1
|
Wu Z, Bayón JL, Kouznetsova TB, Ouchi T, Barkovich KJ, Hsu SK, Craig SL, Steinmetz NF. Virus-like Particles Armored by an Endoskeleton. NANO LETTERS 2024; 24:2989-2997. [PMID: 38294951 DOI: 10.1021/acs.nanolett.3c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Many virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability. Specifically, the VLPs of physalis mottle virus (PhMV) and Qβ were used to demonstrate this concept. We built an internal polymer "backbone" using a maleimide-PEG15-maleimide cross-linker to covalently interlink viral coat proteins inside the capsid cavity, while the native VLPs are held together by only noncovalent bonding between subunits. Endoskeleton-armored VLPs exhibited significantly improved thermal stability (95 °C for 15 min), increased resistance to denaturants (i.e., surfactants, pHs, chemical denaturants, and organic solvents), and enhanced mechanical performance. Single-molecule force spectroscopy demonstrated a 6-fold increase in rupture distance and a 1.9-fold increase in rupture force of endoskeleton-armored PhMV. Overall, this endoskeleton-armored strategy provides more opportunities for the development and applications of materials.
Collapse
Affiliation(s)
- Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| | - Jorge L Bayón
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Krister J Barkovich
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Sean K Hsu
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Meeus EJ, Igareta NV, Morita I, Ward TR, de Bruin B, Reek JNH. A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis. Chem Commun (Camb) 2023; 59:14567-14570. [PMID: 37987161 DOI: 10.1039/d3cc04723g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We show that the incorporation of a biotinylated Co(TAML) cofactor within streptavidin enables asymmetric radical-type oxygen atom transfer catalysis with improved activity and enantioselectivity.
Collapse
Affiliation(s)
- Eva J Meeus
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, Amsterdam 1098XH, The Netherlands.
| | - Nico V Igareta
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4002, Switzerland.
| | - Iori Morita
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4002, Switzerland.
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4002, Switzerland.
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, Amsterdam 1098XH, The Netherlands.
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, Amsterdam 1098XH, The Netherlands.
| |
Collapse
|
3
|
Su Y, Liu B, Huang Z, Teng Z, Yang L, Zhu J, Huo S, Liu A. Virus-like particles nanoreactors: from catalysis towards bio-applications. J Mater Chem B 2023; 11:9084-9098. [PMID: 37697810 DOI: 10.1039/d3tb01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Virus-like particles (VLPs) are self-assembled supramolecular structures found in nature, often used for compartmentalization. Exploiting their inherent properties, including precise nanoscale structures, monodispersity, and high stability, these architectures have been widely used as nanocarriers to protect or enrich catalysts, facilitating catalytic reactions and avoiding interference from the bulk solutions. In this review, we summarize the current progress of virus-like particles (VLPs)-based nanoreactors. First, we briefly introduce the physicochemical properties of the most commonly used virus particles to understand their roles in catalytic reactions beyond the confined space. Next, we summarize the self-assembly of nanoreactors forming higher-order hierarchical structures, highlighting the emerging field of nanoreactors as artificial organelles and their potential biomedical applications. Finally, we discuss the current findings and future perspectives of VLPs-based nanoreactors.
Collapse
Affiliation(s)
- Yuqing Su
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Beibei Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhu
- National-Local Joint Engineering Research and High-Quality Utilization, Changzhou University, Changzhou 213164, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Aijie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
6
|
Chaperonins: Nanocarriers with Biotechnological Applications. NANOMATERIALS 2021; 11:nano11020503. [PMID: 33671209 PMCID: PMC7922521 DOI: 10.3390/nano11020503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
Chaperonins are molecular chaperones found in all kingdoms of life, and as such they assist in the folding of other proteins. Structurally, chaperonins are cylinders composed of two back-to-back rings, each of which is an oligomer of ~60-kDa proteins. Chaperonins are found in two main conformations, one in which the cavity is open and ready to recognise and trap unfolded client proteins, and a "closed" form in which folding takes place. The conspicuous properties of this structure (a cylinder containing a cavity that allows confinement) and the potential to control its closure and aperture have inspired a number of nanotechnological applications that will be described in this review.
