1
|
Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021; 10:1492. [PMID: 34198536 PMCID: PMC8231983 DOI: 10.3390/cells10061492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
2
|
Li H, Jiang H, Zhang B, Feng J. Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells. JOURNAL OF PARKINSONS DISEASE 2019; 8:479-493. [PMID: 30149462 PMCID: PMC6218140 DOI: 10.3233/jpd-181353] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterized by the degeneration of nigral dopaminergic (DA) neurons. While over 90% of cases are idiopathic, without a clear etiology, mutations in many genes have been linked to rare, familial forms of PD. It has been quite challenging to develop effective animal models of PD that capture salient features of PD. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to generate patient-specific DA neurons to study PD. Here, we review the methods for the generation of iPSCs and discuss previous studies using iPSC-derived neurons from monogenic forms of PD. These investigations have revealed several converging pathways that intersect with the unique vulnerabilities of human nigral DA neurons. With the rapid development in stem cell biology, it is possible to generate patient-specific neurons that will be increasingly similar to those in the brain of the patient. Combined with the ability to edit the genome to generate isogenic iPSCs, the generation and analysis of patient-specific midbrain DA neurons will transform PD research by providing a valuable tool for mechanistic study and drug discovery.
Collapse
Affiliation(s)
- Hong Li
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Houbo Jiang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Boyang Zhang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jian Feng
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
3
|
Trosko JE. What Can Chemical Carcinogenesis Shed Light on the LNT Hypothesis in Radiation Carcinogenesis? Dose Response 2019; 17:1559325819876799. [PMID: 31565039 PMCID: PMC6755642 DOI: 10.1177/1559325819876799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
To protect the public’s health from exposure to physical, chemical, and microbiological
agents, it is important that any policy be based on rigorous scientifically based
research. The concept of “linear no-threshold” (LNT) has been implemented to provide
guideline exposures to these agents. The practical limitation to testing this hypothesis
is to provide sufficient samples for experimental or epidemiological studies. While there
is no universally accepted understanding of most human diseases, there seems to be better
understanding of cancer that might help resolve the “LNT” model. The public’s concern,
after being exposed to radiation, is the potential of producing cancer. The most rigorous
hypothesis of human carcinogenesis is the “multistage, multimechanism” chemical
carcinogenesis model. The radiation carcinogenesis LNT model, rarely, if ever, built it
into their support. It will be argued that this multistage, multimechanism model of
carcinogenesis, involving the “initiation” of a single cell by a mutagen event, followed
by chronic exposure to threshold levels of epigenetic agents or conditions that stimulate
the clonal expansion of the “initiated” cell, can convert these benign cells to become
invasive and metastatic. This “promotion” process can be interrupted, thereby preventing
these initiated cells from transitioning to the “progression” process of invasion and
metastasis.
Collapse
Affiliation(s)
- James E Trosko
- Department Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Yılmazer Aktuna A. Tendency of K562 Chronic Myeloid Leukemia Cells Towards Cell Reprogramming. Turk J Haematol 2018; 35:260-264. [PMID: 29781803 PMCID: PMC6256820 DOI: 10.4274/tjh.2018.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/21/2018] [Indexed: 12/28/2022] Open
Abstract
Objective Cancer cell reprogramming is a potential tool to study cancer progression, disease pathology, and drug sensitivity. Prior to performing cancer reprogramming studies, it is important to evaluate the stemness predisposition of cells that will be reprogrammed. We performed a proof-of-concept study with chronic myeloid leukemia K562 cells in order to evaluate their tendency for cancer cell reprogramming. Materials and Methods Expression of reprogramming factors, pluripotency markers, and tumor-suppressor genes was analyzed at gene and protein levels via real-time reverse transcription-polymerase chain reaction and flow cytometry. Human peripheral blood mononuclear cells (PBMCs) were used as a positive control. Results K562 cells were shown to express higher levels of most of the reprogramming factors and pluripotency markers. Expression of p53, which is one of the main regulators during the generation of induced pluripotent stem cells, was found to be lower in K562 cells compared to PBMCs, whereas the other tumor-suppressor genes showed higher expression levels. Conclusion This study suggested that, similar to healthy human PBMCs, K526 cells could be used in cancer cell reprogramming studies. Generating induced pluripotent stem cells from leukemia cells could help scientists to establish chronic myeloid leukemia models in vitro for a better understanding of therapy resistance and development of novel therapeutic targets.
Collapse
Affiliation(s)
- Açelya Yılmazer Aktuna
- Ankara University Faculty of Engineering, Department of Biomedical Engineering, Ankara, Turkey
| |
Collapse
|
5
|
Hu J, Zhao Q, Feng Y, Li N, Gu Y, Sun R, Duan L, Wu Y, Shan Z, Lei L. Embryonic germ cell extracts erase imprinted genes and improve the efficiency of induced pluripotent stem cells. Sci Rep 2018; 8:10955. [PMID: 30026469 PMCID: PMC6053380 DOI: 10.1038/s41598-018-29339-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) have the potential to be useful in the treatment of human diseases. While prior studies have reported multiple methods to generate iPSCs, DNA methylation continues to limit the totipotency and reprogramming efficiency of iPSCs. Here, we first show the competency of embryonic germ cells (EGCs) as a reprogramming catalyst capable of effectively promoting reprogramming induced by four defined factors, including Oct4, Sox2, Klf4 and c-Myc. Combining EGC extracts with these four factors resulted in formation of more embryonic stem cell-like colonies than did factors alone. Notably, expression of imprinted genes was higher with combined induction than with factors alone. Moreover, iPSCs derived from the combined inductors tended to have more global hypomethylation. Our research not only provides evidence that EGC extracts could activate DNA demethylation and reprogram imprinted genes, but also establishes a new way to enhance reprogramming of iPSCs, which remains a critical safety concern for potential use of iPSCs in regenerative medicine.
Collapse
Affiliation(s)
- Jing Hu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China.,Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Qiaoshi Zhao
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yukuan Feng
- Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Na Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yanli Gu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Lian Duan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China.
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China.
| |
Collapse
|
6
|
Fibroblasts as maestros orchestrating tissue regeneration. J Tissue Eng Regen Med 2017; 12:240-251. [DOI: 10.1002/term.2405] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 12/05/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
7
|
Martinho AM. Overview of the Moral Status of iPS Cells. New Bioeth 2017; 22:148-154. [PMID: 28219287 DOI: 10.1080/20502877.2016.1194658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The production of induced pluripotent stem (iPS) cells in 2006 by Takahashi and Yamanaka was a major breakthrough in stem cell research. IPS cells technology holds great promise for cell therapy, disease modelling, and drug testing, but it poses ethical questions concerning the moral status of somatic cells, which can re-gain pluripotency (iPS cells). This article provides an overview of the arguments that substantiate the debate on the moral assessment of iPS cells: potentiality argument; relational properties/standard view; and genetic basis for moral status.
Collapse
|
8
|
Connell JP, Kodali S, Cooke JP. Therapeutic Transdifferentiation: A Novel Approach for Ischemic Syndromes. Methodist Debakey Cardiovasc J 2016; 11:176-80. [PMID: 26634026 DOI: 10.14797/mdcj-11-3-176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The technological development of induced pluripotent stem cells (iPSCs) has overcome many of the limitations of adult and embryonic stem cells. We have found that activation of innate immunity signaling is necessary for this process, as it facilitates epigenetic plasticity in cells by a process called transflammation. More recently, we have discovered that transflammation also facilitates the transdifferentiation of cells directly from one somatic cell type to another. This insight may lead to a promising therapeutic pathway that avoids reverting cells all the way back to pluripotency before achieving a cell type of interest. While there is much therapeutic promise to transflammation and transdifferentiation, there is also evidence that transdifferentiation plays a role in some pathological conditions, including atherosclerosis. Ultimately, better understanding of transflammation will facilitate the development of regenerative therapies.
Collapse
Affiliation(s)
| | - Santhisri Kodali
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - John P Cooke
- Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
9
|
Chua AWC, Khoo YC, Tan BK, Tan KC, Foo CL, Chong SJ. Skin tissue engineering advances in severe burns: review and therapeutic applications. BURNS & TRAUMA 2016; 4:3. [PMID: 27574673 PMCID: PMC4963933 DOI: 10.1186/s41038-016-0027-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
Current advances in basic stem cell research and tissue engineering augur well for the development of improved cultured skin tissue substitutes: a class of products that is still fraught with limitations for clinical use. Although the ability to grow autologous keratinocytes in-vitro from a small skin biopsy into sheets of stratified epithelium (within 3 to 4 weeks) helped alleviate the problem of insufficient donor site for extensive burn, many burn units still have to grapple with insufficient skin allografts which are used as intermediate wound coverage after burn excision. Alternatives offered by tissue-engineered skin dermal replacements to meet emergency demand have been used fairly successfully. Despite the availability of these commercial products, they all suffer from the same problems of extremely high cost, sub-normal skin microstructure and inconsistent engraftment, especially in full thickness burns. Clinical practice for severe burn treatment has since evolved to incorporate these tissue-engineered skin substitutes, usually as an adjunct to speed up epithelization for wound closure and/or to improve quality of life by improving the functional and cosmetic results long-term. This review seeks to bring the reader through the beginnings of skin tissue engineering, the utilization of some of the key products developed for the treatment of severe burns and the hope of harnessing stem cells to improve on current practice.
