• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4593039)   Today's Articles (100)   Subscriber (49319)
For: Thirlway J, Lewis R, Nunns L, Al Nakeeb M, Styles M, Struck AW, Smith CP, Micklefield J. Introduction of a Non-Natural Amino Acid into a Nonribosomal Peptide Antibiotic by Modification of Adenylation Domain Specificity. Angew Chem Int Ed Engl 2012;51:7181-4. [DOI: 10.1002/anie.201202043] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/18/2012] [Indexed: 01/22/2023]
Number Cited by Other Article(s)
1
Peng H, Schmiederer J, Chen X, Panagiotou G, Kries H. Controlling Substrate- and Stereospecificity of Condensation Domains in Nonribosomal Peptide Synthetases. ACS Chem Biol 2024;19:599-606. [PMID: 38395426 PMCID: PMC10949931 DOI: 10.1021/acschembio.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
2
Folger IB, Frota NF, Pistofidis A, Niquille DL, Hansen DA, Schmeing TM, Hilvert D. High-throughput reprogramming of an NRPS condensation domain. Nat Chem Biol 2024:10.1038/s41589-023-01532-x. [PMID: 38308044 DOI: 10.1038/s41589-023-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
3
Stephan P, Langley C, Winkler D, Basquin J, Caputi L, O'Connor SE, Kries H. Directed Evolution of Piperazic Acid Incorporation by a Nonribosomal Peptide Synthetase. Angew Chem Int Ed Engl 2023;62:e202304843. [PMID: 37326625 DOI: 10.1002/anie.202304843] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
4
Puja H, Mislin GLA, Rigouin C. Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules 2023;13:959. [PMID: 37371539 DOI: 10.3390/biom13060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]  Open
5
Wang X, Gu Z, Wan J, Zhou X, Zhu K, Wang X, Cao X, Yu X, Peng X, Tang Y. dECM based dusal-responsive vascular graft with enzyme-controlled adenine release for long-term patency. Int J Biol Macromol 2023;242:124618. [PMID: 37148948 DOI: 10.1016/j.ijbiomac.2023.124618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
6
Kahlert L, Lichstrahl MS, Townsend CA. Colorimetric Determination of Adenylation Domain Activity in Nonribosomal Peptide Synthetases by Using Chrome Azurol S. Chembiochem 2023;24:e202200668. [PMID: 36511946 PMCID: PMC10041650 DOI: 10.1002/cbic.202200668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
7
Sreedharan SM, Rishi N, Singh R. Microbial Lipopeptides: Properties, Mechanics and Engineering for Novel Lipopeptides. Microbiol Res 2023;271:127363. [PMID: 36989760 DOI: 10.1016/j.micres.2023.127363] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/04/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
8
Zhang L, Wang C, Chen K, Zhong W, Xu Y, Molnár I. Engineering the biosynthesis of fungal nonribosomal peptides. Nat Prod Rep 2023;40:62-88. [PMID: 35796260 DOI: 10.1039/d2np00036a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
9
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022;7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023]  Open
10
Soeriyadi AH, Ongley SE, Kehr JC, Pickford R, Dittmann E, Neilan BA. Tailoring Enzyme Stringency Masks the Multispecificity of a Lyngbyatoxin (Indolactam Alkaloid) Nonribosomal Peptide Synthetase. Chembiochem 2021;23:e202100574. [PMID: 34850512 DOI: 10.1002/cbic.202100574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/30/2021] [Indexed: 11/11/2022]
11
Gene editing enables rapid engineering of complex antibiotic assembly lines. Nat Commun 2021;12:6872. [PMID: 34824225 PMCID: PMC8616955 DOI: 10.1038/s41467-021-27139-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 11/08/2022]  Open
12
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021;48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
13
Stanišić A, Hüsken A, Stephan P, Niquille DL, Reinstein J, Kries H. Engineered Nonribosomal Peptide Synthetase Shows Opposite Amino Acid Loading and Condensation Specificity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
14
Niquille DL, Folger IB, Basler S, Hilvert D. Biosynthetic Functionalization of Nonribosomal Peptides. J Am Chem Soc 2021;143:2736-2740. [PMID: 33570948 DOI: 10.1021/jacs.1c00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
15
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021;49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
16
Recent Advances in Re-engineering Modular PKS and NRPS Assembly Lines. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0265-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
17