Collapse
|
7
|
Wang X, Pan M, Shi Z, Yu D, Huang F. Protein Nanobarrel for Integrating Chlorophyll a Molecules and Its Photochemical Performance. ACS APPLIED BIO MATERIALS 2021; 4:399-405. [PMID: 35014291 DOI: 10.1021/acsabm.0c00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Taking inspiration from biology's effectiveness in nanoscale organization of chlorophylls for photosynthesis, we describe here a design for chlorophyll-protein conjugates that exploits the central hydrophobic cavity of GroEL protein nanobarrel as a binding pocket for chlorophyll. We found water-soluble conjugates of chlorophyll with GroEL could be easily generated via detergent dialysis. The number of chlorophyll units bound to GroEL is tunable by varying the equilibrium concentration of chlorophyll during dialysis. Meanwhile, it is shown that an increase in the entrapped chlorophyll amount leads to an improvement of chlorophyll-GroEL photostability. Using methyl viologen as an electron acceptor, we demonstrate that chlorophyll-GroEL has photoreduction activity, which is also switchable in on/off illumination mode. Finally, it is shown that chlorophyll-GroEL-sensitized solar cells have good photoelectric properties, yielding a high photoelectric conversion efficiency of ∼0.9%. The current strategy may be adopted for integrating other photosensitizing dyes or for other photocatalytic reactions.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Meihong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| |
Collapse
|
8
|
Qin L, Gao M, Zhang M, Li X, Ru R, Luo H, Zhang G. Bioinspired Assembly of Double Honeycomb-Like Hierarchical Capsule Confined Encapsulation with Functional Micro/Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004692. [PMID: 33201585 DOI: 10.1002/smll.202004692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Inspired by "micro/nanoreactor" effect of cellular organelle on specific biochemical reactions, a double honeycomb-like hierarchical capsule confined encapsulation with functional micro/nanocrystals is designed. The bioinspired hierarchical capsules derived from polymeric composite microspheres are successfully fabricated through a combination of selective chemical etching and pyrolysis. In situ introduction of functional guests (including organometallic molecules, tetraethoxysilane, or metal-organic frameworks (MOFs)) into internal cellular structure of microspheres is first put forward by phase inversion method. The development of selective etching creates honeycomb-like structure on the outside surface of capsule and allows sulfur to homogeneously distribute into matrix. With the novel approach, the hierarchical channels (micro-meso-macropore) of composite capsule enhance transportation of reactants and dispersion of active sites, and thus exhibit superior photocatalytic oxidation and electromagnetic absorbing. The promising strategy will be applied more generally to encapsulate different species into hierarchical capsule with tailored properties and functionalities.
Collapse
Affiliation(s)
- Lei Qin
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Mingzhen Gao
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Mengyuan Zhang
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Xiong Li
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Rui Ru
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Huili Luo
- College of Resources and Environment, Hunan Agricultural University, Nongda Road 1#, Changsha, 410128, P. R. China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| |
Collapse
|
9
|
Wang X, Shi Z, Chen H, Huang F. Nanoscale integration of porphyrin in GroEL protein cage: Photophysical and photochemical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118596. [PMID: 32599481 DOI: 10.1016/j.saa.2020.118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we introduce a new type of functional, supramolecular porphyrin conjugate created using the bacterial GroEL protein cage based on non-specific hydrophobic interaction. The synthesis, structure and property of the porphyrin conjugate were characterized by dynamic light scattering, UV-vis spectroscopy and fluorescence spectroscopy. We observed that the model zinc-tetraphenylporphyrin (Zn-TPP) with high hydrophobicity can be well-dispersed in aqueous solutions with the aid of GroEL open chamber, which is known to be a favorable nanocompartment for aggregation-prone molecules. The maximal encapsulation efficiency of Zn-TPP in GroEL was determined to be ~98%. It is further seen that the constructed double Zn-TPP-GroEL complex exhibited good photocatalytic activity in the model reactions of the production of singlet oxygen and the reduction of methyl viologen under illumination with visible light. Moreover, we found that GroEL can significantly improve the photostability of Zn-TPP molecules as a result of nanoscale assembly within its hydrophobic chamber. Hence enhanced water solubility and photostability of Zn-TPP, which are considered as the first two hurdles for the wide usage of porphyrins, were achieved simultaneously by the development of GroEL cage as a building block. Supramolecular nanostructures formed from porphyrins (or related molecules) and GroEL for photocatalysis would greatly simplify applications of such structures.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China.
