1
|
Marchand J, Martineau E, Farjon J, Giraudeau P. Analytical Comparison of Two Quantitative HSQC Methods for the Absolute Quantitation of Metabolites. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025. [PMID: 40328489 DOI: 10.1002/mrc.5525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/10/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Multiple 2D HSQC NMR methods have been developed for the absolute quantitation of metabolites in complex mixtures without need for external calibration or standard additions. However, analytical comparison between these methods is lacking. This study aims at comparing the performance of two "intrinsically quantitative" heteronuclear methods for the targeted quantitation of metabolite mixtures: HSQC0 and Q QUIPU HSQC. Each method was applied on a model metabolite mixture in the same total experiment time. Both methods were accelerated with non-uniform sampling (NUS), then further accelerated by combining NUS with variation of the pulse sequence repetition time (VRT). Multiple analytical metrics were evaluated and compared for quantitation, including trueness, repeatability, and sensitivity. Globally, accelerated versions of the pulse sequences, using NUS and VRT, performed better than NUS-only acquisitions. On the one hand, provided enough sensitivity is achieved, better performance was observed for HSQC0, which also appears as a more user-friendly technique. On the other hand, Q QUIPU HSQC was shown to be more repeatable and more sensitive.
Collapse
|
2
|
Huang R, Yan X, Zhang Z, Zhang F, Guo L, Yan J, Li K, Tan J, Lin Z, Guo Z, Zhang W, Chai L. Boosting Leaching of Spent Ternary Cathode via Strong Van Der Waals Force Beyond Hydrogen Bonding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418565. [PMID: 40159914 DOI: 10.1002/adma.202418565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/20/2025] [Indexed: 04/02/2025]
Abstract
Promoting the green and efficient recycling of critical metals in spent ternary batteries represents a crucial step in driving the reduce of resource dependence in the electric vehicle industry. However, the leaching progress of metals from spent cathodes generally requires high reaction temperatures and large usage of solvents. Herein, a strategy is proposed to strengthen the van der Waals forces between solvent components by constructing affinity interactions between functional groups (e.g., -OH and -COOH), which can significantly enhance the leaching kinetics of metals at a high solid-liquid ratio and low temperature (30 °C). The results demonstrate that the strong van der Waals force between ascorbic acid with -OH group and betaine ions with -COOH group can strengthen the nucleophilicity of the carbon atoms and reduce the specific C─C bond energy, thus enhancing the redox capability of the DESs. Encouragingly, the designed solvent shows an impressive leaching performance at a super high S/L ratio (1: 3) without external heating for the actual black mass under a scaled-up experiment.
Collapse
Affiliation(s)
- Rui Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, 410083, China
| | - Zhikun Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Fangli Zhang
- School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Lin Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jun Yan
- Hunan Hanyang Environmental Protection Technology Co., Ltd., Changsha, 410152, China
| | - Kunpeng Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jing Tan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, 410083, China
| | - Zaiping Guo
- School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, 410083, China
| |
Collapse
|
3
|
Song J, Tu G, Liu Y, Liu S, Zhang Y, Yang W, Pang X, Chen X, Liang H, Zhang J, Ma B. Hydroxyl groups introducing NMR strategy for structural elucidation of a heptasaccharide isolated from Trillium tschonoskii. Carbohydr Res 2025; 549:109359. [PMID: 39709710 DOI: 10.1016/j.carres.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
A heptasaccharide was isolated from an active fraction of Trillium tschonoskii using HILIC and high-temperature PGC chromatography methods. UHPLC-Q/TOF-MS analysis gave this oligosaccharide a degree of polymerization (DP) of 7 and MS/MS showed that it has a six-carbon aldehyde glucan structure with the possible chain 1 → 4 connected. The structure was determined by series 1D and 2D NMR in two solvents D2O and DMSO‑d6. Using 1H resonances of the -OH groups as the starting point and HSQC-TOCSY on the covalent structure definition for structural elucidation allowed this heptasaccharide to be uncovered. This heptasaccharide was elucidated as maltoheptaose via complete assignment of 1H and 13C with jigsaw H-C-OH pieces produced by HSQC-TOCSY at increasing mixing time. The significance of identifying maltoheptaose in Trillium tschonoskii indicates the high potential of -OH introducing strategy for other oligosaccharides' structural determination with relatively higher DP.
Collapse
Affiliation(s)
- Juan Song
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Guangzhong Tu
- Beijing Institute of Microchemistry, Beijing, 100091, China
| | - Yue Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Si Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuting Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wenxi Yang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xu Pang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haizhen Liang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
4
|
Chen Z, Zhang X, Lin Y, Chen Z. ELSA-PSYCHE: An Improved Method for Protecting Pure Shift Spectra from Artifacts. J Phys Chem Lett 2024; 15:9820-9824. [PMID: 39297489 DOI: 10.1021/acs.jpclett.4c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Numerous 1H-1H J couplings contribute to complex multiplets in 1H nuclear magnetic resonance spectroscopy, leading to an ambiguous spectral assignment, particularly for strongly coupled protons. Although the PSYCHE approach has proven to be effective in simplifying complex spectra by collapsing J couplings, the PSYCHE pure shift spectrum of strongly coupled protons always suffers from sideband artifacts and baseline oscillations, which impede spectral identification. Herein, we introduce a novel universal technique designed to separate artifacts from the desired absorption-mode pure shift signals. This new study will significantly benefit the development of molecular structure elucidations and composition analysis in the fields of chemistry, biochemistry, and metabonomics.
Collapse
Affiliation(s)
- Ziqiao Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xintong Zhang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yulan Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Cantrelle FX, Boll E, Sinnaeve D. Making 1H- 1H Couplings More Accessible and Accurate with Selective 2DJ NMR Experiments Aided by 13C Satellites. Anal Chem 2024; 96:7056-7064. [PMID: 38666447 DOI: 10.1021/acs.analchem.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
1H-1H coupling constants are one of the primary sources of information for nuclear magnetic resonance (NMR) structural analysis. Several selective 2DJ experiments have been proposed that allow for their individual measurement at pure shift resolution. However, all of these experiments fail in the not uncommon case when coupled protons have very close chemical shifts. First, the coupling between protons with overlapping multiplets is inaccessible due to the inability of a frequency-selective pulse to invert just one of them. Second, the strong coupling condition affects the accuracy of coupling measurements involving third spins. These shortcomings impose a limit on the effectiveness of state-of-the-art experiments, such as G-SERF or PSYCHEDELIC. Here, we introduce two new and complementary selective 2DJ experiments that we coin SERFBIRD and SATASERF. These experiments overcome the aforementioned issues by utilizing the 13C satellite signals at natural isotope abundance, which resolves the chemical shift degeneracy. We demonstrate the utility of these experiments on the tetrasaccharide stachyose and the challenging case of norcamphor, for the latter achieving measurement of all JHH couplings, while only a few were accessible with PSYCHEDELIC. The new experiments are applicable to any organic compound and will prove valuable for configurational and conformational analyses.