Kaniusaite M, Kittilä T, Goode RJA, Schittenhelm RB, Cryle MJ. Redesign of Substrate Selection in Glycopeptide Antibiotic Biosynthesis Enables Effective Formation of Alternate Peptide Backbones. ACS Chem Biol 2020;15:2444-2455. [PMID: 32794694 DOI: 10.1021/acschembio.0c00435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
18
Kaniusaite M, Goode RJA, Tailhades J, Schittenhelm RB, Cryle MJ. Exploring modular reengineering strategies to redesign the teicoplanin non-ribosomal peptide synthetase. Chem Sci 2020;11:9443-9458. [PMID: 34094211 PMCID: PMC8162109 DOI: 10.1039/d0sc03483e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022]  Open
19
Zhang JJ, Moore BS. Site-Directed Mutagenesis of Large Biosynthetic Gene Clusters via Oligonucleotide Recombineering and CRISPR/Cas9 Targeting. ACS Synth Biol 2020;9:1917-1922. [PMID: 32584552 DOI: 10.1021/acssynbio.0c00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
20
Yuan Y, Xu QM, Yu SC, Sun HZ, Cheng JS, Yuan YJ. Control of the polymyxin analog ratio by domain swapping in the nonribosomal peptide synthetase of Paenibacillus polymyxa. J Ind Microbiol Biotechnol 2020;47:551-562. [PMID: 32495197 DOI: 10.1007/s10295-020-02275-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/15/2020] [Indexed: 11/26/2022]
21
Kegler C, Bode HB. Artificial Splitting of a Non-Ribosomal Peptide Synthetase by Inserting Natural Docking Domains. Angew Chem Int Ed Engl 2020;59:13463-13467. [PMID: 32329545 PMCID: PMC7496407 DOI: 10.1002/anie.201915989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/18/2020] [Indexed: 12/13/2022]
22
Kegler C, Bode HB. Artificial Splitting of a Non‐Ribosomal Peptide Synthetase by Inserting Natural Docking Domains. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
23
Hwang S, Lee N, Cho S, Palsson B, Cho BK. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Front Mol Biosci 2020;7:87. [PMID: 32500080 PMCID: PMC7242659 DOI: 10.3389/fmolb.2020.00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022]  Open
24
Reimer JM, Eivaskhani M, Harb I, Guarné A, Weigt M, Schmeing TM. Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science 2020;366:366/6466/eaaw4388. [PMID: 31699907 DOI: 10.1126/science.aaw4388] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
25
Ishikawa F, Nohara M, Nakamura S, Nakanishi I, Tanabe G. Precise Probing of Residue Roles by NRPS Code Swapping: Mutation, Enzymatic Characterization, Modeling, and Substrate Promiscuity of Aryl Acid Adenylation Domains. Biochemistry 2020;59:351-363. [PMID: 31894971 DOI: 10.1021/acs.biochem.9b00748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
26
Lundy TA, Mori S, Garneau-Tsodikova S. Lessons learned in engineering interrupted adenylation domains when attempting to create trifunctional enzymes from three independent monofunctional ones. RSC Adv 2020;10:34299-34307. [PMID: 35519055 PMCID: PMC9056781 DOI: 10.1039/d0ra05490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022]  Open
27
Steiniger C, Hoffmann S, Süssmuth RD. Probing Exchange Units for Combining Iterative and Linear Fungal Nonribosomal Peptide Synthetases. Cell Chem Biol 2019;26:1526-1534.e2. [DOI: 10.1016/j.chembiol.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
28
Pass-back chain extension expands multimodular assembly line biosynthesis. Nat Chem Biol 2019;16:42-49. [PMID: 31636431 PMCID: PMC6917876 DOI: 10.1038/s41589-019-0385-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022]
29
Throckmorton K, Vinnik V, Chowdhury R, Cook T, Chevrette MG, Maranas C, Pfleger B, Thomas MG. Directed Evolution Reveals the Functional Sequence Space of an Adenylation Domain Specificity Code. ACS Chem Biol 2019;14:2044-2054. [PMID: 31430120 DOI: 10.1021/acschembio.9b00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
30
Brown AS, Calcott MJ, Owen JG, Ackerley DF. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep 2019;35:1210-1228. [PMID: 30069573 DOI: 10.1039/c8np00036k] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Ishikawa F, Tanabe G. Chemical Strategies for Visualizing and Analyzing Endogenous Nonribosomal Peptide Synthetase (NRPS) Megasynthetases. Chembiochem 2019;20:2032-2040. [PMID: 31134733 DOI: 10.1002/cbic.201900186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Indexed: 12/22/2022]
32
Alanjary M, Cano-Prieto C, Gross H, Medema MH. Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines. Nat Prod Rep 2019;36:1249-1261. [PMID: 31259995 DOI: 10.1039/c9np00021f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
33
