Various technologies have been proposed for the enrichment and single-cell analysis of CTCs. This review aims to provide in-depth insights into CTC analysis, including various techniques for isolation of CTCs with capture methods based on physical and biochemical principles, and single-cell analysis of CTCs at the genomic, proteomic and phenotypic level, as well as current developmental trends and promising research directions.
Collapse
Affiliation(s)
- Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Yuanzhi Shi
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Wenli Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Yuan Zou
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Tahereh Khajvand
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Sili Wang
- Department of Hematology , The First Affiliated Hospital of Xiamen University , Xiamen 361005 , China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| |
Collapse
|
37
|
Poudineh M, Aldridge PM, Ahmed S, Green BJ, Kermanshah L, Nguyen V, Tu C, Mohamadi RM, Nam RK, Hansen A, Sridhar SS, Finelli A, Fleshner NE, Joshua AM, Sargent EH, Kelley SO. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. NATURE NANOTECHNOLOGY 2017; 12:274-281. [PMID: 27870841 DOI: 10.1038/nnano.2016.239] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 10/03/2016] [Indexed: 05/07/2023]
Abstract
Profiling the heterogeneous phenotypes of rare circulating tumour cells (CTCs) in whole blood is critical to unravelling the complex and dynamic properties of these potential clinical markers. This task is challenging because these cells are present at parts per billion levels among normal blood cells. Here we report a new nanoparticle-enabled method for CTC characterization, called magnetic ranking cytometry, which profiles CTCs on the basis of their surface expression phenotype. We achieve this using a microfluidic chip that successfully processes whole blood samples. The approach classifies CTCs with single-cell resolution in accordance with their expression of phenotypic surface markers, which is read out using magnetic nanoparticles. We deploy this new technique to reveal the dynamic phenotypes of CTCs in unprocessed blood from mice as a function of tumour growth and aggressiveness. We also test magnetic ranking cytometry using blood samples collected from cancer patients.
Collapse
Affiliation(s)
- Mahla Poudineh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Peter M Aldridge
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Brenda J Green
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Leyla Kermanshah
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Vivian Nguyen
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Carmen Tu
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Reza M Mohamadi
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Robert K Nam
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Aaron Hansen
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Srikala S Sridhar
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Antonio Finelli
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Neil E Fleshner
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Anthony M Joshua
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
38
|
Immunomagnetic separation of tumor initiating cells by screening two surface markers. Sci Rep 2017; 7:40632. [PMID: 28074882 PMCID: PMC5225414 DOI: 10.1038/srep40632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
Isolating tumor initiating cells (TICs) often requires screening of multiple surface markers, sometimes with opposite preferences. This creates a challenge for using bead-based immunomagnetic separation (IMS) that typically enriches cells based on one abundant marker. Here, we propose a new strategy that allows isolation of CD44+/CD24− TICs by IMS involving both magnetic beads coated by anti-CD44 antibody and nonmagnetic beads coated by anti-CD24 antibody (referred to as two-bead IMS). Cells enriched with our approach showed significant enhancement in TIC marker expression (examined by flow cytometry) and improved tumorsphere formation efficiency. Our method will extend the application of IMS to cell subsets characterized by multiple markers.
Collapse
|
39
|
Khoo BL, Chaudhuri PK, Lim CT, Warkiani ME. Advancing Techniques and Insights in Circulating Tumor Cell (CTC) Research. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:71-94. [DOI: 10.1007/978-3-319-45397-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Hassan EM, Willmore WG, DeRosa MC. Aptamers: Promising Tools for the Detection of Circulating Tumor Cells. Nucleic Acid Ther 2016; 26:335-347. [PMID: 27736306 DOI: 10.1089/nat.2016.0632] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and freely circulate in the blood, retaining the ability to initiate metastasis and form a secondary tumor in distant organs in the body. CTCs reflect the molecular profile of the primary tumor, therefore studying CTCs can allow for an understanding of the mechanism of metastasis, and an opportunity to monitor the prognosis of cancer. Unfortunately, the detection of CTCs is a considerable challenge due to their low abundance in the bloodstream and the lack of consistent markers present to recognize these cells. The aim of this review is to summarize some of the aptamer-based affinity methods for the detection of CTCs. The basic biological concept of how metastasis occurs and the role of CTCs in this process are presented. Some methods of CTC detection employing antibodies or peptides are mentioned here for comparison. The review of present literature suggests that aptamers are emerging as competitive technology in the detection of CTCs, especially due to their unique properties, but there still remain several challenges to be met, including the need to improve the throughput and sensitivity of such methods.