Collapse
Affiliation(s)
- François-Xavier Cantrelle
- CNRS EMR 9002 ─ Integrative Structural Biology, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille UMR 1167 ─ RID-AGE ─ Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Emmanuelle Boll
- CNRS EMR 9002 ─ Integrative Structural Biology, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille UMR 1167 ─ RID-AGE ─ Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Davy Sinnaeve
- CNRS EMR 9002 ─ Integrative Structural Biology, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille UMR 1167 ─ RID-AGE ─ Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
6
|
Mishra SK, Suryaprakash N. Pure shift edited NMR methodologies for the extraction of Homo- and heteronuclear couplings with ultra-high resolution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 136-137:1-60. [PMID: 37716754 DOI: 10.1016/j.pnmrs.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 09/18/2023]
Abstract
The scalar couplings that result in the splitting of the signals in the NMR spectrum arise due to the interaction of the nuclear spins, whereby the spin polarization is transmitted through chemical bonds. The interaction strengths depend inter alia on the number of consecutive chemical bonds intervening between the two interacting spins and on the molecular conformation. The pairwise interaction of many spins in a molecule resulting in a complex spectrum poses a severe challenge to analyse the spectrum and hence the determination of magnitudes and signs of homo- and heteronuclear couplings. The problem is more severe in the analysis of 1H spectra than the spectra of most of the other nuclei due to the often very small chemical shift dispersion. As a consequence, the straightforward analysis and the accurate extraction of the coupling constants from the 1H spectrum of a complex spin system continues to remain a challenge, and often may be a formidable task. Over the years, the several pure shift-based one-dimensional and two-dimensional methodologies have been developed by workers in the field, which provide broadband homonuclear decoupling of proton spectra, removing the complexity but at the cost of the very informative scalar couplings. To circumvent this problem, several one-dimensional and two-dimensional NMR experiments have been developed for the determination of homonuclear and heteronuclear couplings (nJHX, where n = 1,2,3) while retaining the high resolution obtained by implementing pure shift strategies. This review attempts to summarize the extensive work reported by a large number of researchers over the years for the accurate determination of homo- and heteronuclear scalar couplings.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Department of Physics and NMR Research Centre, Indian Institute of Science Education and Research, Pune 411008, India.
| | - N Suryaprakash
- NMR Research Centre and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Xue Y, Ucieklak K, Gohil S, Niedziela T, Nestor G, Sandström C. Metabolic labeling of hyaluronan: Biosynthesis and quantitative analysis of 13C, 15N-enriched hyaluronan by NMR and MS-based methods. Carbohydr Res 2023; 531:108888. [PMID: 37390793 DOI: 10.1016/j.carres.2023.108888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Hyaluronan (HA), a member of the GAG family of glycans, has many diverse biological functions that vary a lot depending on the length of the HA chain and its concentration. A better understanding of the structure of different-sized HA at the atomic level is therefore crucial to decipher these biological functions. NMR is a method of choice for conformational studies of biomolecules, but there are limitations due to the low natural abundance of the NMR active nuclei 13C and 15N. We describe here the metabolic labeling of HA using the bacterium Streptococcus equi subsp. Zooepidemicus and the subsequent analysis by NMR and mass spectrometry. The level of 13C and 15N isotope enrichment at each position was determined quantitatively by NMR spectroscopy and was further confirmed by high-resolution mass spectrometry analysis. This study provides a valid methodological approach that can be applied to the quantitative assessment of isotopically labeled glycans and will help improve detection capabilities and facilitate future structure-function relationship analysis of complex glycans.
Collapse
Affiliation(s)
- Yan Xue
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Karolina Ucieklak
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114, Wroclaw, Poland.
| | - Suresh Gohil
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Tomasz Niedziela
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114, Wroclaw, Poland.
| | - Gustav Nestor
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Corine Sandström
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
8
|
Alonso-Moreno P, Rodriguez I, Izquierdo-Garcia JL. Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application. Metabolites 2023; 13:614. [PMID: 37233655 PMCID: PMC10223723 DOI: 10.3390/metabo13050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics is a valuable tool for identifying biomarkers and understanding the underlying metabolic changes associated with various diseases. However, the translation of metabolomics analysis to clinical practice has been limited by the high cost and large size of traditional high-resolution NMR spectrometers. Benchtop NMR, a compact and low-cost alternative, offers the potential to overcome these limitations and facilitate the wider use of NMR-based metabolomics in clinical settings. This review summarizes the current state of benchtop NMR for clinical applications where benchtop NMR has demonstrated the ability to reproducibly detect changes in metabolite levels associated with diseases such as type 2 diabetes and tuberculosis. Benchtop NMR has been used to identify metabolic biomarkers in a range of biofluids, including urine, blood plasma and saliva. However, further research is needed to optimize the use of benchtop NMR for clinical applications and to identify additional biomarkers that can be used to monitor and manage a range of diseases. Overall, benchtop NMR has the potential to revolutionize the way metabolomics is used in clinical practice, providing a more accessible and cost-effective way to study metabolism and identify biomarkers for disease diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Pilar Alonso-Moreno
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
| | - Ignacio Rodriguez
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Luis Izquierdo-Garcia
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Smith MJ, Gates EL, Widmalm G, Adams RW, Morris GA, Nilsson M. Resolving the complexity in human milk oligosaccharides using pure shift NMR methods and CASPER. Org Biomol Chem 2023; 21:3984-3990. [PMID: 37186244 DOI: 10.1039/d3ob00421j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Human milk oligosaccharides belong to an important class of bioactive molecules with diverse effects on the development of infants. NMR is capable of providing vital structural information about oligosaccharides which can aid in determining structure-function relationships. However, this information is often concealed by signal overlap in 1H spectra, due to the narrow chemical shift range and signal multiplicity. Signal overlap in oligosaccharide spectra can be greatly reduced, and resolution improved, by utilising pure shift methods. Here the benefits of combining pure shift methods with the CASPER computational approach to resonance assignment in oligosaccharides are demonstrated.
Collapse
Affiliation(s)
- Marshall J Smith
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Emma L Gates
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Ralph W Adams
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Gareth A Morris
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
10
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
McKay RT. Metabolomics and NMR. Handb Exp Pharmacol 2023; 277:73-116. [PMID: 36355220 DOI: 10.1007/164_2022_616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this manuscript will be to convince the reader to dive deeper into NMR spectroscopy and prevent the technique from being just another "black-box" in the lab. We will try to concisely highlight interesting topics and supply additional references for further exploration at each stage. The advantages of delving into the technique will be shown. The secondary objective, i.e., avoiding common problems before starting, will hopefully then become clear. Lastly, we will emphasize the spectrometer information needed for manuscript reporting to allow reproduction of results and confirm findings.
Collapse
Affiliation(s)
- Ryan T McKay
- Department Chemistry, College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
13
|
Haller JD, Bodor A, Luy B. Pure shift amide detection in conventional and TROSY-type experiments of 13C, 15N-labeled proteins. JOURNAL OF BIOMOLECULAR NMR 2022; 76:213-221. [PMID: 36399207 PMCID: PMC9712348 DOI: 10.1007/s10858-022-00406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Large coupling networks in uniformly 13C,15N-labeled biomolecules induce broad multiplets that even in flexible proteins are frequently not recognized as such. The reason is that given multiplets typically consist of a large number of individual resonances that result in a single broad line, in which individual components are no longer resolved. We here introduce a real-time pure shift acquisition scheme for the detection of amide protons which is based on 13C-BIRDr,X. As a result the full homo- and heteronuclear coupling network can be suppressed at low power leading to real singlets at substantially improved resolution and uncompromised sensitivity. The method is tested on a small globular and an intrinsically disordered protein (IDP) where the average spectral resolution is increased by a factor of ~ 2 and higher. Equally important, the approach works without saturation of water magnetization for solvent suppression and exchanging amide protons are not affected by saturation transfer.
Collapse
Affiliation(s)
- Jens D. Haller
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Hermann-Von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea Bodor
- Institute of Chemistry, Analytical and BioNMR Laboratory, ELTE –Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Hermann-Von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Baishya B. Slice selective absorption-mode J-resolved NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107267. [PMID: 35853368 DOI: 10.1016/j.jmr.2022.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Limited chemical shift dispersion and broad multiplet patterns limit resolution in 1H NMR spectra. J-Resolved spectroscopy overcomes this problem to a great extent. However, the phase-twist line shape in J-Resolved spectroscopy allows only the magnitude mode of the experiment to be practical, which degrades resolution. Recently, various pure shift or broadband homonuclear decoupling approaches have been integrated with J-Resolved spectroscopy to eliminate the broad dispersive contribution. In the present work, we demonstrate a broadband 1H-1H J-Resolved spectrum with a greatly reduced dispersive contribution using the concept of slice selection. We show that slice selective excitation, t1 encoding, storage, and detection of the in-phase absorptive signals can be executed, while a gradient-based suppression of the dispersive antiphase signals can be performed during the storage period. In more than two spin systems, a small part of the doubly antiphase absorptive signal may also contribute to the spectrum in addition to the inphase absorptive signals. The overall effect is a reduced multiplet pattern similar to a regular J-Resolved case as the passive spins remain unflipped due to slice selective pulses. However, the effect is broadband for a fraction of the spins when all slices are considered analogous to Zangger-Sterk (ZS) broadband homo-decoupling. Further, the fresh magnetization from neighboring slices can be accessed in different scans by frequency shifting of the slice selective pulses without a recycle delay-an elegant aspect of the ZS pulse element. This allows faster signal averaging, improving sensitivity which depends on the T1 relaxation time of the signals. This method displays sensitivity up to 4-20 percent of the regular J-RES 1H signals.
Collapse
Affiliation(s)
- Bikash Baishya
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
15
|
Furevi A, Ruda A, Angles d’Ortoli T, Mobarak H, Ståhle J, Hamark C, Fontana C, Engström O, Apostolica P, Widmalm G. Complete 1H and 13C NMR chemical shift assignments of mono-to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPER. Carbohydr Res 2022; 513:108528. [DOI: 10.1016/j.carres.2022.108528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/02/2023]
|
16
|
Sakhaii P, Bohorc B, Schliedermann U, Bermel W. Boosting the resolution of multidimensional NMR spectra by complete removal of proton spin multiplicities. Sci Rep 2021; 11:21566. [PMID: 34732770 PMCID: PMC8566458 DOI: 10.1038/s41598-021-01041-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Over decades multidimensional NMR spectroscopy has become an indispensable tool for structure elucidation of natural products, peptides and medium sized to large proteins. Heteronuclear single quantum coherence (HSQC) spectroscopy is one of the work horses in that field often used to map structural connectivity between protons and carbons or other hetero nuclei. In overcrowded HSQC spectra, proton multiplet structures of cross peaks set a limit to the power of resolution and make a straightforward assignment difficult. In this work, we provide a solution to improve these penalties by completely removing the proton spin multiplet structure of HSQC cross peaks. Previously reported sideband artefacts are diminished leading to HSQC spectra with singlet responses for all types of proton multiplicities. For sideband suppression, the idea of restricted random delay (RRD) in chunk interrupted data acquisition is introduced and exemplified. The problem of irreducible residual doublet splitting of diastereotopic CH2 groups is simply solved by using a phase sensitive JRES approach in conjunction with echo processing and real time broadband homodecoupling (BBHD) HSQC, applied as a 3D experiment. Advantages and limitations of the method is presented and discussed.
Collapse
Affiliation(s)
- Peyman Sakhaii
- NMR Laboratory of SANOFI, Global CMC Early Development, Synthetics Platform, Industrial Park Hoechst, Building G849, 65926, Frankfurt, Germany.
| | - Bojan Bohorc
- NMR Laboratory of SANOFI, Global CMC Early Development, Synthetics Platform, Industrial Park Hoechst, Building G849, 65926, Frankfurt, Germany
| | - Uwe Schliedermann
- NMR Laboratory of SANOFI, Global CMC Early Development, Synthetics Platform, Industrial Park Hoechst, Building G849, 65926, Frankfurt, Germany
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany
| |
Collapse
|
17
|
Im J, Lee K, Jung S, Kim E, Lee JH. Longitudinal Spin Order Labeling on Multiple Quantum Coherences Enables NMR Analysis of Intrinsically Disordered Proteins at Ultrahigh Resolution. J Phys Chem Lett 2021; 12:9315-9320. [PMID: 34543573 DOI: 10.1021/acs.jpclett.1c02605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Intrinsically disordered proteins (IDPs) play an important role in cell signaling, and NMR is well-suited to study conformational ensembles and dynamics of IDPs. However, the intrinsic flexibility of IDPs often results in severe spectral overlap, which hampers accurate NMR data analysis. By labeling the longitudinal spin order of an α proton (i.e., Hαz) on multiple quantum coherences of backbone nuclei (e.g., NyC'xCαy), we were able to apply pre-homonuclear decoupling (PHD) to transverse relaxation-optimized spectroscopy (TROSY). The proposed scheme provides ultrahigh resolution in both amide proton and nitrogen dimensions, as illustrated in the analysis of Tau and alpha-synuclein (α-Syn) proteins. The PHD-TROSY readout enabled complete backbone resonance assignment of α-Syn using a single 3D HNCA experiment performed on a 600 MHz NMR spectrometer.
Collapse
Affiliation(s)
- Jonghyuk Im
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyungryun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sohyun Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eunhee Kim
- Korea Basic Science Institute, Cheongju, Chungcheongbuk-do 28119, Korea
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, Korea
| |
Collapse
|
18
|
Kiraly P, Dal Poggetto G, Castañar L, Nilsson M, Deák A, Morris GA. Broadband measurement of true transverse relaxation rates in systems with coupled protons: application to the study of conformational exchange. Chem Sci 2021; 12:11538-11547. [PMID: 34667556 PMCID: PMC8447259 DOI: 10.1039/d1sc03391c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/25/2021] [Indexed: 12/02/2022] Open
Abstract
Accurate measurement of transverse relaxation rates in coupled spin systems is important in the study of molecular dynamics, but is severely complicated by the signal modulations caused by scalar couplings in spin echo experiments. The most widely used experiments for measuring transverse relaxation in coupled systems, CPMG and PROJECT, can suppress such modulations, but they also both suppress some relaxation contributions, and average relaxation rates between coupled spins. Here we introduce a new experiment which for the first time allows accurate broadband measurement of transverse relaxation rates of coupled protons, and hence the determination of exchange rate constants in slow exchange from relaxation measurements. The problems encountered with existing methods are illustrated, and the use of the new method is demonstrated for the classic case of hindered amide rotation and for the more challenging problem of exchange between helical enantiomers of a gold(i) complex.
Collapse
Affiliation(s)
- Peter Kiraly
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Laura Castañar
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Mathias Nilsson
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Andrea Deák
- Eötvös Loránd Research Network (ELKH), Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Supramolecular Chemistry Research Group Magyar Tudósok körútja 2 1117 Budapest Hungary
| | - Gareth A Morris
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
19
|
Lu Y, Zhang H, Li M, Mao M, Song J, Deng Y, Lei L, Yang Y, Hu T. The rnc gene regulates the microstructure of exopolysaccharide in the biofilm of Streptococcus mutans through the β-monosaccharides. Caries Res 2021; 55:534-545. [PMID: 34348276 DOI: 10.1159/000518462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yangyu Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Hongyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Meng Li
- Department of Pediatric Dentistry, Orange Dental Technology Co., Ltd., Shanghai, China
| | - Mengying Mao
- Shanghai Key Laboratory of Stomatology, Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jiaqi Song
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
20
|
Kupče Ē, Mote KR, Webb A, Madhu PK, Claridge TDW. Multiplexing experiments in NMR and multi-nuclear MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:1-56. [PMID: 34479710 DOI: 10.1016/j.pnmrs.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 05/22/2023]
Abstract
Multiplexing NMR experiments by direct detection of multiple free induction decays (FIDs) in a single experiment offers a dramatic increase in the spectral information content and often yields significant improvement in sensitivity per unit time. Experiments with multi-FID detection have been designed with both homonuclear and multinuclear acquisition, and the advent of multiple receivers on commercial spectrometers opens up new possibilities for recording spectra from different nuclear species in parallel. Here we provide an extensive overview of such techniques, designed for applications in liquid- and solid-state NMR as well as in hyperpolarized samples. A brief overview of multinuclear MRI is also provided, to stimulate cross fertilization of ideas between the two areas of research (NMR and MRI). It is shown how such techniques enable the design of experiments that allow structure elucidation of small molecules from a single measurement. Likewise, in biomolecular NMR experiments multi-FID detection allows complete resonance assignment in proteins. Probes with multiple RF microcoils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems, effectively reducing the cost of NMR analysis and increasing the information content at the same time. Solid-state NMR experiments have also benefited immensely from both parallel and sequential multi-FID detection in a variety of multi-dimensional pulse schemes. We are confident that multi-FID detection will become an essential component of future NMR methodologies, effectively increasing the sensitivity and information content of NMR measurements.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
21
|
Gouilleux B, Farjon J, Giraudeau P. Gradient-based pulse sequences for benchtop NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106810. [PMID: 33036709 DOI: 10.1016/j.jmr.2020.106810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benchtop NMR spectroscopy has been on the rise for the last decade, by bringing high-resolution NMR in environments that are not easily compatible with high-field NMR. Benchtop spectrometers are accessible, low cost and show an impressive performance in terms of sensitivity with respect to the relatively low associated magnetic field (40-100 MHz). However, their application is limited by the strong and ubiquitous peak overlaps arising from the complex mixtures which are often targeted, often characterized by a great diversity of concentrations and by strong signals from non-deuterated solvents. Such limitations can be addressed by pulse sequences making clever use of magnetic field gradient pulses, capable of performing efficient coherence selection or encoding chemical shift or diffusion information. Gradients pulses are well-known ingredients of high-field pulse sequence recipes, but were only recently made available on benchtop spectrometers, thanks to the introduction of gradient coils in 2015. This article reviews the recent methodological advances making use of gradient pulses on benchtop spectrometers and the applications stemming from these developments. Particular focus is made on solvent suppression schemes, diffusion-encoded, and spatially-encoded experiments, while discussing both methodological advances and subsequent applications. We eventually discuss the exciting development and application perspectives that result from such advances.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, France
| | - Jonathan Farjon
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
22
|
Lopez JM, Sánchez LF, Nakamatsu J, Maruenda H. Study of the Acetylation Pattern of Chitosan by Pure Shift NMR. Anal Chem 2020; 92:12250-12256. [PMID: 32822156 DOI: 10.1021/acs.analchem.0c01638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chitosan is a biodegradable, antibacterial, and nontoxic biopolymer used in a wide range of applications including biotechnology, pharmacy, and medicine. The physicochemical and biological properties of chitosan have been associated with parameters such as the degree of polymerization (DP) and the fraction of acetylation (FA). New methods are being developed to yield chitosans of specific acetylation patterns, and, recently, a correlation between biological activity and the distribution of the acetylated units (PA: pattern of acetylation) has been demonstrated. Although there are numerous well-established methods for the determination of DP and FA values, this is not the case for PA. The methods available are either not straightforward or not sensitive enough, limiting their use for routine analysis. In this study, we demonstrate that by applying HOmodecoupled Band-Selective (HOBS) decoupling NMR on signals assigned by multidimensional Pure Shift NMR methods, PA can be easily and accurately determined on various chitosan samples. This novel methodology-easily implemented for routine analysis-could become a standard for chitosan PA assessment. In addition, by applying Spectral Aliased Pure Shift HSQC, the analysis was enhanced with the determination of triads.
Collapse
Affiliation(s)
- Juan M Lopez
- Departamento de Ciencias - Química, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, 32, Perú
| | - Luis F Sánchez
- Departamento de Ciencias - Química, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, 32, Perú
| | - Javier Nakamatsu
- Departamento de Ciencias - Química, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, 32, Perú
| | - Helena Maruenda
- Departamento de Ciencias - Química, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, 32, Perú
| |
Collapse
|
23
|
Huang T, Chen P, Liu B, Li X, Lv X, Hu K. NPid: an Automatic Approach to Rapid Identification of Known Natural Products in the Crude Extract of Crabapple Based on 2D 1H- 13C Heteronuclear Correlation Spectra of the Extract Mixture. Anal Chem 2020; 92:10996-11006. [PMID: 32686928 DOI: 10.1021/acs.analchem.9b05363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An automatic approach to identification of natural products (NPid) in complex extracts by exploring pure shift HSQC (psHSQC) and H2BC spectra of the mixture is developed, which integrated information on chemical shifts (CS), adjacent relationships (AR) and peak intensities (PI) of 1H-13C groups for identification of candidate natural product in a customized NMR database. A weighted comprehensive score is calculated for each candidate from the values of CS, AR and PI to rate the likelihood of its existence in the complex mixture. Using the crude extract of crabapple (Malus fusca) as an example, a customized NMR database of natural products from plants of the genus Malus was constructed. The performance of NPid was first evaluated using simulated data in four scenarios, that is, for identification of structurally similar natural products, identification of natural products with part of peaks missing in psHSQC due to low concentration, without available adjacent relationship information, or without useful peak intensity information. The false positive and false negative rates of the natural products identified by NPid were estimated by Monte Carlo simulation. It shows that AR and PI can effectively reduce the false positive rate of identification. Proof of concept of the proposed method was elucidated on a model mixture consisting of 10 known natural products. Application of this method was then demonstrated on an authentic sample of crude extract of crabapple and 19 known natural products were successfully identified and confirmed by standard spiking.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyu Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinqiao Lv
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
24
|
Wang C, Timári I, Zhang B, Li DW, Leggett A, Amer AO, Bruschweiler-Li L, Kopec RE, Brüschweiler R. COLMAR Lipids Web Server and Ultrahigh-Resolution Methods for Two-Dimensional Nuclear Magnetic Resonance- and Mass Spectrometry-Based Lipidomics. J Proteome Res 2020; 19:1674-1683. [PMID: 32073269 DOI: 10.1021/acs.jproteome.9b00845] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accurate identification of lipids in biological samples is a key step in lipidomics studies. Multidimensional nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool for this purpose as it provides comprehensive structural information on lipid composition at atomic resolution. However, the interpretation of NMR spectra of complex lipid mixtures is currently hampered by limited spectral resolution and the absence of a customized lipid NMR database along with user-friendly spectral analysis tools. We introduce a new two-dimensional (2D) NMR metabolite database "COLMAR Lipids" that was specifically curated for hydrophobic metabolites presently containing 501 compounds with accurate experimental 2D 13C-1H heteronuclear single quantum coherence (HSQC) chemical shift data measured in CDCl3. A new module in the public COLMAR suite of NMR web servers was developed for the (semi)automated analysis of complex lipidomics mixtures (http://spin.ccic.osu.edu/index.php/colmarm/index2). To obtain 2D HSQC spectra with the necessary high spectral resolution along both 13C and 1H dimensions, nonuniform sampling in combination with pure shift spectroscopy was applied allowing the extraction of an abundance of unique cross-peaks belonging to hydrophobic compounds in complex lipidomics mixtures. As shown here, this information is critical for the unambiguous identification of underlying lipid molecules by means of the new COLMAR Lipids web server, also in combination with mass spectrometry, as is demonstrated for Caco-2 cell and lung tissue cell extracts.
Collapse
|
25
|
Lesot P, Aroulanda C, Berdagué P, Meddour A, Merlet D, Farjon J, Giraud N, Lafon O. Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:85-154. [PMID: 32130960 DOI: 10.1016/j.pnmrs.2019.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy of oriented samples makes accessible residual anisotropic intramolecular NMR interactions, such as chemical shift anisotropy (RCSA), dipolar coupling (RDC), and quadrupolar coupling (RQC), while preserving high spectral resolution. In addition, in a chiral aligned environment, enantiomers of chiral molecules or enantiopic elements of prochiral compounds adopt different average orientations on the NMR timescale, and hence produce distinct NMR spectra or signals. NMR spectroscopy in chiral aligned media is a powerful analytical tool, and notably provides unique information on (pro)chirality analysis, natural isotopic fractionation, stereochemistry, as well as molecular conformation and configuration. Significant progress has been made in this area over the three last decades, particularly using polypeptide-based chiral liquid crystals (CLCs) made of organic solutions of helically chiral polymers (as PBLG) in organic solvents. This review presents an overview of NMR in polymeric LCs. In particular, we describe the theoretical tools and the major NMR methods that have been developed and applied to study (pro)chiral molecules dissolved in such oriented solvents. We also discuss the representative applications illustrating the analytical potential of this original NMR tool. This overview article is dedicated to thirty years of original contributions to the development of NMR spectroscopy in polypeptide-based chiral liquid crystals.
Collapse
Affiliation(s)
- Philippe Lesot
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France; Centre National de la Recherche Scientifique (CNRS), France.
| | - Christie Aroulanda
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Philippe Berdagué
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Abdelkrim Meddour
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Denis Merlet
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Jonathan Farjon
- Centre National de la Recherche Scientifique (CNRS), France; Faculté des Sciences et Techniques de Nantes, UMR CNRS 6230, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, CEISAM, Equipe EBSI, BP 92208, 2 rue de la Houssinière, F-44322 Nantes cedex 3, France
| | - Nicolas Giraud
- Université Paris Descartes, Sorbonne Paris Cité, UMR CNRS 8601, Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, LPTCB, 45 rue des Saints Pères, F-75006 Paris, France
| | - Olivier Lafon
- Universite de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR CNRS 8181, Unité de Catalyse et Chimie du Solide, UCCS, F-59000 Lille, France; Institut Universitaire de France (IUF), France
| |
Collapse
|
26
|
Singh U, Bhattacharya S, Baishya B. Pure shift HMQC: Resolution and sensitivity enhancement by bilinear rotation decoupling in the indirect and direct dimensions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106684. [PMID: 31931343 DOI: 10.1016/j.jmr.2020.106684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The heteronuclear multiple-quantum coherence in the indirect dimension of the two-dimensional HMQC experiment evolves under the passive 1H-1H J-couplings leading to multiplet structures in the F1 dimension. Besides, 1H-1H J-multiplets appear in the direct dimension as well. Thus, multiplets along both dimensions lower the resolution and sensitivity of this technique, when high resolution is required along both dimensions. An efficient broadband homodecoupling scheme along the F1 dimension of the HMQC experiment has not been realized to date. We have implemented broadband homonuclear decoupling using bilinear rotation decoupling (BIRD) by adding a 1H SQ evolution period followed by BIRD before the 1H-13C multiple-quantum evolution period in the HMQC. In the direct time domain, BIRD is implemented using a real-time or single-scan scheme, which further improves resolution and sensitivity of this technique. The resulting pure shift HMQC provides singlet peak per chemical site along F1 as well as F2 axes and, hence, better resolution and sensitivity than conventional HMQC spectrum for all peaks except diastereotopic methylene protons. Due to the incorporation of the BIRD, the indirect time domain becomes double in length compared to the conventional HMQC. However, slow relaxation of small molecules favors better sensitivity for ps-HMQC relative to conventional HMQC under all conditions. We also found that the sensitivity of ps-HMQC is only slightly less than ps-HSQC for small molecules.
Collapse
Affiliation(s)
- Upendra Singh
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow 226014, India; Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Subrato Bhattacharya
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bikash Baishya
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
27
|
Rao Kakita VM, Hosur RV. All-in-one NMR spectroscopy of small organic molecules: complete chemical shift assignment from a single NMR experiment. RSC Adv 2020; 10:21174-21179. [PMID: 35518727 PMCID: PMC9054363 DOI: 10.1039/d0ra03417g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 11/21/2022] Open
Abstract
A new class of NOAH NMR experiments (NOAH-AST and NOAH-ASTPS), with the abbreviations, A: 1,1-ADEQUATE, S: sensitivity improved version of multiplicity-edited (ME)-HSQC, T: TOCSY, and TPS: pure shift TOCSY, are reported to obtain complete chemical shift assignments of small organic molecules from a single NMR experiment. While NOAH-AST provides 13C–13C, 1H–13C, and 1H–1H connectivities for molecules with well resolved chemical shifts, NOAH-ASTPS experiments discern 1H–1H connectivities even in complex organic molecules such as steroids at ultra-high resolution. These methods are very flexible and allow to record data through non-uniform-sampling, which reduces the experimental time to a great extent. In order to make these methods friendly to non-NMR experts (especially organic chemists and natural product scientists), python scripts have been developed and they help researchers in using these methods. All-in-one NOAH-AST/NOAH-ASTPS provides complete chemical shift information (13C–13C/1H–13C/1H–1H) of small organic molecules from a single NMR experiment.![]()
Collapse
|
28
|
Production and characterization of Aspergillus niger GH29 family α-fucosidase and production of a novel non-reducing 1-fucosyllactose. Glycoconj J 2019; 37:221-229. [PMID: 31792892 PMCID: PMC7083800 DOI: 10.1007/s10719-019-09896-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022]
Abstract
Fucosylated oligosaccharides are interesting molecules due to their bioactive properties. In particular, their application as active ingredient in milk powders is attractive for dairy industries. The objective of this study was to characterize the glycosyl hydrolase family 29 α-fucosidase produced by Aspergillus niger and test its ability to transfucosylate lactose with a view towards potential industrial applications such as the valorization of the lactose side stream produced by dairy industry. In order to reduce costs and toxicity the use of free fucose instead of environmentally questionable fucose derivatives was studied. In contrast to earlier studies, a recombinantly produced A. niger α-fucosidase was utilized. Using pNP-fucose as substrate, the optimal pH for hydrolytic activity was determined to be 3.8. The optimal temperature for a 30-min reaction was 60 °C, and considering temperature stability, the optimal temperature for a 24-h reaction was defined as 45 °C For the same hydrolysis reaction, the kinetic values were calculated to be 0.385 mM for the KM and 2.8 mmol/(mg*h) for the Vmax. Transfucosylation of lactose occurred at high substrate concentrations when reaction time was elongated to several days. The structure of the product trisaccharide was defined as 1-fucosyllactose, where fucose is α-linked to the anomeric carbon of the β-glucose moiety of lactose. Furthermore, the enzyme was able to hydrolyze its own transfucosylation product and 2′-fucosyllactose but only poorly 3-fucosyllactose. As a conclusion, α-fucosidase from A. niger can transfucosylate lactose using free fucose as substrate producing a novel non-reducing 1-fucosyllactose.
Collapse
|
29
|
Kakita VMR, Rachineni K, Hosur RV. Ultraclean Pure Shift NMR Spectroscopy with Adiabatic Composite Refocusing Pulses: Application to Metabolite Samples. ChemistrySelect 2019. [DOI: 10.1002/slct.201902238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE-Centre for Excellence in Basic SciencesUniversity of MumbaiKalina Campus, Santacruz 400 098 Mumbai India
| | - Kavitha Rachineni
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Powai 400076 Mumbai India
| | - Ramakrishna V Hosur
- UM-DAE-Centre for Excellence in Basic SciencesUniversity of MumbaiKalina Campus, Santacruz 400 098 Mumbai India
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Powai 400076 Mumbai India
| |
Collapse
|
30
|
Im J, Lee J, Lee JH. Pre-Homonuclear Decoupling Enables High-Resolution NMR Analysis of Intrinsically Disordered Proteins in Solution. J Phys Chem Lett 2019; 10:4720-4724. [PMID: 31369281 DOI: 10.1021/acs.jpclett.9b01773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Probing the atomic details of intrinsically disordered proteins is crucial to understanding their biological function and relation to pathogenesis. Although amide-detected NMR experiments are widely employed in protein studies, 3JHNHα couplings between amide (1HN) and alpha (1Hα) protons impose an intrinsic limit on the achievable 1HN linewidth. Here, we present a homonuclear decoupling method that narrows the α-synuclein 1HN linewidths to 3-5 Hz. Tightly distributed 1JCαHα coupling values were employed to generate homogeneous antiphase coherences of 2HαzHNy and 4Hα(2)zHα(3)zHNy for nonglycine and glycine residues, respectively, which were combined with their in-phase HNy counterparts to achieve homonuclear decoupling. By reducing the multiplet structure to a singlet, the width of the 1HN cross-peak was reduced by ∼3-fold in the 2D HSQC and 3D intra-HNCA spectra, and good spectral quality was achieved without the need for postprocessing.
Collapse
Affiliation(s)
- Jonghyuk Im
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea
| | - Jongchan Lee
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea
| | - Jung Ho Lee
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
31
|
Lin Y, Zeng Q, Lin L, Chen Z. High Resolution Nuclear Magnetic Resonance Spectroscopy on Biological Tissue and Metabolomics. Curr Med Chem 2019; 26:2190-2207. [DOI: 10.2174/0929867326666190312130155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/14/2017] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
High-resolution nuclear magnetic resonance (NMR) spectroscopy is a universal
analytical tool. It can provide detailed information on chemical shifts, J coupling constants,
multiplet patterns, and relative peak areas. It plays an important role in the fields of chemistry,
biology, medicine, and pharmacy. A highly homogeneous magnetic field is a prerequisite for
excellent spectral resolution. However, in some cases, such as in vivo and ex vivo biological
tissues, the magnetic field inhomogeneity due to magnetic susceptibility variation in samples
is unavoidable and hard to eliminate by conventional methods. The techniques based on intermolecular
multiple quantum coherences and conventional single quantum coherence can
remove the influence of the field inhomogeneity effects and be applied to obtain highresolution
NMR spectra of biological tissues, including in vivo animal and human tissues.
Broadband 1H homo-decoupled NMR spectroscopy displays J coupled resonances as collapsed
singlets, resulting in highly resolved spectra. It can be used to acquire high-resolution
spectra of some pharmaceuticals. The J-difference edited spectra can be used to detect J coupled
metabolites, such as γ-aminobutyric acid, the detection of which is interfered by intense
neighboring peaks. High-resolution 1H NMR spectroscopy has been widely utilized for the
identification and characterization of biological fluids, constituting an important tool in drug
discovery, drug development, and disease diagnosis.
Collapse
Affiliation(s)
- Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Qing Zeng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Liangjie Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| |
Collapse
|
32
|
Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR Spectroscopy for Metabolomics Research. Metabolites 2019; 9:E123. [PMID: 31252628 PMCID: PMC6680826 DOI: 10.3390/metabo9070123] [Citation(s) in RCA: 601] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raja Roy
- Centre of Biomedical Research, Formerly, Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Uttar Pradesh 226014, India
| | - Ryan T McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Leonardo Tenori
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA
| | - Fatimah Alahmari
- Department of NanoMedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada
| |
Collapse
|
33
|
Rao Kakita VM, Joshi MV, Hosur RV. G-SERF Editing in Two-Dimensional Pure-Shift Total Correlation Spectroscopy: Scalar Coupling Measurements for a Group of Spins in Organic Molecules. Chemphyschem 2019; 20:1559-1566. [PMID: 30997947 DOI: 10.1002/cphc.201900174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/13/2019] [Indexed: 11/10/2022]
Abstract
A novel G-SERF-PSYCHE-TOCSY (gradient encoded selective refocusing in pure shift yielded by chirp excitation version of total correlation spectroscopy) NMR pulse scheme has been proposed, which produces TOCSY chemical shift correlations, on one hand, and scalar coupling values for the spins scalarly coupled to irradiated resonances, by showing them as doublets along the indirect dimension, on the other. Therefore, recording such an experiment, for a group of spins with overlapping chemical shifts, in organic molecules can adequately provide scalar coupling information in a G-SERF manner along the indirect dimensions, and they can be assigned to particular spin pairs. Such COSY chemical shift correlations (which appear as doublets for the scalarly coupled spins) can be readily discriminated from the TOCSY peaks (which do not show such splitting) in the G-SERF-PSYCHE-TOCSY spectrum.
Collapse
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai, 400 098, India
| | - Mamata V Joshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1-Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Ramakrishna V Hosur
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai, 400 098, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
34
|
Haller JD, Bodor A, Luy B. Real-time pure shift measurements for uniformly isotope-labeled molecules using X-selective BIRD homonuclear decoupling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:64-71. [PMID: 30965191 DOI: 10.1016/j.jmr.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
We introduce a novel selective inversion element for chunked homonuclear decoupling that combines isotope selection via BIRD-filtering with band-selective inversion on the X-heteronucleus and allows efficient real-time decoupling of homonuclear and heteronuclear couplings. It is especially suitable for uniformly isotope-labeled compounds. We discuss in detail the inversion element based on band-selective refocusing on the X-nuclei (BASEREX), highlighting in particular the role of appropriate band-selective shaped refocusing pulses and the application of broadband X-pulses for an effective BIRDd element during homodecoupling. The approach is experimentally verified and studied in detail using uniformly 13C-labeled glucose and a uniformly 15N,13C-labeled amino acid mixture.
Collapse
Affiliation(s)
- Jens D Haller
- Institut für Organische Chemie and Institut für Biologische Grenzflächen 4 - Magnetische Resonanz, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
| | - Andrea Bodor
- Eötvös Loránd University, Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Burkhard Luy
- Institut für Organische Chemie and Institut für Biologische Grenzflächen 4 - Magnetische Resonanz, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany.
| |
Collapse
|
35
|
Timári I, Wang C, Hansen AL, Costa dos Santos G, Ok Yoon S, Bruschweiler-Li L, Brüschweiler R. Real-Time Pure Shift HSQC NMR for Untargeted Metabolomics. Anal Chem 2019; 91:2304-2311. [PMID: 30608652 PMCID: PMC6386528 DOI: 10.1021/acs.analchem.8b04928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sensitivity and resolution are key considerations for NMR applications in general and for metabolomics in particular, where complex mixtures containing hundreds of metabolites over a large range of concentrations are commonly encountered. There is a strong demand for advanced methods that can provide maximal information in the shortest possible time frame. Here, we present the optimization and application of the recently introduced 2D real-time BIRD 1H-13C HSQC experiment for NMR-based metabolomics of aqueous samples at 13C natural abundance. For mouse urine samples, it is demonstrated how this real-time pure shift sensitivity-improved heteronuclear single quantum correlation method provides broadband homonuclear decoupling along the proton detection dimension and thereby significantly improves spectral resolution in regions that are affected by spectral overlap. Moreover, the collapse of the scalar multiplet structure of cross-peaks leads to a sensitivity gain of about 40-50% over a traditional 2D HSQC-SI experiment. The experiment works well over a range of magnetic field strengths and is particularly useful when resonance overlap in crowded regions of the HSQC spectra hampers accurate metabolite identification and quantitation.
Collapse
Affiliation(s)
- István Timári
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Cheng Wang
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gilson Costa dos Santos
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
36
|
Nolis P, Motiram-Corral K, Pérez-Trujillo M, Parella T. Broadband homodecoupled time-shared 1H- 13C and 1H- 15N HSQC experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:23-30. [PMID: 30502625 DOI: 10.1016/j.jmr.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The concepts of pure-shift NMR and time-shared NMR are merged in a single experiment. A 13C/15N time-shared version of the real-time BIRD-based broadband homodecoupled HSQC experiment is described. This time-efficient approach affords simultaneously 1H-13C and 1H-15N pure-shift HSQC spectra in a single acquisition, while achieving substantial gains in both sensitivity and spectral resolution. We also present a related 13C/15N-F2-coupled homodecoupled version of the CLIP-HSQC experiment for the simultaneous measurement of 1JCH and 1JNH from the simplified doublets observed along the direct dimension. Finally, a novel J-resolved HSQC experiment has been designed for the simple and automated determination of both 1JCH/1JNH from a 2D J-resolved spectrum.