Morgan GL, Kretsch AM, Santa Maria KC, Weeks SJ, Li B. Specificity of Nonribosomal Peptide Synthetases in the Biosynthesis of the Pseudomonas virulence factor. Biochemistry 2019;58:5249-5254. [PMID: 31243997 DOI: 10.1021/acs.biochem.9b00360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
34
Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat Chem 2019;11:653-661. [PMID: 31182822 DOI: 10.1038/s41557-019-0276-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/26/2019] [Indexed: 11/09/2022]
35
Ishikawa F, Miyanaga A, Kitayama H, Nakamura S, Nakanishi I, Kudo F, Eguchi T, Tanabe G. An Engineered Aryl Acid Adenylation Domain with an Enlarged Substrate Binding Pocket. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
36
Ishikawa F, Miyanaga A, Kitayama H, Nakamura S, Nakanishi I, Kudo F, Eguchi T, Tanabe G. An Engineered Aryl Acid Adenylation Domain with an Enlarged Substrate Binding Pocket. Angew Chem Int Ed Engl 2019;58:6906-6910. [PMID: 30945421 DOI: 10.1002/anie.201900318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/04/2019] [Indexed: 12/27/2022]
37
Lundy TA, Mori S, Garneau-Tsodikova S. Probing the limits of interrupted adenylation domains by engineering a trifunctional enzyme capable of adenylation, N-, and S-methylation. Org Biomol Chem 2019;17:1169-1175. [PMID: 30644493 DOI: 10.1039/c8ob02996b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
38
Stanišić A, Kries H. Adenylation Domains in Nonribosomal Peptide Engineering. Chembiochem 2019;20:1347-1356. [DOI: 10.1002/cbic.201800750] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 11/10/2022]
39
Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. ACTA ACUST UNITED AC 2019;46:515-536. [DOI: 10.1007/s10295-018-2084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
40
Zhu M, Wang L, He J. Chemical Diversification Based on Substrate Promiscuity of a Standalone Adenylation Domain in a Reconstituted NRPS System. ACS Chem Biol 2019;14:256-265. [PMID: 30673204 DOI: 10.1021/acschembio.8b00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
41
Greule A, Charkoudian LK, Cryle MJ. Studying trans-acting enzymes that target carrier protein-bound amino acids during nonribosomal peptide synthesis. Methods Enzymol 2019;617:113-154. [PMID: 30784400 DOI: 10.1016/bs.mie.2018.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
42
Guzmán-Chávez F, Zwahlen RD, Bovenberg RAL, Driessen AJM. Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Front Microbiol 2018;9:2768. [PMID: 30524395 PMCID: PMC6262359 DOI: 10.3389/fmicb.2018.02768] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]  Open
43
Schoppet M, Peschke M, Kirchberg A, Wiebach V, Süssmuth RD, Stegmann E, Cryle MJ. The biosynthetic implications of late-stage condensation domain selectivity during glycopeptide antibiotic biosynthesis. Chem Sci 2018;10:118-133. [PMID: 30713624 PMCID: PMC6333238 DOI: 10.1039/c8sc03530j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/10/2018] [Indexed: 01/27/2023]  Open
44
Winn M, Francis D, Micklefield J. De novo Biosynthesis of “Non-Natural” Thaxtomin Phytotoxins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
45
Winn M, Francis D, Micklefield J. De novo Biosynthesis of "Non-Natural" Thaxtomin Phytotoxins. Angew Chem Int Ed Engl 2018;57:6830-6833. [PMID: 29603527 PMCID: PMC6001691 DOI: 10.1002/anie.201801525] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 02/04/2023]
46
Lundy TA, Mori S, Garneau-Tsodikova S. Engineering Bifunctional Enzymes Capable of Adenylating and Selectively Methylating the Side Chain or Core of Amino Acids. ACS Synth Biol 2018;7:399-404. [PMID: 29393631 DOI: 10.1021/acssynbio.7b00426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
47
Hossain GS, Nadarajan SP, Zhang L, Ng TK, Foo JL, Ling H, Choi WJ, Chang MW. Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms. Front Microbiol 2018;9:155. [PMID: 29483901 PMCID: PMC5816047 DOI: 10.3389/fmicb.2018.00155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022]  Open
48
Ishikawa F, Tanabe G, Kakeya H. Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases. Curr Top Microbiol Immunol 2018;420:321-349. [PMID: 30178264 DOI: 10.1007/82_2018_133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
49
Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid. PLoS One 2017;12:e0189684. [PMID: 29240815 PMCID: PMC5730197 DOI: 10.1371/journal.pone.0189684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022]  Open
50
Nonribosomal biosynthesis of backbone-modified peptides. Nat Chem 2017;10:282-287. [DOI: 10.1038/nchem.2891] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA