1
|
Gu F, Lin B, Peng Z, Liu S, Wu Y, Luo M, Ding N, Zhan Q, Cao P, Zhou Z, Cao T. Ring Transformation of Cyclopropenes to Benzo-Fused Five-Membered Oxa- and Aza-Heterocycles via a Formal [4+1] Cyclization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407931. [PMID: 39206752 PMCID: PMC11516165 DOI: 10.1002/advs.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
In the context of the growing importance of heterocyclic compounds across various disciplines, numerous strategies for their construction have emerged. Exploiting the distinctive properties of cyclopropenes, this study introduces an innovative approach for the synthesis of benzo-fused five-membered oxa- and aza-heterocycles through a formal [4+1] cyclization and subsequent acid-catalyzed intramolecular O- to N- rearrangement. These transformations exhibit mild reaction conditions and a wide substrate scope. The applications in the late-stage modification of complex molecules and in the synthesis of a potential PD-L1 gene down-regulator, make this method highly appealing in related fields. Combined experimental mechanistic studies and DFT calculations demonstrate Rh(III)-mediated sequential C─H coupling/π-allylation/dynamically favorable O-attack route.
Collapse
Affiliation(s)
- Fengyan Gu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Binyan Lin
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Zhi‐Huan Peng
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Shijie Liu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Yuanqing Wu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Mei Luo
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Ning Ding
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Qichen Zhan
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
- Jiangsu Provincial Medicinal Innovation CenterAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsu210028China
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhouZhejiang324000China
- Gaoyou Hospital of Traditional Chinese MedicineYangzhouJiangsu225600China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Tao Cao
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsu210023China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingJiangsu210023China
| |
Collapse
|
2
|
Silver-catalyzed site-selective C(sp 3)-H benzylation of ethers with N-triftosylhydrazones. Nat Commun 2022; 13:1674. [PMID: 35354822 PMCID: PMC8967862 DOI: 10.1038/s41467-022-29323-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
The insertion of carbenes into the α-C-H bonds of ethers represents one of the most powerful approaches to access polysubstituted α-branched ethers. However, intermolecular carbene insertions remain challenging, since current approaches are generally limited to the use of toxic and potentially explosive α-diazocarbonyl compounds. We now report a silver-catalyzed α-C-H benzylation of ethers using bench-stable N-triftosylhydrazones as safe and convenient carbene precursors. This approach is well suited for both inter- and intramolecular insertions to deliver medicinally relevant homobenzylic ethers and 5-8-membered oxacycles in good yields. The synthetic utility of this strategy is demonstrated by its easy scalability, broad scope with valuable functional groups, high regioselectivity, and late-stage functionalization of complex oxygen-containing molecules. The relative reactivities of different types of silver carbenes and C-H bonds were also investigated by experments and DFT calculations.
Collapse
|
3
|
Chen J, Han J, Wu T, Zhang J, Li M, Xu Y, Zhang J, Jiao Y, Yang Y, Jiang Y. Stereoselective Cyclopropanation of Enamides via C―C Bond Cleavage of Cyclopropenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00091a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes a straightforward protocol for the stereoselective synthesis of vinylcyclopropylamides in high E/Z and syn/anti ratios by cyclopropanation of N-tosyl substituted enamides with cyclopropenes in the presence of...
Collapse
|
4
|
Cui H, Xu G, Zhu J, Sun J. Rhodium-Catalyzed Dearomative Rearrangement of 2-Oxypyridines with Cyclopropenes: Access to N-Alkylated 2-Pyridones. Org Chem Front 2022. [DOI: 10.1039/d1qo01937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodium-catalyzed dearomative O-to-N rearrangement reaction of 2-oxypyridines has been developed by using cyclopropenes as the carbene precursors. This protocol features broad substrate scope and mild reaction conditions, providing a...