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China
| | - Han Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, PR China.
| |
Collapse
|
10
|
Lambert H, Zhang YW, Lee TC. Supramolecular Catalysis of m-Xylene Isomerization by Cucurbiturils: Transition State Stabilization, Vibrational Coupling, and Dynamic Binding Equilibrium. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:11469-11479. [PMID: 32582403 PMCID: PMC7304912 DOI: 10.1021/acs.jpcc.0c02012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The ability of cucurbit[6]uril (CB6) and cucurbit[7]uril (CB7) to catalyze the thermally activated 1,2-methyl shift isomerization pathway of m-xylene in vacuum is investigated using infrequent metadynamics. CB6 is predicted to effectively and selectively catalyze the meta-to-para isomerization through stabilization of the transition state (TS) by van der Waals push (packing coefficient ≈74%), while inhibiting the meta-to-ortho pathway by molding effects of the cavity. Interestingly, despite the snug binding, a very low rate of host-guest vibrational energy transfer is revealed using a novel approach of host-guest partition of the mode-specific anharmonic relaxation rates and ab initio molecular dynamics. The weak vibrational coupling suggests that CB can act as a thermal buffer, possibly shielding encapsulated guests from outside vibrational perturbations such as solvent effects. This dynamic effect could provide an additional boost to the reaction rate by blocking the occurrence of reaction barrier recrossing caused by the friction with surrounding molecules. Finally, mean residence times of xylene into the hosts' cavity were estimated for a range of host-guest complexes, revealing a highly dynamic equilibrium allowing very high guest turnover rates that could minimize catalyst inhibition effects commonly suffered by other supramolecular catalysts.
Collapse
Affiliation(s)
- Hugues Lambert
- Institute
of High Performance Computing, A*STAR, 1 Fusionopolis Way, Connexis Tower, Singapore 138632
- Department
of Chemistry, Christopher Ingold Building, University College London (UCL), 20 Gordon Street London WC1H 0AJ, U.K.
- Institute
for Materials Discovery, University College
London (UCL), London WC1E 6BT, U.K.
| | - Yong-Wei Zhang
- Institute
of High Performance Computing, A*STAR, 1 Fusionopolis Way, Connexis Tower, Singapore 138632
| | - Tung-Chun Lee
- Department
of Chemistry, Christopher Ingold Building, University College London (UCL), 20 Gordon Street London WC1H 0AJ, U.K.
- Institute
for Materials Discovery, University College
London (UCL), London WC1E 6BT, U.K.
| |
Collapse
|
11
|
Wang D, Chen L, Wang M, Cui M, Huang L, Xia W, Guan X. Delivering Proapoptotic Peptide by HSP Nanocage for Cancer Therapy. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dongmei Wang
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Li Chen
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Mingyue Wang
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Meiying Cui
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Lili Huang
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Wei Xia
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| | - Xingang Guan
- College of Medical TechnologyBeihua University Jilin 132013 P. R. China
| |
Collapse
|
12
|
Wang X, Li S, Wang C, Mujuni CJ, Yue T, Huang F. Supramolecular Construction of Biohybrid Nanozymes Based on the Molecular Chaperone GroEL as a Promiscuous Scaffold. ACS Biomater Sci Eng 2020; 6:833-841. [PMID: 33464843 DOI: 10.1021/acsbiomaterials.9b00997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study of enzymatic reactions in a confined space can provide valuable insight into the natural selection of nanocompartments for biocatalytic processes. Design of nanozyme capsules with the barrel-shaped protein cage of GroEL has been proposed as a promising means to constrain chemical reactions in a spatiotemporally controllable manner. Herein, we further demonstrate with hemin that the open GroEL cavity can provide a favorable microenvironment for shielding hydrophobic catalytically active species. Meanwhile, it is shown that the GroEL-caged hemin nanozyme not only has a significantly higher catalytic activity than merely dispersed hemin but also exhibits substrate specificity in the model oxidation reactions, which is a merit lacking in natural hemoproteins. To understand the underlying mechanism behind this supramolecular assembly, molecular docking and molecular dynamics simulations were performed to study the detailed interactions of hemin with the protein cage. This revealed the most likely binding mode and preferred binding residues in the paired hydrophobic α-helices lining the GroEL cavity which are genetically encoded for substrate capture. Finally, we demonstrate that the hemin-GroEL nanozyme has great potential in label-free fluorometric molecular detection when combined with suitable substrates such as homovanillic acid. We believe that our strategy is an advantageous tool for studying confined biocatalytic kinetics as simple mimics of protein-based organelles found in nature and for designing diverse nanozymes or bio-nanoreactors with the promiscuous GroEL binding cavity.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Chao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Christopher J Mujuni
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
13
|
Jeong WJ, Yu J, Song WJ. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chem Commun (Camb) 2020; 56:9586-9599. [DOI: 10.1039/d0cc03137b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have extracted and categorized the desirable properties of proteins that are adapted as the scaffolds for artificial metalloenzymes.
Collapse
Affiliation(s)
- Woo Jae Jeong
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jaeseung Yu
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Woon Ju Song
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
14
|
Functionalization of GroEL nanocages with hemin for label-free colorimetric assays. Anal Bioanal Chem 2019; 411:3819-3827. [PMID: 31089786 DOI: 10.1007/s00216-019-01856-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 01/25/2023]
Abstract
The design of functionalized protein nanocages as enzyme mimics is a relatively new and promising field as these biogenic nanocapsules are inherently monodisperse with precise architectures, unattainable by purely synthetic processes. This work explored the catalytic properties of the bacterial GroEL-nanocaged hemin and its performance in label-free colorimetric assays. It is demonstrated that the hemin-GroEL biohybrid has peroxidase-like activity and follows the typical Michaelis-Menten kinetics and ping-pong mechanism in the model sensing processes. The open nature and nanoreactor effect of the GroEL cage and the addition of ATP are shown to significantly influence the catalytic activity. For glucose detection with the hemin-GroEL complex, the linearity between the analyte concentration and UV-vis absorption was determined to range from 0 to 200 μM with a limit of detection (LOD) of ~ 12 μM under the defined conditions. In addition, the colorimetric detection of catechol led to a linear dynamic range of 0-120 μM with a LOD of ~ 17 μM. This indicates that the same assay could be used as a sensing platform for the detection or even oxidative removal of phenolic contaminants in the presence of H2O2. Thus, GroEL cage is a valuable tool for the development of nanozymes and practical applications such as clinical analysis and environmental monitoring.
Collapse
|
15
|
de Ruiter MV, Klem R, Luque D, Cornelissen JJLM, Castón JR. Structural nanotechnology: three-dimensional cryo-EM and its use in the development of nanoplatforms for in vitro catalysis. NANOSCALE 2019; 11:4130-4146. [PMID: 30793729 DOI: 10.1039/c8nr09204d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The organization of enzymes into different subcellular compartments is essential for correct cell function. Protein-based cages are a relatively recently discovered subclass of structurally dynamic cellular compartments that can be mimicked in the laboratory to encapsulate enzymes. These synthetic structures can then be used to improve our understanding of natural protein-based cages, or as nanoreactors in industrial catalysis, metabolic engineering, and medicine. Since the function of natural protein-based cages is related to their three-dimensional structure, it is important to determine this at the highest possible resolution if viable nanoreactors are to be engineered. Cryo-electron microscopy (cryo-EM) is ideal for undertaking such analyses within a feasible time frame and at near-native conditions. This review describes how three-dimensional cryo-EM is used in this field and discusses its advantages. An overview is also given of the nanoreactors produced so far, their structure, function, and applications.