Collapse
Affiliation(s)
- Alvin Wen Choong Chua
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| | - Yik Cheong Khoo
- Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| | - Bien Keem Tan
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| | - Kok Chai Tan
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore
| | - Chee Liam Foo
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore
| | - Si Jack Chong
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| |
Collapse
|
10
|
Eggers JC, Martino V, Reinbold R, Schäfer SD, Kiesel L, Starzinski-Powitz A, Schüring AN, Kemper B, Greve B, Götte M. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online 2016; 32:434-45. [PMID: 26854065 DOI: 10.1016/j.rbmo.2015.12.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023]
Abstract
Endometriosis is characterized by growth of endometrial tissue at ectopic locations. Down-regulation of microRNA miR-200b is observed in endometriosis and malignant disease, driving tumour cells towards an invasive state by enhancing epithelial-to-mesenchymal transition (EMT). miR-200b up-regulation may inhibit EMT and invasive growth in endometriosis. To study its functional impact on the immortalized endometriotic cell line 12Z, the stromal cell line ST-T1b, and primary endometriotic stroma cells, a transient transfection approach with microRNA precursors was employed. Expression of bioinformatically predicted targets of miR-200b was analysed by qPCR. The cellular phenotype was monitored by Matrigel invasion assays, digital-holographic video microscopy and flow cytometry. qPCR revealed significant down-regulation of ZEB1 (P < 0.05) and ZEB2 (P < 0.01) and an increase in E-cadherin (P < 0.01). miR-200b overexpression decreased invasiveness (P < 0.0001) and cell motility (P < 0.05). In contrast, cell proliferation (P < 0.0001) and the stemness-associated side population phenotype (P < 0.01) were enhanced following miR-200b transfection. These properties were possibly due to up-regulation of the pluripotency-associated transcription factor KLF4 (P < 0.05) and require attention when considering therapeutic strategies. In conclusion, up-regulation of miR-200b reverts EMT, emerging as a potential therapeutic approach to inhibit endometriotic cell motility and invasiveness.
Collapse
Affiliation(s)
- Julia C Eggers
- Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany
| | - Valentina Martino
- Institute of Biomedical Technologies, National Research Council, 20090 Segrate-Milan, Italy
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, 20090 Segrate-Milan, Italy
| | - Sebastian D Schäfer
- Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany
| | - Anna Starzinski-Powitz
- Institute of Anthropology and Human Genetics for Biologists, Johann-Wolfgang-Goethe University of Frankfurt, Frankfurt, Germany
| | - Andreas N Schüring
- Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, University of Muenster, 48149 Muenster, Germany
| | - Burkhard Greve
- Klinik für Strahlentherapie - Radioonkologie, Universitätsklinikum Münster, D-48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany.
| |
Collapse
|
11
|
Cooke JP, Sayed N, Lee J, Wong WT. Innate immunity and epigenetic plasticity in cellular reprogramming. Curr Opin Genet Dev 2015; 28:89-91. [PMID: 25461456 DOI: 10.1016/j.gde.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/15/2014] [Accepted: 11/10/2014] [Indexed: 01/15/2023]
Abstract
Somatic cells can be reprogrammed to express the features of pluripotent cells, in that they can be differentiated into all three germ layers, and that they have the ability to replicate indefinitely. Recent studies suggest that the efficient induction of pluripotency requires the activation of innate immunity.
Collapse
Affiliation(s)
- John P Cooke
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, United States.
| | - Nazish Sayed
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, United States
| | - Jieun Lee
- Department of Medicine, Stanford University, United States
| | - Wing Tak Wong
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, United States
| |
Collapse
|
12
|
Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from Cohnheim and Goujon to the Nobel Prize of Yamanaka. INTERNATIONAL ORTHOPAEDICS 2015; 39:807-17. [PMID: 25750132 DOI: 10.1007/s00264-015-2716-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
In 1867 the German pathologist Cohnheim hypothesized that non-hematopoietic, bone marrow-derived cells could migrate through the blood stream to distant sites of injury and participate in tissue regeneration. In 1868, the French physiologist Goujon studied the osteogenic potential of bone marrow on rabbits. Friedenstein demonstrated the existence of a nonhematopoietic stem cell within bone marrow more than a hundred years later. Since this discovery, the research on mesenchymal stem cell (MSC) has explored their therapeutic potential. The prevalent view during the second century was that mature cells were permanently locked into the differentiated state and could not return to a fully immature, pluripotent stem-cell state. Recently, Japanese scientist (first orthopaedist) Shinya Yamanaka proved that introduction of a small set of transcription factors into a differentiated cell was sufficient to revert the cell to a pluripotent state. Yamanaka shared the Nobel Prize in Physiology or Medicine and opened a new door for potential applications of MSCs. This manuscript describes the concept of MSCs from the period when it was relegated to the imagination to the beginning of the twenty-first century and their application in orthopaedic surgery.
Collapse
|
13
|
Sulé-Suso J, Forsyth N, Untereiner V, Sockalingum G. Vibrational spectroscopy in stem cell characterisation: is there a niche? Trends Biotechnol 2014; 32:254-62. [DOI: 10.1016/j.tibtech.2014.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
|