Collapse
|
5
|
Ramachandran K, Anbarasan P. Cobalt-catalyzed multisubstituted allylation of the chelation-assisted C-H bond of (hetero)arenes with cyclopropenes. Chem Sci 2021; 12:13442-13449. [PMID: 34777763 PMCID: PMC8528013 DOI: 10.1039/d1sc03476f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
Cyclopropenes are highly strained three-membered carbocycles, which offer unique reactivity in organic synthesis. Herein, Cp*CoIII-catalyzed ring-opening isomerization of cyclopropenes to cobalt vinylcarbene has been utilized for the synthesis of multisubstituted allylarenes via directing group-assisted functionalization of C-H bonds of arenes and heteroarenes. Employing this methodology, various substituents can be introduced at all three carbons of the allyl moiety with high selectivity. The important highlights are excellent functional group tolerance, multisubstituted allylation, high selectivity, gram scale synthesis, removable directing group, and synthesis of cyclopenta[b]indoles. In addition, a potential cobaltocycle intermediate was identified and a plausible mechanism is also proposed.
Collapse
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| |
Collapse
|
6
|
Jiang C, Wu J, Han J, Chen K, Qian Y, Zhang Z, Jiang Y. An expedient synthesis of highly functionalized 1,3-dienes by employing cyclopropenes as C4 units. Chem Commun (Camb) 2021; 57:5710-5713. [PMID: 33982703 DOI: 10.1039/d1cc01254a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient method has been described to synthesize dicarbonyl functionalized 1,3-dienes by cleaving the C[double bond, length as m-dash]C bond of enaminones with cyclopropenes in the presence of a rhodium catalyst. The acetate-substituted cyclopropenes are judiciously chosen as standard C4 units of 1,3-diene precursors. The reactions are believed to undergo a unique cutting and insertion process, involving a C[double bond, length as m-dash]C bond cleavage of the enaminone and insertion of a new C(sp2) source with the formation of two C-C single bonds. A broad range of substrates can be used to synthesize the corresponding 1,3-dienes under very mild reaction conditions, including low catalyst-loading, ambient temperature, and a neutral reaction solvent.
Collapse
Affiliation(s)
- Chengzhou Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Jiamin Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Jiabin Han
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Kai Chen
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| | - Yang Qian
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. and Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| |
Collapse
|
7
|
Bergstrom BD, Nickerson LA, Shaw JT, Souza LW. Transition Metal Catalyzed Insertion Reactions with Donor/Donor Carbenes. Angew Chem Int Ed Engl 2021; 60:6864-6878. [PMID: 32770624 PMCID: PMC7867669 DOI: 10.1002/anie.202007001] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Donor/donor carbenes are relatively new in the field of carbene chemistry; although applications in C-H and X-H insertion reactions are few in number, they demonstrate exquisite chemo- and stereo-selectivity. Recent reports have shown that C-H, N-H, B-H, O-H, S-H, Si-H, Ge-H, Sn-H and P-H insertion reactions are feasible with a variety of transition metal catalysts, both inter- and intramolecularly. Furthermore, high degrees of diastereo- and enantioselectivity have been observed in several cases. Methods typically involve the formation of a diazo-based carbene precursor, but procedures using diazo-free metal carbenes have been developed with significant success. This Minireview covers transition-metal catalyzed insertion reactions with donor/donor and donor carbenes, providing context for future developments in this emerging field.
Collapse
Affiliation(s)
- Benjamin D Bergstrom
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Leslie A Nickerson
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Jared T Shaw
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Lucas W Souza
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| |
Collapse
|
8
|
Muriel B, Waser J. Azide Radical Initiated Ring Opening of Cyclopropenes Leading to Alkenyl Nitriles and Polycyclic Aromatic Compounds. Angew Chem Int Ed Engl 2021; 60:4075-4079. [PMID: 33205851 DOI: 10.1002/anie.202013516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/04/2020] [Indexed: 01/05/2023]
Abstract
We report herein a radical-mediated amination of cyclopropenes. The transformation proceeds through a cleavage of the three-membered ring after the addition of an azide radical on the strained double bond and leads to tetrasubstituted alkenyl nitrile derivatives upon loss of N2 . With 1,2-diaryl substituted cyclopropenes, this methodology could be extended to a one-pot synthesis of highly functionalized polycyclic aromatic compounds (PACs). This transformation allows the synthesis of nitrile-substituted alkenes and aromatic compounds from rapidly accessed cyclopropenes using only commercially available reagents.