Collapse
Affiliation(s)
- Mark V de Ruiter
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Wang CG, Hanindita F, Goto A. Biocompatible Choline Iodide Catalysts for Green Living Radical Polymerization of Functional Polymers. ACS Macro Lett 2018; 7:263-268. [PMID: 35610904 DOI: 10.1021/acsmacrolett.8b00026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, nontoxic and metabolizable choline iodide analogues, including choline iodide, acetylcholine iodide, and butyrylcholine iodide, were successfully utilized as novel catalysts for "green" living radical polymerization (LRP). Through the combination of several green solvents (ethyl lactate, ethanol, and water), this green LRP process yielded low-polydispersity hydrophobic, hydrophilic, zwitterionic, and water-soluble biocompatible polymethacrylates and polyacrylates with high monomer conversions. Well-defined hydrophobic-hydrophilic and hydrophilic-hydrophilic block copolymers were also synthesized. The accessibility to a range of polymer designs is an attractive feature of this polymerization. The use of nontoxic choline iodide catalysts as well as green polymerization conditions can contribute to sustainable polymer chemistry.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Fiona Hanindita
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
18
|
Nussbaumer MG, Bisig C, Bruns N. Using the dendritic polymer PAMAM to form gold nanoparticles in the protein cage thermosome. Chem Commun (Camb) 2018; 52:10537-9. [PMID: 27491621 DOI: 10.1039/c6cc04739d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chaperonin thermosome (THS) is a protein cage that lacks binding sites for metal ions and inorganic nanoparticles. However, when poly(amidoamine) (PAMAM) is encapsulated into THS, gold nanoparticles (AuNP) can be prepared in the THS. The polymer binds HAuCl4. Subsequent reduction yields nanoparticles with narrow size distribution in the protein-polymer conjugate.
Collapse
Affiliation(s)
- Martin G Nussbaumer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Christoph Bisig
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland and Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland and Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
19
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 526] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
20
|
Renggli K, Sauter N, Rother M, Nussbaumer MG, Urbani R, Pfohl T, Bruns N. Biocatalytic atom transfer radical polymerization in a protein cage nanoreactor. Polym Chem 2017. [DOI: 10.1039/c6py02155g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ATRP-catalyzing enzyme horseradish peroxidase was encapsulated into the protein cage thermosome resulting in an all-protein nanoreactor system for controlled radical polymerizations.
Collapse
Affiliation(s)
- Kasper Renggli
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
- Department of Biosystems Science and Engineering
| | - Nora Sauter
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | - Martin Rother
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | - Martin G. Nussbaumer
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
- Wyss Institute for Biologically Inspired Engineering
| | - Raphael Urbani
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | - Thomas Pfohl
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | - Nico Bruns
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
- Adolphe Merkle Institute
| |
Collapse
|
21
|
Nussbaumer MG, Duskey JT, Rother M, Renggli K, Chami M, Bruns N. Chaperonin-Dendrimer Conjugates for siRNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600046. [PMID: 27840795 PMCID: PMC5096033 DOI: 10.1002/advs.201600046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Indexed: 05/19/2023]
Abstract
The group II chaperonin thermosome (THS) is a hollow protein nanoparticle that can encapsulate macromolecular guests. Two large pores grant access to the interior of the protein cage. Poly(amidoamine) (PAMAM) is conjugated into THS to act as an anchor for small interfering RNA (siRNA), allowing to load the THS with therapeutic payload. THS-PAMAM protects siRNA from degradation by RNase A and traffics KIF11 and GAPDH siRNA into U87 cancer cells. By modification of the protein cage with the cell-penetrating peptide TAT, RNA interference is also induced in PC-3 cells. THS-PAMAM protein-polymer conjugates are therefore promising siRNA transfection reagents and greatly expand the scope of protein cages in drug delivery applications.
Collapse
Affiliation(s)
- Martin G. Nussbaumer
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Jason T. Duskey
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Martin Rother
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Kasper Renggli
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Mohamed Chami
- C‐CINACenter for Cellular Imaging and NanoAnalytics BiozentrumUniversity of BaselMattenstrasse 264058BaselSwitzerland
| | - Nico Bruns
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| |
Collapse
|
22
|
Maassen SJ, van der Ham AM, Cornelissen JJLM. Combining Protein Cages and Polymers: from Understanding Self-Assembly to Functional Materials. ACS Macro Lett 2016; 5:987-994. [PMID: 35607217 DOI: 10.1021/acsmacrolett.6b00509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein cages, such as viruses, are well-defined biological nanostructures which are highly symmetrical and monodisperse. They are found in various shapes and sizes and can encapsulate or template non-native materials. Furthermore, the proteins can be chemically or genetically modified giving them new properties. For these reasons, these protein structures have received increasing attention in the field of polymer-protein hybrid materials over the past years, however, advances are still to be made. This Viewpoint highlights the different ways polymers and protein cages or their subunits have been combined to understand self-assembly and create functional materials.
Collapse
Affiliation(s)
- Stan J. Maassen
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Anne M. van der Ham
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| |
Collapse
|
23
|
Fernández-Fernández MR, Sot B, Valpuesta JM. Molecular chaperones: functional mechanisms and nanotechnological applications. NANOTECHNOLOGY 2016; 27:324004. [PMID: 27363314 DOI: 10.1088/0957-4484/27/32/324004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.
Collapse
Affiliation(s)
- M Rosario Fernández-Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus de la Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
24
|
Malinowska KH, Nash MA. Enzyme- and affinity biomolecule-mediated polymerization systems for biological signal amplification and cell screening. Curr Opin Biotechnol 2016; 39:68-75. [DOI: 10.1016/j.copbio.2016.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/23/2016] [Indexed: 11/28/2022]
|
25
|
Schoonen L, van Hest JCM. Compartmentalization Approaches in Soft Matter Science: From Nanoreactor Development to Organelle Mimics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1109-28. [PMID: 26509964 DOI: 10.1002/adma.201502389] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/14/2015] [Indexed: 05/19/2023]
Abstract
Compartmentalization is an essential feature found in living cells to ensure that biological processes occur without being affected by undesired external influences. Over the years many scientists have designed self-assembled soft matter structures that mimic these natural catalytic compartments. The rationale behind this research is threefold. First of all, compartmentalization leads to the creation of a secluded environment for the catalytic species, which solves compatibility issues and which can improve catalyst efficiency and selectivity. Secondly, nano- and micro-compartments are constructed with the aim to obtain microenvironments that more closely mimic the cellular architecture. These biomimetic platforms are used to attain a better understanding of how cellular processes are executed. Thirdly, natural design rules are applied to create biomolecular assemblies with unusual functionality, which for example are used as artificial organelles. Here, recent developments will be discussed regarding these compartmentalized catalytic systems, with a selected number of illustrative examples to demonstrate which strategies have been followed, and to show to what extent the ambitious goals of this field of science have been reached. The focus here is on the field of soft matter science, covering the wide spectrum from polymeric assemblies to protein nanocages.
Collapse
Affiliation(s)
- Lise Schoonen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Jan C M van Hest
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Danielson AP, Bailey-Van Kuren D, Lucius ME, Makaroff K, Williams C, Page RC, Berberich JA, Konkolewicz D. Well-Defined Macromolecules Using Horseradish Peroxidase as a RAFT Initiase. Macromol Rapid Commun 2016; 37:362-7. [PMID: 26748786 DOI: 10.1002/marc.201500633] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/09/2015] [Indexed: 11/07/2022]
Abstract
Enzymatic catalysis and control over macromolecular architectures from reversible addition-fragmentation chain transfer polymerization (RAFT) are combined to give a new method of making polymers. Horseradish peroxidase (HRP) is used to catalytically generate radicals using hydrogen peroxide and acetylacetone as a mediator. RAFT is used to control the polymer structure. HRP catalyzed RAFT polymerization gives acrylate and acrylamide polymers with relatively narrow molecular weight distributions. The polymerization is rapid, typically exceeding 90% monomer conversion in 30 min. Complex macromolecular architectures including a block copolymer and a protein-polymer conjugate are synthesized using HRP to catalytically initiate RAFT polymerization.