Collapse
Affiliation(s)
- Pau Nolis
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Kumar Motiram-Corral
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Catalonia, Spain.
| |
Collapse
|
37
|
Parella T. Towards perfect NMR: Spin-echo versus perfect-echo building blocks. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:13-29. [PMID: 29927497 DOI: 10.1002/mrc.4776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
The development of new tools to improve the quality of nuclear magnetic resonance (NMR) spectra is a challenging task. The concept of "perfect NMR" includes the design of robust pulse sequences that allow an investigator to obtain undistorted pure in-phase signals, with pure absorption lineshapes that are free of phase anomalies derived from undesired J modulations. Here, alternative NMR building blocks to the spin-echo that are based on a general double SE module, known as a perfect-echo, are reviewed. Several implementations to minimize/remove unwanted dispersive contributions in homonuclear and heteronuclear NMR experiments are described and illustrated with some examples of broad interest for small molecules.
Collapse
Affiliation(s)
- Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
38
|
Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat Protoc 2018; 14:217-247. [DOI: 10.1038/s41596-018-0091-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Nolis P, Motiram-Corral K, Pérez-Trujillo M, Parella T. Interleaved Dual NMR Acquisition of Equivalent Transfer Pathways in TOCSY and HSQC Experiments. Chemphyschem 2018; 20:356-360. [PMID: 30485623 DOI: 10.1002/cphc.201801034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Indexed: 11/09/2022]
Abstract
A dual NMR data acquisition strategy to handle and detect two active equivalent transfer pathways is presented and discussed. We illustrate the power of this time-efficient approach by collecting two different 2D spectra simultaneously in a single experiment: i) TOCSY or HSQC-TOCSY spectra with different mixing times, ii) F2-13 C-coupled and decoupled HSQC spectra, iii) conventional and pure-shift HSQC spectra, or iv) complementary HSQC and HSQC-TOCSY spectra.
Collapse
Affiliation(s)
- Pau Nolis
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Catalonia
| | - Kumar Motiram-Corral
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Catalonia
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Catalonia
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Catalonia
| |
Collapse
|
40
|
Alferova VA, Novikov RA, Bychkova OP, Rogozhin EA, Shuvalov MV, Prokhorenko IA, Sadykova VS, Kulko AB, Dezhenkova LG, Stepashkina EA, Efremov MA, Sineva ON, Kudryakova GK, Peregudov AS, Solyev PN, Tkachev YV, Fedorova GB, Terekhova LP, Tyurin AP, Trenin AS, Korshun VA. Astolides A and B, antifungal and cytotoxic naphthoquinone-derived polyol macrolactones from Streptomyces hygroscopicus. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Lin Y, Zeng Q, Lin L, Chen Z, Barker PB. High-resolution methods for the measurement of scalar coupling constants. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:135-159. [PMID: 30527134 DOI: 10.1016/j.pnmrs.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 06/09/2023]
Abstract
Scalar couplings provide important information regarding molecular structure and dynamics. The measurement of scalar coupling constants constitutes a topic of interest and significance in NMR spectroscopy. However, the measurement of J values is often not straightforward because of complex signal splitting patterns and signal overlap. Many methods have been proposed for the measurement of scalar coupling constants, both for homonuclear and heteronuclear cases. Different approaches to the measurement of scalar coupling constants are reviewed here with several applications presented. The accurate measurement of scalar coupling constants can greatly facilitate molecular structure elucidation and the study of molecule dynamics.
Collapse
Affiliation(s)
- Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| | - Qing Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Liangjie Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
42
|
Kakita VMR, Rachineni K, Bopardikar M, Hosur RV. NMR supersequences with real-time homonuclear broadband decoupling: Sequential acquisition of protein and small molecule spectra in a single experiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:108-112. [PMID: 30384129 DOI: 10.1016/j.jmr.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
NOAH (NMR byOrderedAcquisition using 1H-detection) type of pure shift NMR pulse scheme has been designed for the efficient utilization of magnetization that presents in a spin-system under consideration. The proposed strategy, PROSMASH-HSQC2 (PROtein-HSQC and SMAll molecule-HSQC Signals with Homodecoupling) uses the real-time BIRD pure shift NMR strategy and two HSQC spectra (13C-HSQC for small molecules and 15N-HSQC for 15N-isotopic labelled proteins) can be recorded in a single NMR experiment. Thus, this method permits precise determination of drug-protein interactions at atomic levels by monitoring the chemical shift perturbations, and will have potential applications in drug discovery programs.
Collapse
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai 400 098, India
| | - Kavitha Rachineni
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai 400 098, India
| | - Mandar Bopardikar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1-Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Ramakrishna V Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai 400 098, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
43
|
Tassoti S, Novak P, Butts CP, Zangger K. High Resolution for Chemical Shifts and Scalar Coupling Constants: The 2D Real-Time J-Upscaled PSYCHE-DIAG. Chemphyschem 2018; 19:3166-3170. [PMID: 30239094 DOI: 10.1002/cphc.201800746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 11/09/2022]
Abstract
The facile determination of chemical shift and scalar coupling constants in NMR spectra is often prevented by spectral overlap and limited resolution. Here, we present a high-resolution NMR experiment for the simultaneous detection of both resonance frequencies and coupling patterns even with small J-values. A PSYCHE-decoupled DIAG (Pure Shift Yielded by Chirp Excitation- DIAGonal) experiment, which resolves chemical shift in the indirect dimension of a 2D experiment is combined with real-time J-upscaling in order to visualize small coupling constants that would otherwise be hidden in the linewidth of a regular proton or DIAG spectrum.
Collapse
Affiliation(s)
- Sebastian Tassoti
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Heinrichstraße 28, A-8010, Graz, Austria
| | - Predrag Novak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102 A, HR-10 000, Zagreb, Croatia
| | - Craig P Butts
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Klaus Zangger
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Heinrichstraße 28, A-8010, Graz, Austria
| |
Collapse
|
44
|
Kakita VMR, Hosur RV. Real-time J-upscaling in two-dimensional pure shift diagonal NMR: Simultaneous resolution enhancement in chemical shifts and scalar couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:176-180. [PMID: 30286413 DOI: 10.1016/j.jmr.2018.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
A two-dimensional real-time J-upscaled pure shift diagonal pulse scheme, JS-PSYCHE-DIAG has been developed. This method enhances the resolution in scalar coupling multiplets by real-time J-upscaling during the direct acquisition, and these J-upscaled multiplets resolve on the diagonal at the respective pure shift positions, which results in resolution enhancement in chemical shifts. Thus, both chemical shifts and scalar couplings get better resolved simultaneously in the same NMR experiment. The efficacy of the present method has been demonstrated, (i) on hesperidin for resolving the J-upscaled multiplets belonging to diastereomers and (ii) on a natural product, strychnine, to measure small scalar couplings including the long range values.
Collapse
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai 400 098, India
| | - Ramakrishna V Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai 400 098, India.
| |
Collapse
|
45
|
Kiraly P, Nilsson M, Morris GA. Practical aspects of real-time pure shift HSQC experiments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:993-1005. [PMID: 29274287 PMCID: PMC6175388 DOI: 10.1002/mrc.4704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 05/28/2023]
Abstract
Pure shift NMR spectroscopy has become an efficient tool for improving resolution in proton NMR spectra by removing the effect of homonuclear couplings. The introduction of real-time acquisition methods has allowed the main drawback of pure shift NMR, the long experiment times needed, to be circumvented. Real-time methods use periodic application of J-refocusing pulse sequence elements, acquiring a single free induction decay, in contrast to previous methods that construct a pure shift interferogram by concatenating excerpts from multiple free induction decays. In the important heteronuclear single-quantum correlation experiment, implementing real-time pure shift data acquisition typically leads to the simultaneous improvement of both resolution and sensitivity. The current limitations of and problems with real-time pure shift acquisition methods are discussed here in the context of heteronuclear single-quantum correlation experiments. We aim to provide a detailed account of the technical challenges, together with a practical guide to exploiting the full potential of such methods.