Collapse
Affiliation(s)
- Bastian Muriel
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| |
Collapse
|
9
|
Muriel B, Waser J. Azide Radical Initiated Ring Opening of Cyclopropenes Leading to Alkenyl Nitriles and Polycyclic Aromatic Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bastian Muriel
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
10
|
Anada M, Hashimoto S, Ito M, Kondo Y, Namie R, Natori Y, Takeda K, Nambu H, Yamamoto Y. Diastereo- and Enantioselective Intramolecular 1,6-C–H Insertion Reaction of Diaryldiazomethanes Catalyzed by Chiral Dirhodium(II) Carboxylates. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Bergstrom BD, Nickerson LA, Shaw JT, Souza LW. Transition Metal Catalyzed Insertion Reactions with Donor/Donor Carbenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Benjamin D. Bergstrom
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95616 USA
| | - Leslie A. Nickerson
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95616 USA
| | - Jared T. Shaw
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95616 USA
| | - Lucas W. Souza
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95616 USA
| |
Collapse
|
12
|
Guo P, Sun W, Liu Y, Li YX, Loh TP, Jiang Y. Stereoselective Synthesis of Vinylcyclopropa[ b]indolines via a Rh-Migration Strategy. Org Lett 2020; 22:5978-5983. [PMID: 32672043 DOI: 10.1021/acs.orglett.0c02071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A mild rhodium catalytic system has been developed to synthesize vinylcyclopropa[b]indolines through cyclopropanation of indoles with vinyl carbenoids generated from ring opening of cyclopropenes in situ. By employing a Rh-migration strategy, the products can be obtained with good to excellent E:Z ratios (≤99:1) and complete diastereoselectivity (≤99:1). This method is easy, has a low catalyst loading, and works for a broad range of functionalities.
Collapse
Affiliation(s)
- Pan Guo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wangbin Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong-Xin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Teck-Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
13
|
Vicente R. C–C Bond Cleavages of Cyclopropenes: Operating for Selective Ring-Opening Reactions. Chem Rev 2020; 121:162-226. [DOI: 10.1021/acs.chemrev.0c00151] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rubén Vicente
- Facultad de Quı́mica, Departamento de Quı́mica Orgánica e Inorgánica, Instituto de Quı́mica Organometálica Enrique Moles, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
14
|
Zhu D, Chen L, Fan H, Yao Q, Zhu S. Recent progress on donor and donor-donor carbenes. Chem Soc Rev 2020; 49:908-950. [PMID: 31958107 DOI: 10.1039/c9cs00542k] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Donor and donor-donor carbenes are two important kinds of carbenes, which have experienced tremendous growth in the past two decades. This review provides a comprehensive overview of the recent development of donor and donor-donor carbene chemistry. The development of this chemistry offers efficient protocols to construct a wide variety of C-C and C-X bonds in organic synthesis. This review is organized based on the different types of carbene precursors, including diazo compounds, hydrazones, enynones, cycloheptatrienes and cyclopropenes. The typical transformations, the reaction mechanisms, as well as their subsequent applications in the synthesis of complex natural products and bioactive molecules are discussed. Due to the rapidly increasing interest in this area, we believe that this review will provide a timely and comprehensive discussion of recent progress in donor and donor-donor carbene chemistry.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Abstract
As readily accessible strained carbocycles, cyclopropenes show a diverse range of reactivities, and a lot of novel and useful transformations have been developed.
Collapse
Affiliation(s)
- Penghua Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xiaoyu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
16
|
Nickerson LA, Bergstrom BD, Gao M, Shiue YS, Laconsay CJ, Culberson MR, Knauss WA, Fettinger JC, Tantillo DJ, Shaw JT. Enantioselective synthesis of isochromans and tetrahydroisoquinolines by C-H insertion of donor/donor carbenes. Chem Sci 2019; 11:494-498. [PMID: 32874491 PMCID: PMC7439777 DOI: 10.1039/c9sc05111b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Reports of C–H insertions forming six-membered rings containing heteroatoms are rare due to Stevens rearrangements occurring after nucleophilic attack on the carbene by a heteroatom. Using donor/donor carbenes and Rh2(R-PTAD)4 as a catalyst, we have synthesized a collection of isochroman substrates in good yield, with excellent diastereo- and enantioselectivity, and no rearrangement products were observed. Furthermore, we report the first synthesis of six-membered rings containing nitrogen by C–H insertion to form tetrahydroisoquinolines. In one case, a Stevens rearrangement product was isolated at elevated temperature from a carbamate-protected amine substrate and computational evidence suggests formation through a free ylide not bound to rhodium. Six-membered ring oxygen and nitrogen heterocycles are formed stereoselectively by C–H insertion of donor/donor carbenes.![]()
Collapse
Affiliation(s)
- Leslie A Nickerson
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Benjamin D Bergstrom
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Mingchun Gao
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Yuan-Shin Shiue
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Croix J Laconsay
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Matthew R Culberson
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Walker A Knauss
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - James C Fettinger
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Dean J Tantillo
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| | - Jared T Shaw
- Chemistry Department , University of California, Davis , One Shields Ave , Davis , CA 95616 , USA .