Collapse
Affiliation(s)
- Alex P Danielson
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Dylan Bailey-Van Kuren
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Melissa E Lucius
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Katherine Makaroff
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Cameron Williams
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Jason A Berberich
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E High St, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| |
Collapse
|
27
|
Frey R, Hayashi T, Hilvert D. Enzyme-mediated polymerization inside engineered protein cages. Chem Commun (Camb) 2016; 52:10423-6. [DOI: 10.1039/c6cc05301g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Engineered variants of the capsid-forming enzyme lumazine synthase, AaLS, were used as nanoreactors for an enzyme-mediated polymerization.
Collapse
Affiliation(s)
- Raphael Frey
- Laboratory of Organic Chemistry
- ETH Zürich
- 8093 Zürich
- Switzerland
| | | | - Donald Hilvert
- Laboratory of Organic Chemistry
- ETH Zürich
- 8093 Zürich
- Switzerland
| |
Collapse
|
28
|
Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016; 45:6213-6249. [DOI: 10.1039/c6cs00177g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein cages have become essential tools in bionanotechnology due to their well-defined, monodisperse, capsule-like structure. Combining them with synthetic polymers greatly expands their application, giving rise to novel nanomaterials fore.g.drug-delivery, sensing, electronic devices and for uses as nanoreactors.
Collapse
Affiliation(s)
- Martin Rother
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Martin G. Nussbaumer
- Wyss Institute for Biologically Inspired Engineering
- Harvard University
- Cambridge
- USA
| | - Kasper Renggli
- Department of Biosystems Science and Engineering
- ETH Zürich
- 4058 Basel
- Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|
29
|
Chatgilialoglu C, Ferreri C, Matyjaszewski K. Radicals and Dormant Species in Biology and Polymer Chemistry. Chempluschem 2015; 81:11-29. [DOI: 10.1002/cplu.201500271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 12/20/2022]
Affiliation(s)
| | - Carla Ferreri
- I.S.O.F.-BioFreeRadicals; Consiglio Nazionale delle Ricerche; Via P. Gobetti 101 Bologna 40129 Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
30
|
Use of the confined spaces of apo-ferritin and virus capsids as nanoreactors for catalytic reactions. Curr Opin Chem Biol 2015; 25:88-97. [DOI: 10.1016/j.cbpa.2014.12.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/17/2023]
|
31
|
Dinu MV, Spulber M, Renggli K, Wu D, Monnier CA, Petri-Fink A, Bruns N. Filling Polymersomes with Polymers by Peroxidase-Catalyzed Atom Transfer Radical Polymerization. Macromol Rapid Commun 2015; 36:507-14. [DOI: 10.1002/marc.201400642] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Maria Valentina Dinu
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Mariana Spulber
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Kasper Renggli
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
- Department of Biological Engineering; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Dalin Wu
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Christophe A. Monnier
- Adolphe Merkle Institute; University of Fribourg; Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute; University of Fribourg; Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Nico Bruns
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
- Adolphe Merkle Institute; University of Fribourg; Chemin des Verdiers 4 1700 Fribourg Switzerland
| |
Collapse
|
32
|
Fan K, Hui Y, Hu X, Shi W, Pang H, Xie Z. PMoA/MCM-41 catalyzed aza-Michael reaction: special effects of mesoporous nanoreactor on chemical equilibrium and reaction rate through surface energy transformation. NEW J CHEM 2015. [DOI: 10.1039/c5nj01507c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanoreactors as catalysts can affect not only speed but also the chemical equilibrium of the reaction under investigation.
Collapse
Affiliation(s)
- Kui Fan
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Yonghai Hui
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Xinmei Hu
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Wei Shi
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Xindu
- China
| | - Haixia Pang
- Key Laboratory of Oil & Gas Fine Chemicals
- Ministry of Education & Xinjiang Uyghur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Zhengfeng Xie
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Xindu
- China
| |
Collapse
|