Collapse
Affiliation(s)
- Eman M Hassan
- 1 Institut National de la Recherche Scientifique-Energie, Materiaux Telecommunication , Quebec, Canada .,2 Department of Chemistry, Carleton University , Ottawa, Canada
| | | | - Maria C DeRosa
- 2 Department of Chemistry, Carleton University , Ottawa, Canada .,3 Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
41
|
Guo S, Xu J, Xie M, Huang W, Yuan E, Liu Y, Fan L, Cheng S, Liu S, Wang F, Yuan B, Dong W, Zhang X, Huang W, Zhou X. Degradable Zinc-Phosphate-Based Hierarchical Nanosubstrates for Capture and Release of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15917-15925. [PMID: 27265681 DOI: 10.1021/acsami.6b04002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Circulating tumor cells (CTCs) play a significant role in cancer diagnosis and personalized therapy, and it is still a significant challenge to efficiently capture and gently release CTCs from clinical samples for downstream manipulation and molecular analysis. Many CTC devices incorporating various nanostructures have been developed for CTC isolation with sufficient capture efficiency, however, fabricating such nanostructured substrates often requires elaborate design and complicated procedures. Here we fabricate a degradable zinc-phosphate-based hierarchical nanosubstrate (HZnPNS), and we demonstrate its excellent CTC-capture performance along with effective cell-release capability for downstream molecular analysis. This transparent hierarchical architecture prepared by a low-temperature hydrothermal method, enables substantially enhanced capture efficiency and convenient imaging. Biocompatible sodium citrate could rapidly dissolve the architecture at room temperature, allowing that 88 ± 4% of captured cells are gently released with a high viability of 92 ± 1%. Furthermore, antiepithelial cell adhesion molecule antibody functionalized HZnPNS (anti-EpCAM/HZnPNS) was successfully applied to isolate CTCs from whole blood samples of cancer patients, as well as release CTCs for global DNA methylation analysis, indicating it will serve as a simple and reliable alternative platform for CTC detection.
Collapse
Affiliation(s)
- Shan Guo
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies of Wuhan University, Wuhan University , Wuhan 430072, China
| | - Jiaquan Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Min Xie
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Wei Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Erfeng Yuan
- Zhongnan Hospital, Wuhan University , Wuhan 430072, China
| | - Ya Liu
- Renmin Hospital of Wuhan University , Wuhan 430060, China
| | - Liping Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Shibo Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Songmei Liu
- Zhongnan Hospital, Wuhan University , Wuhan 430072, China
| | - Fubing Wang
- Zhongnan Hospital, Wuhan University , Wuhan 430072, China
| | - Bifeng Yuan
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies of Wuhan University, Wuhan University , Wuhan 430072, China
| | - Weiguo Dong
- Renmin Hospital of Wuhan University , Wuhan 430060, China
| | - Xiaolian Zhang
- State Key Laboratory of Virology, Department of Immunology, School of Medicine, Wuhan University , Wuhan 430072, China
| | - Weihua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies of Wuhan University, Wuhan University , Wuhan 430072, China
| |
Collapse
|
42
|
Chen JF, Zhu Y, Lu YT, Hodara E, Hou S, Agopian VG, Tomlinson JS, Posadas EM, Tseng HR. Clinical Applications of NanoVelcro Rare-Cell Assays for Detection and Characterization of Circulating Tumor Cells. Theranostics 2016; 6:1425-39. [PMID: 27375790 PMCID: PMC4924510 DOI: 10.7150/thno.15359] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
Liquid biopsy of tumor through isolation of circulating tumor cells (CTCs) allows non-invasive, repetitive, and systemic sampling of disease. Although detecting and enumerating CTCs is of prognostic significance in metastatic cancer, it is conceivable that performing molecular and functional characterization on CTCs will reveal unprecedented insight into the pathogenic mechanisms driving lethal disease. Nanomaterial-embedded cancer diagnostic platforms, i.e., NanoVelcro CTC Assays represent a unique rare-cell sorting method that enables detection isolation, and characterization of CTCs in peripheral blood, providing an opportunity to noninvasively monitor disease progression in individual cancer patients. Over the past decade, a series of NanoVelcro CTC Assays has been demonstrated for exploring the full potential of CTCs as a clinical biomarker, including CTC enumeration, phenotyping, genotyping and expression profiling. In this review article, the authors will briefly introduce the development of three generations of NanoVelcro CTC Assays, and highlight the clinical applications of each generation for various types of solid cancers, including prostate cancer, pancreatic cancer, lung cancer, and melanoma.
Collapse
Affiliation(s)
- Jie-Fu Chen
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yazhen Zhu
- 2. Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, California, USA;; 3. Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Tsung Lu
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Elisabeth Hodara
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shuang Hou
- 3. Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Vatche G Agopian
- 4. Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA;; 5. Liver Transplantation and Hepatobiliary Surgery, University of California, Los Angeles, Los Angeles, California, USA
| | - James S Tomlinson
- 4. Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA;; 6. Center for Pancreatic Disease, University of California, Los Angeles, Los Angeles, California, USA;; 7. Department of Surgery Greater Los Angeles Veteran's Affairs Administration, Los Angeles, California, USA
| | - Edwin M Posadas
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hsian-Rong Tseng
- 2. Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
43
|
Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nat Commun 2016; 7:11468. [PMID: 27118210 PMCID: PMC4853474 DOI: 10.1038/ncomms11468] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/30/2016] [Indexed: 12/19/2022] Open
Abstract
The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical 'painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a 'paintbrush' and the photoswitchable Pdots as the 'paint', we select and 'paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis.
Collapse
|
44
|
Sensitive and Specific Biomimetic Lipid Coated Microfluidics to Isolate Viable Circulating Tumor Cells and Microemboli for Cancer Detection. PLoS One 2016; 11:e0149633. [PMID: 26938471 PMCID: PMC4777486 DOI: 10.1371/journal.pone.0149633] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
Here we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB) "smart coating" to capture viable circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip. Human blood spiked cancer cell line test showed the ~95% overall efficiency to recover both CTCs and CTMs. Live/dead assay showed that at least 86% of recovered cells maintain viability. By using 2 mL of peripheral blood, the CTCs and CTMs counts of 63 healthy and colorectal cancer donors were positively correlated with the cancer progression. In summary, a simple and effective strategy utilizing biomimetic principle was developed to retrieve viable CTCs for enumeration, molecular analysis, as well as ex vivo culture over weeks. Due to the high sensitivity and specificity, it is the first time to show the high detection rates and quantity of CTCs in non-metastatic cancer patients. This work offers the values in both early cancer detection and prognosis of CTC and provides an accurate non-invasive strategy for routine clinical investigation on CTCs.
Collapse
|
45
|
Labib M, Green B, Mohamadi RM, Mepham A, Ahmed SU, Mahmoudian L, Chang IH, Sargent EH, Kelley SO. Aptamer and Antisense-Mediated Two-Dimensional Isolation of Specific Cancer Cell Subpopulations. J Am Chem Soc 2016; 138:2476-9. [PMID: 26860321 DOI: 10.1021/jacs.5b10939] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer cells, and in particular those found circulating in blood, can have widely varying phenotypes and molecular profiles despite a common origin. New methods are needed that can deconvolute the heterogeneity of cancer cells and sort small numbers of cells to aid in the characterization of cancer cell subpopulations. Here, we describe a new molecular approach to capturing cancer cells that isolates subpopulations using two-dimensional sorting. Using aptamer-mediated capture and antisense-triggered release, the new strategy sorts cells according to levels of two different markers and thereby separates them into their corresponding subpopulations. Using a phenotypic assay, we demonstrate that the subpopulations isolated have markedly different properties. This system provides an important new tool for identifying circulating tumor cell subtypes.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | - Brenda Green
- Institute for Biomedical and Biomaterials Engineering, University of Toronto , Toronto, Ontario M5S 3G4, Canada
| | - Reza M Mohamadi
- Department of Pharmaceutical Sciences, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | - Adam Mepham
- Institute for Biomedical and Biomaterials Engineering, University of Toronto , Toronto, Ontario M5S 3G4, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | - Laili Mahmoudian
- Department of Pharmaceutical Sciences, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | - I-Hsin Chang
- Department of Pharmaceutical Sciences, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O Kelley
- Department of Pharmaceutical Sciences, University of Toronto , Toronto, Ontario M5S 3M2, Canada.,Institute for Biomedical and Biomaterials Engineering, University of Toronto , Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
46
|
Khoo BL, Chaudhuri PK, Ramalingam N, Tan DSW, Lim CT, Warkiani ME. Single-cell profiling approaches to probing tumor heterogeneity. Int J Cancer 2016; 139:243-55. [PMID: 26789729 DOI: 10.1002/ijc.30006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/10/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
Tumor heterogeneity is a major hindrance in cancer classification, diagnosis and treatment. Recent technological advances have begun to reveal the true extent of its heterogeneity. Single-cell analysis (SCA) is emerging as an important approach to detect variations in morphology, genetic or proteomic expression. In this review, we revisit the issue of inter- and intra-tumor heterogeneity, and list various modes of SCA techniques (cell-based, nucleic acid-based, protein-based, metabolite-based and lipid-based) presently used for cancer characterization. We further discuss the advantages of SCA over pooled cell analysis, as well as the limitations of conventional techniques. Emerging trends, such as high-throughput sequencing, are also mentioned as improved means for cancer profiling. Collectively, these applications have the potential for breakthroughs in cancer treatment.
Collapse
Affiliation(s)
- Bee Luan Khoo
- Mechanobiology Institute, National University of Singapore.,BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | | | | | - Daniel Shao Weng Tan
- Division of Medical Oncology, National Cancer Centre Singapore.,Cancer Stem Cell Biology, Genome Institute of Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore.,BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.,Department of Biomedical Engineering, National University of Singapore
| | - Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.,School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
47
|
Affiliation(s)
- Stephanie M. Schubert
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Stephanie R. Walter
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Mael Manesse
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - David R. Walt
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
48
|
Myung JH, Hong S. Microfluidic devices to enrich and isolate circulating tumor cells. LAB ON A CHIP 2015; 15:4500-11. [PMID: 26549749 PMCID: PMC4664604 DOI: 10.1039/c5lc00947b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Given the potential clinical impact of circulating tumor cells (CTCs) in blood as a clinical biomarker for the diagnosis and prognosis of various cancers, a myriad of detection methods for CTCs have been recently introduced. Among those, a series of microfluidic devices are particularly promising as they uniquely offer micro-scale analytical systems that are highlighted by low consumption of samples and reagents, high flexibility to accommodate other cutting-edge technologies, precise and well-defined flow behaviors, and automation capability, presenting significant advantages over conventional larger scale systems. In this review, we highlight the advantages of microfluidic devices and their potential for translation into CTC detection methods, categorized by miniaturization of bench-top analytical instruments, integration capability with nanotechnologies, and in situ or sequential analysis of captured CTCs. This review provides a comprehensive overview of recent advances in CTC detection achieved through application of microfluidic devices and the challenges that these promising technologies must overcome to be clinically impactful.
Collapse
Affiliation(s)
- J H Myung
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612, USA.
| | | |
Collapse
|
49
|
Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO. Beyond the Capture of Circulating Tumor Cells: Next-Generation Devices and Materials. Angew Chem Int Ed Engl 2015; 55:1252-65. [PMID: 26643151 DOI: 10.1002/anie.201505100] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/22/2022]
Abstract
Over the last decade, significant progress has been made towards the development of approaches that enable the capture of rare circulating tumor cells (CTCs) from the blood of cancer patients, a critical capability for noninvasive tumor profiling. These advances have leveraged new insights in materials chemistry and microfluidics and allowed the capture and enumeration of CTCs with unprecedented sensitivity. However, it has become increasingly clear that simply capturing and counting tumor cells launched into the bloodstream may not provide the information needed to advance our understanding of the biology of these rare cells, or to allow us to better exploit them in medicine. A variety of advances have now emerged demonstrating that more information can be extracted from CTCs with next-generation devices and materials featuring tailored physical and chemical properties. In this Minireview, the last ten years of work in this area will be discussed, with an emphasis on the groundbreaking work of the last five years, during which the focus has moved beyond the simple capture of CTCs and gravitated towards approaches that enable in-depth analysis.
Collapse
Affiliation(s)
- Brenda J Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tina Saberi Safaei
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Reza M Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
50
|
Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO. Profilierung zirkulierender Tumorzellen mit Apparaturen und Materialien der nächsten Generation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
| | - Tina Saberi Safaei
- Department of Electrical and Computer Engineering; University of Toronto; Toronto ON Kanada
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
| | - Reza M. Mohamadi
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
- Department of Biochemistry; University of Toronto; Toronto ON Kanada
| |
Collapse
|