| |
Collapse
|
17
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
18
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019; 58:12674-12679. [DOI: 10.1002/anie.201906213] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
19
|
Li PH, Yang S, Hao TG, Xu Q, Shi M. Cu(I)-Catalyzed Intramolecular Tandem Cyclization of N-Indole-Tethered Cyclopropenes: Synthesis of Functionalized Hydrogenated Diazabenzo[ a]cyclopenta[ cd]azulene Derivatives. Org Lett 2019; 21:3162-3166. [PMID: 30993990 DOI: 10.1021/acs.orglett.9b00864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A Cu(I)-catalyzed [3 + 2] intramolecular cycloaddition reaction of N-indole-tethered cyclopropenes is presented in this paper. This reaction starts from the formation of π-allyl cationic intermediate or its resonance-stabilized metal carbenoid intermediate upon activation of cyclopropene with Cu(I) catalyst and a Friedel-Crafts-type cyclization to give functionalized hydrogenated diazabenzo[ a]cyclopenta[ cd]azulenes in good to excellent yields along with moderate to good dr values. The asymmetric variant of this cycloaddition reaction can be realized, giving the desired products with moderate ee values.
Collapse
Affiliation(s)
- Peng-Hua Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , People's Republic of China
| | - Song Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , People's Republic of China
| | - Tong-Gang Hao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , People's Republic of China
| | - Qin Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 354 Fenglin Lu , Shanghai 200032 , People's Republic of China
| |
Collapse
|
20
|
Meng X, Guo M, Zhu J, Zhu H, Sun X, Tian L, Cao Z. Gold and TfOH-Cocatalyzed Tandem Reaction ofortho-Akynylarylaldehydes with Cyclopropenes: an Efficient Route to Functionalized Benzo[7]annulene Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xin Meng
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu Shandong P. R. China
| | - Minghui Guo
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu Shandong P. R. China
| | - Jiekun Zhu
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu Shandong P. R. China
| | - Hongbo Zhu
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu Shandong P. R. China
| | - Xuejun Sun
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu Shandong P. R. China
| | - Laijin Tian
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu Shandong P. R. China
- Shandong Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; 273165 Qufu Shandong P. R. China
| | - Ziping Cao
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu Shandong P. R. China
- Shandong Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; 273165 Qufu Shandong P. R. China
| |
Collapse
|
21
|
Mato M, Echavarren AM. Donor Rhodium Carbenes by Retro-Buchner Reaction. Angew Chem Int Ed Engl 2019; 58:2088-2092. [PMID: 30561881 DOI: 10.1002/anie.201813512] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/15/2023]
Abstract
Rhodium carbenes are key intermediates in a range of cycloadditions and insertion reactions. Herein, we report the first generation of donor RhII carbenes by decarbenation of 7-substituted 1,3,5-cycloheptatrienes. This discovery unlocks an improved retro-Buchner-cyclopropanation sequence, a Si-H insertion reaction for a broad-scope synthesis of allylsilanes, and a new method for the vinylogation of aldehydes. The last strategy led to the development of an iterative synthesis of E-polyenes, and to the total synthesis of navenones B and C.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅li Domingo s/n, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅li Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
22
|
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/ Marcel⋅li Domingo s/n 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/ Marcel⋅li Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
23
|
Vaitla J, Bayer A, Hopmann KH. Iron‐Catalyzed Carbenoid‐Transfer Reactions of Vinyl Sulfoxonium Ylides: An Experimental and Computational Study. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Janakiram Vaitla
- Hylleraas Centre for Quantum Molecular SciencesDepartment of ChemistryUniversity of Tromsø–The Arctic University of Norway 9037 Tromsø Norway
| | - Annette Bayer
- Department of ChemistryUniversity of Tromsø–The Arctic University of Norway 9037 Tromsø Norway
| | - Kathrin H. Hopmann
- Hylleraas Centre for Quantum Molecular SciencesDepartment of ChemistryUniversity of Tromsø–The Arctic University of Norway 9037 Tromsø Norway
| |
Collapse
|
24
|
Vaitla J, Bayer A, Hopmann KH. Iron-Catalyzed Carbenoid-Transfer Reactions of Vinyl Sulfoxonium Ylides: An Experimental and Computational Study. Angew Chem Int Ed Engl 2018; 57:16180-16184. [PMID: 30318836 DOI: 10.1002/anie.201810451] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 12/22/2022]
Abstract
A method for the generation of unprecedented vinyl carbenoids from sulfoxonium ylides has been developed and applied in the synthesis of a diverse array of heterocycles such as indolizines, pyrroles, 3-pyrrolin-2-ones, and furans. The reactions proceed by FeBr2 catalysis under mild reaction conditions with a broad substrate scope. A reaction pathway involving iron carbenoids is proposed based on a series of control experiments and DFT calculations.
Collapse
Affiliation(s)
- Janakiram Vaitla
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Kathrin H Hopmann
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
25
|
Fang W, Wei Y, Shi M. Palladium(0)-Catalyzed Intramolecular Cascade Cyclization of Methylenecyclopropanes. Org Lett 2018; 20:7141-7144. [DOI: 10.1021/acs.orglett.8b03084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Fang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
26
|
Wang B, Yi H, Zhang H, Sun T, Zhang Y, Wang J. Ru(II)-Catalyzed Cross-Coupling of Cyclopropenes with Diazo Compounds: Formation of Olefins from Two Different Carbene Precursors. J Org Chem 2018; 83:1026-1032. [DOI: 10.1021/acs.joc.7b02634] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bo Wang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Heng Yi
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Hang Zhang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Tong Sun
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Yan Zhang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
- The
State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Zhu LH, Yuan HY, Li WL, Zhang JP. A computational mechanistic study of substrate-controlled competitive O–H and C–H insertion reactions catalyzed by dirhodium(ii) carbenoids: insight into the origin of chemoselectivity. Org Chem Front 2018. [DOI: 10.1039/c8qo00475g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DFT calculations disclosed the chemoselectivity of rhodium carbenoid and water co-catalyzed O–H and C–H insertion reactions with three 1,3-diketone substrates.
Collapse
Affiliation(s)
- Li-Han Zhu
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hai-Yan Yuan
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Wen-Liang Li
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Jing-Ping Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
28
|
Identification of the Aggregation-sex Pheromone Produced by Male Monochamus saltuarius, a Major Insect Vector of the Pine Wood Nematode. J Chem Ecol 2017; 43:670-678. [PMID: 28689277 DOI: 10.1007/s10886-017-0864-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
In this study, we isolated and identified an aggregation-sex pheromone from Monochamus saltuarius, the major insect vector of the pine wood nematode in Korea. Adult males of M. saltuarius produce 2-undecyloxy-1-ethanol, which is known as an aggregation-sex pheromone in other Monochamus species. We performed field experiments to determine the attractiveness of the pheromone and other synergists. More M. saltuarius adult beetles were attracted to traps baited with the pheromone than to unbaited traps. Ethanol and (-)-α-pinene interacted synergistically with the pheromone. Traps baited with the pheromone + (-)-α-pinene +ethanol were more attractive to M. saltuarius adults than traps baited with the pheromone, (-)-α-pinene, or ethanol alone. Ipsenol, ipsdienol, and limonene were also identified as synergists of the aggregation-sex pheromone for M. saltuarius adults. In field experiments, the proportion of females was much higher in the beetles caught in traps than among the beetles emerging from naturally-infested logs in the laboratory. Our results suggest that a combination of aggregation-sex pheromone and synergists could be very effective for monitoring and managing M. saltuarius.
Collapse
|
29
|
Jia M, Ma S. New Approaches to the Synthesis of Metal Carbenes. Angew Chem Int Ed Engl 2016; 55:9134-66. [DOI: 10.1002/anie.201508119] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/05/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Minqiang Jia
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 P.R. China
| | - Shengming Ma
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 P.R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P.R. China
| |
Collapse
|
30
|
Affiliation(s)
- Minqiang Jia
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 P.R. China
| | - Shengming Ma
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 P.R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P.R. China
| |
Collapse
|
31
|
Archambeau A, Nguyen DV, Meyer C, Cossy J. Rhodium(II)-Catalyzed Isomerization of Cyclopropenylmethyl Esters into (Acyloxymethylene)cyclopropanes. Chemistry 2016; 22:6100-10. [DOI: 10.1002/chem.201505063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Alexis Archambeau
- Laboratoire de Chimie Organique; Institute of Chemistry, Biology, and Innovation (CBI); ESPCI Paris, CNRS (UMR 8231); PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Dinh-Vu Nguyen
- Laboratoire de Chimie Organique; Institute of Chemistry, Biology, and Innovation (CBI); ESPCI Paris, CNRS (UMR 8231); PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Christophe Meyer
- Laboratoire de Chimie Organique; Institute of Chemistry, Biology, and Innovation (CBI); ESPCI Paris, CNRS (UMR 8231); PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| | - Janine Cossy
- Laboratoire de Chimie Organique; Institute of Chemistry, Biology, and Innovation (CBI); ESPCI Paris, CNRS (UMR 8231); PSL Research University; 10 rue Vauquelin 75231 Paris Cedex 05 France
| |
Collapse
|
32
|
Affiliation(s)
- Yongming Deng
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| | - Michael P. Doyle
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| |
Collapse
|
33
|
Zhang H, Wang B, Yi H, Sun T, Zhang Y, Wang J. Transition-metal-free three-component reaction of cyclopropenes, aldehydes and amines. Chem Commun (Camb) 2016; 52:13285-13287. [DOI: 10.1039/c6cc06743c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A formal [3+2] cycloaddition triggered by enamine-mediated ring-opening of cyclopropenes bearing electron-withdrawing substituents is presented.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Bo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Heng Yi
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Tong Sun
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Yan Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
34
|
Torres Ò, Parella T, Solà M, Roglans A, Pla-Quintana A. Enantioselective Rhodium(I) Donor Carbenoid-Mediated Cascade Triggered by a Base-Free Decomposition of Arylsulfonyl Hydrazones. Chemistry 2015; 21:16240-5. [PMID: 26397988 DOI: 10.1002/chem.201502909] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 01/15/2023]
Abstract
The reaction of diyne arylsulfonyl hydrazone substrates under rhodium(I)/BINAP catalysis gives access to sulfonated azacyclic frameworks in a highly enantioselective manner. This new cascade process considerably increases the molecular complexity by generating two C-C bonds, one C-S bond, and one C-H bond. Theoretical calculations, competitive experiments, and deuterium labeling have jointly been used to propose a mechanism that accounts for the reaction. The mechanism involves the formation of vinyl rhodium carbenoids, hydride migratory insertion, and intermolecular stereoselective nucleophilic attack. The last two steps are the key to the stereoselectivity of the process.
Collapse
Affiliation(s)
- Òscar Torres
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, s/n, 17071 - Girona (Spain), Fax: (+34)972-41-81-50
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona (Spain)
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, s/n, 17071 - Girona (Spain), Fax: (+34)972-41-81-50
| | - Anna Roglans
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, s/n, 17071 - Girona (Spain), Fax: (+34)972-41-81-50
| | - Anna Pla-Quintana
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, s/n, 17071 - Girona (Spain), Fax: (+34)972-41-81-50.
| |
Collapse
|
35
|
Zhang H, Wang B, Yi H, Zhang Y, Wang J. Rh(II)-Catalyzed [2,3]-Sigmatropic Rearrangement of Sulfur Ylides Derived from Cyclopropenes and Sulfides. Org Lett 2015; 17:3322-5. [PMID: 26077445 DOI: 10.1021/acs.orglett.5b01542] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new type of Rh2(OAc)4-catalyzed [2,3]-sigmatropic rearrangement of sulfur ylides is reported. A series of cyclopropenes were successfully employed for [2,3]-sigmatropic rearrangement by a reaction with either allylic or propargylic sulfides. Under the optimized conditions, the reaction afforded the products in moderate to excellent yields. In these transformations, the vinyl metal carbenes generated in situ from the cyclopropenes were effectively trapped by sulfides, resulting in the formation of corresponding products upon [2,3]-sigmatropic rearrangements.
Collapse
Affiliation(s)
- Hang Zhang
- †Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Bo Wang
- †Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Heng Yi
- †Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yan Zhang
- †Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- †Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.,‡State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
36
|
Lombard FJ, Coster MJ. Rhodium(II)-catalysed intramolecular C-H insertion α- to oxygen: reactivity, selectivity and applications to natural product synthesis. Org Biomol Chem 2015; 13:6419-31. [PMID: 25965780 DOI: 10.1039/c5ob00311c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective functionalisation of C-H bonds is a powerful strategy for the construction of organic molecules and the Rh(II)-catalysed C-H insertion reaction is a particularly robust and useful tool for this purpose. This review discusses the insertion of Rh(II) carbenes into C-H bonds that are activated by α-oxygen substituents, focusing on the trends that have been observed in reactivity and selectivity, and the applications of this reaction to the total synthesis of complex natural products.
Collapse
Affiliation(s)
- Fanny J Lombard
- Eskitis Institute for Drug Discovery, Griffith University, Don Young Rd, Nathan, Queensland 4111, Australia.
| | | |
Collapse
|
37
|
Archambeau A, Miege F, Meyer C, Cossy J. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes. Acc Chem Res 2015; 48:1021-31. [PMID: 25763601 DOI: 10.1021/acs.accounts.5b00016] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activation of unsaturated carbon-carbon bonds by means of transition metal catalysts is an exceptionally active research field in organic synthesis. In this context, due to their high ring strain, cyclopropenes constitute an interesting class of substrates that displays a versatile reactivity in the presence of transition metal catalysts. Metal complexes of vinyl carbenes are involved as key intermediates in a wide variety of transition metal-catalyzed ring-opening reactions of cyclopropenes. Most of the reported transformations rely on intermolecular or intramolecular addition of nucleophiles to these latter reactive species. This Account focuses specifically on the reactivity of carbenoids resulting from the ring-opening of cyclopropenes in cyclopropanation and C-H insertion reactions, which are arguably two of the most representative transformations of metal complexes of carbenes. Compared with the more conventional α-diazo carbonyl compounds, the use of cyclopropenes as precursors of metal carbenoids in intramolecular cyclopropanation or C-H insertion reactions has been largely underexploited. One of the challenges is to devise appropriately substituted and readily available cyclopropenes that would not only undergo regioselective ring-opening under mild conditions but also trigger the subsequent desired transformations with a high level of chemoselectivity and stereoselectivity. These goals were met by considering several substrates derived from the readily available 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines. In the case of 1,6-cyclopropene-enes, highly efficient and diastereoselective gold(I)-catalyzed ring-opening/intramolecular cyclopropanations were developed as a route to diversely substituted heterocycles and carbocycles possessing a bicyclo[4.1.0]heptane framework. The use of rhodium(II) catalysts enabled us to widen the scope of this transformation for the synthesis of medium-sized heterocyclic scaffolds incorporating an eight-membered ring. The reactivity of rhodium(II) carbenoids generated from 3,3-dimethylcyclopropenylcarbinols was also investigated in intramolecular C(sp(3))-H insertions. Despite their low electrophilic character, these purely donor rhodium(II) carbenoids underwent remarkably efficient diastereoselective 1,5- or 1,6-C-H insertions allowing access to a wide variety of substituted cyclopentanols, cyclohexanols, bicycloalkanols, and tetrahydropyrans with high level of diastereoselectivity and with complete tolerance of a free hydroxyl group. The products arising from the gold(I)- or rhodium(II)-catalyzed ring-opening/intramolecular cyclopropanation or C-H insertion of 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines always incorporate an isopropylidene moiety, which can potentially undergo subsequent oxidative cleavage into a carbonyl group without epimerization. By virtue of this operation, the 3,3-dimethylcyclopropenyl group formally behaves as a valuable surrogate for an α-diazoketone, with obvious advantages considering the ease of access to the corresponding substrates and that no hazardous reagents are involved in their preparation. These studies have set a useful basis for the development of other reaction pathways involving metal carbenoids generated from these readily available families of substituted cyclopropenes, including the investigation of the yet underexploited synthetic potential of purely donor rhodium(II) carbenoids.
Collapse
Affiliation(s)
- Alexis Archambeau
- Laboratory of Organic Chemistry,
Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech/CNRS (UMR8231)/PSL Research University 10 rue Vauquelin 75231 Cedex 05 Paris, France
| | - Frédéric Miege
- Laboratory of Organic Chemistry,
Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech/CNRS (UMR8231)/PSL Research University 10 rue Vauquelin 75231 Cedex 05 Paris, France
| | - Christophe Meyer
- Laboratory of Organic Chemistry,
Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech/CNRS (UMR8231)/PSL Research University 10 rue Vauquelin 75231 Cedex 05 Paris, France
| | - Janine Cossy
- Laboratory of Organic Chemistry,
Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech/CNRS (UMR8231)/PSL Research University 10 rue Vauquelin 75231 Cedex 05 Paris, France
| |
Collapse
|
38
|
Xu X, Wang X, Zavalij PY, Doyle MP. Straightforward Access to the [3.2.2]Nonatriene Structural Framework via Intramolecular Cyclopropenation/Buchner Reaction/Cope Rearrangement Cascade. Org Lett 2015; 17:790-3. [DOI: 10.1021/ol503498n] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xinfang Xu
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xiangbo Wang
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peter Y. Zavalij
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Michael P. Doyle
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
39
|
Huang G, Xia Y. Catalyst-Controlled C–C σ Bond Cleavages in Metal Halide-Catalyzed Cycloisomerization of 3-Acylcyclopropenes via a Formal 1,1-Halometalation Mechanism: Insights from Quantum Chemical Calculations. ACS Catal 2015. [DOI: 10.1021/cs501738p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Genping Huang
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
40
|
Bonetti A, Beccalli E, Caselli A, Clerici F, Pellegrino S, Gelmi ML. Unusual Chemoselective RhII-Catalysed Transformations of α-Diazocarbonyl Piperidine Cores. Chemistry 2014; 21:1692-703. [DOI: 10.1002/chem.201405197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/17/2014] [Indexed: 12/30/2022]
|
41
|
Gomes LFR, Veiros LF, Maulide N, Afonso CAM. Diazo- and Transition-Metal-Free CH Insertion: A Direct Synthesis of β-Lactams. Chemistry 2014; 21:1449-53. [DOI: 10.1002/chem.201404990] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 11/06/2022]
|
42
|
Rhodium(III)-Catalyzed Transannulation of Cyclopropenes withN-Phenoxyacetamides through CH Activation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408555] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Zhang H, Wang K, Wang B, Yi H, Hu F, Li C, Zhang Y, Wang J. Rhodium(III)-catalyzed transannulation of cyclopropenes with N-phenoxyacetamides through C-H activation. Angew Chem Int Ed Engl 2014; 53:13234-8. [PMID: 25267691 DOI: 10.1002/anie.201408555] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 01/14/2023]
Abstract
An efficient rhodium(III)-catalyzed synthesis of 2H-chromene from N-phenoxyacetamides and cyclopropenes has been developed. The reaction represents the first example of using cyclopropenes as a three-carbon unit in rhodium(III)-catalyzed C(sp(2))-H activations.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871 (China)
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2012. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Zhang H, Li C, Xie G, Wang B, Zhang Y, Wang J. Zn(II)- or Rh(I)-Catalyzed Rearrangement of Silylated [1,1′-Bi(cyclopropan)]-2′-en-1-ols. J Org Chem 2014; 79:6286-93. [DOI: 10.1021/jo5010923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Zhang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Changkun Li
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Guojun Xie
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Bo Wang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Yan Zhang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
- State
Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
46
|
Taber DF, Paquette CM, Gu P, Tian W. Cyclohexanones by Rh-Mediated Intramolecular C–H Insertion. J Org Chem 2013; 78:9772-80. [DOI: 10.1021/jo4014996] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Douglass F. Taber
- Department
of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Craig M. Paquette
- Department
of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Peiming Gu
- Department
of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Weiwei Tian
- Department
of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|