Collapse
Affiliation(s)
- Peter Kiraly
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mathias Nilsson
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gareth A. Morris
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
46
|
Mishra SK, Suryaprakash N. Orchestrated approaches using pure shift NMR: Extraction of spectral parameters, ultra-high resolution, and sensitivity enhancement. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:893-909. [PMID: 29230870 DOI: 10.1002/mrc.4696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
The limited chemical shift range of protons and pairwise interaction among all the abundant nuclear spins of a molecule makes 1 H spectrum too complicated. As a consequence, the straightforward analysis and the accurate extraction of their interaction strengths from the 1 H spectrum of a complex spin system are formidably difficult or often impossible. This problem persists in the determination of scalar couplings be it between two abundant homonuclear spins or between 1 H and an abundant heteronuclear spin (viz., 19 F and 31 P). Such problems are encountered in many situations where the determination of homonuclear and heteronuclear couplings is challenging. The several pure shift based one-dimensional and two-dimensional NMR strategies recently developed in our laboratory for the straightforward extraction of homonuclear and heteronuclear interaction parameters in diverse situations are discussed. Initially, the unique application of pure shift technique that paves the way for easy and straightforward extraction of magnitudes of heteronuclear couplings, namely, n JHX (where X stands for 19 F, 31 P, etc.), is discussed. Subsequently, several pure shift edited one-dimensional and two-dimensional NMR strategies that are developed for the direct extraction of homonuclear and heteronuclear couplings and for achieving ultra-high-resolved 1 H spectra with complete eradication of zero frequency peaks and the evolution of unwanted couplings. The enhancement in the sensitivity has also been achieved in the slice-selective pure shift experiments by the rapid acquisition of proton spectrum where the polarization from the adjacent protons is transferred to the selectively excited proton.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- NMR Research Centre, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - N Suryaprakash
- NMR Research Centre, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
47
|
Kakita VMR, Rachineni K, Hosur RV. Fast and simultaneous determination of 1 H- 1 H and 1 H- 19 F scalar couplings in complex spin systems: Application of PSYCHE homonuclear broadband decoupling. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1043-1046. [PMID: 28731512 DOI: 10.1002/mrc.4635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The present manuscript focuses on fast and simultaneous determination of 1 H-1 H and 1 H-19 F scalar couplings in fluorinated complex steroid molecules. Incorporation of broadband PSYCHE homonuclear decoupling in the indirect dimension of zero-quantum filtered diagonal experiments (F1-PSYCHE-DIAG) suppresses 1 H-1 H scalar couplings; however, it retains 1 H-19 F scalar couplings (along F1 dimension) for the 19 F coupled protons while preserving the pure-shift nature for 1 H resonances uncoupled to 19 F. In such cases, along the direct dimensions, 1 H-1 H scalar coupling multiplets deconvolute and they appear as duplicated multiplets for the 19 F coupled protons, which facilitates unambiguous discrimination of 19 F coupled 1 H chemical sites from the others. Further, as an added advantage, data acquisition has been accelerated by invoking the known ideas of spectral aliasing in the F1-PSYCHE-DIAG scheme and experiments demand only ~10 min of spectrometer times.
Collapse
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santa Cruz, Mumbai, 400 098, India
| | - Kavitha Rachineni
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santa Cruz, Mumbai, 400 098, India
| | - Ramakrishna V Hosur
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santa Cruz, Mumbai, 400 098, India
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1-Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| |
Collapse
|
48
|
Görling B, Bermel W, Bräse S, Luy B. Homonuclear decoupling by projection reconstruction. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1006-1020. [PMID: 30058249 DOI: 10.1002/mrc.4784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/16/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Similar to J-resolved spectroscopy, also, heteronuclear multiple bond correlation (HMBC), heteronuclear single bond correlation (HSBC), and heteronuclear multiple quantum coherence (HMQC) types of correlation experiments result in homonuclear tilted multiplet patterns. On the example of the high-resolution heteronuclear single bond correlation (HR-HSBC) pulse sequence, it is shown how the tilt angle can be varied within a wide range of positive and negative values. Projection along the tilt angles in all cases results in homonuclear decoupling. Using well-known projection reconstruction techniques, the different tilt angles can be used to reconstruct a homonuclear decoupled two-dimensional correlation spectrum. The concept is proven and further refined by segmental projection reconstruction and the use of a clean in-phase heteronuclear single quantum correlation (CLIP-HSQC) spectrum with an effective zero tilt angle for further filtering. The proof of principle, its application to one-bond coupling measurement, as well as a basic HMBC, and a detailed discussion with comparison to other homodecoupling techniques are given.
Collapse
Affiliation(s)
- Benjamin Görling
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Bruker Biospin GmbH, Rheinstetten, Germany
| | | | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
49
|
Buchberger K, Walenta M, Zangger K. Extracting unresolved coupling constants from complex multiplets by a real-time J-upscaled SERF experiment. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:934-940. [PMID: 29240255 PMCID: PMC6175170 DOI: 10.1002/mrc.4699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 05/08/2023]
Abstract
The measurement of small homonuclear coupling constants is often prevented by either their small size and/or overlap with other signal splittings. Here, we present a real-time method to extract such couplings without interference from other splittings, with a resolution that is beyond conventional NMR spectra. In this real-time J-upscaled SERF experiment, homonuclear coupling is removed by slice-selective pure shift NMR, whereas scalar coupling to only one selected signal is reintroduced by selective refocusing. The remaining couplings are enhanced by real-time J-upscaling during interruptions of the FID data acquisition. The resulting spectrum is not only simplified by the restriction of the scalar coupling but also its resolution enhanced. This improved resolution results from a reduction of signal broadening due to magnetic field inhomogeneities from 2 different sources: slice-selective excitation and the spin-echo type J-upscaling element.
Collapse
Affiliation(s)
- Kathrin Buchberger
- Institute of Chemistry/Organic and Bioorganic ChemistryUniversity of GrazHeinrichstrasse 28A‐8010GrazAustria
| | - Martin Walenta
- Institute of Chemistry/Organic and Bioorganic ChemistryUniversity of GrazHeinrichstrasse 28A‐8010GrazAustria
| | - Klaus Zangger
- Institute of Chemistry/Organic and Bioorganic ChemistryUniversity of GrazHeinrichstrasse 28A‐8010GrazAustria
| |
Collapse
|
50
|
Nath N, Bordoloi P, Barman B, Baishya B, Chaudhari SR. Insight into old and new pure shift nuclear magnetic resonance methods for enantiodiscrimination. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:876-892. [PMID: 29411898 DOI: 10.1002/mrc.4719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Enantiodiscrimination and their quantification using nuclear magnetic resonance (NMR) spectroscopy has always been a subject of great interest. Proton is the nucleus of choice for enantiodiscrimination due to its high sensitivity and ubiquitous presence in nature. Despite its advantages, enantiodiscrimination suffers from extensive signal splitting by the proton-proton scalar couplings, which give complex multiplets that spread over a frequency range of some tens of hertz. These multiplets often overlap, further complicating interpretation of the spectra and quantifications. In the present review, we discuss some of the recent developments in the pure shift 1 H NMR based methods for enantiomer resolution and enantiodiscrimination. We also compare various pure shift methods used for enantiodiscrimination and measurement of enantiomeric excess, considering the fact that conventional 1 H NMR fails to provide any detailed insight.
Collapse
Affiliation(s)
- Nilamoni Nath
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Priyakshi Bordoloi
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Bhaskar Barman
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Bikash Baishya
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, 226014, India
| | - Sachin R Chaudhari
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|