1
|
Parfirova O, Mikshina P, Petrova O, Smolobochkin A, Pashagin A, Burilov A, Gorshkov V. Phosphonates of Pectobacterium atrosepticum: Discovery and Role in Plant-Pathogen Interactions. Int J Mol Sci 2024; 25:11516. [PMID: 39519067 PMCID: PMC11546328 DOI: 10.3390/ijms252111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Many phytopathogens' gene products that contribute to plant-pathogen interactions remain unexplored. In one of the most harmful phytopathogenic bacterium Pectobacterium atrosepticum (Pba), phosphonate-related genes have been previously shown to be among the most upregulated following host plant colonization. However, phosphonates, compounds characterized by a carbon-phosphorus bond in their composition, have not been described in Pectobacterium species and other phytopathogenic bacteria, with the exception of Pseudomonas syringae and Pantoea ananatis. Our study aimed to determine whether Pba synthesizes extracellular phosphonates and, if so, to analyze their physiological functions. We demonstrated that Pba produces two types of extracellular phosphonates: 2-diethoxyphosphorylethanamine and phenylphosphonic acid. Notably, such structures have not been previously described among natural phosphonates. The production of Pba phosphonates was shown to be positively regulated by quorum sensing and in the presence of pectic compounds. Pba phosphonates were found to have a positive effect on Pba stress resistance and a negative effect on Pba virulence. The discovered Pba phosphonates are discussed as metabolites that enable Pba to control its "harmful properties", thereby maintaining its ecological niche (the host plant) in a relatively functional state for an extended period.
Collapse
Affiliation(s)
- Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
| | - Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
| | - Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420088 Kazan, Russia; (A.S.); (A.B.)
| | - Alexander Pashagin
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420088 Kazan, Russia; (A.S.); (A.B.)
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
2
|
Voráčová M, Zore M, Yli-Kauhaluoma J, Kiuru P. Harvesting phosphorus-containing moieties for their antibacterial effects. Bioorg Med Chem 2023; 96:117512. [PMID: 37939493 DOI: 10.1016/j.bmc.2023.117512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as β-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.
Collapse
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Carvalho CR, Souza BCE, Bieluczyk W, Feitosa YB, Delbaje E, Camargo PB, Tsai SM, Fiore MF. Phosphonate consumers potentially contributing to methane production in Brazilian soda lakes. Extremophiles 2023; 28:4. [PMID: 37987855 DOI: 10.1007/s00792-023-01318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Oxic methane production (OMP) has been reported to significantly contribute to methane emissions from oxic surface waters. Demethylation of organic compounds, photosynthesis-associated methane production, and (bacterio)chlorophyll reduction activity are some of the investigated mechanisms as potential OMP sources related to photosynthetic organisms. Recently, cyanobacteria have often been correlated with methane accumulation and emission in freshwater, marine, and saline systems. The Brazilian Pantanal is the world's largest wetland system, with approximately 10,000 shallow lakes, most of which are highly alkaline and saline extreme environments. We initiated this study with an overall investigation using genetic markers, from which we explored metagenomic and limnological data from the Pantanal soda for five potential OMP pathways. Our results showed a strong positive correlation between dissolved methane concentrations and bloom events. Metagenomic data and nutrients, mainly orthophosphate, nitrogen, iron, and methane concentrations, suggest that the organic phosphorous demethylation pathway has the most potential to drive OMP in lakes with blooms. A specialized bacterial community was identified, including the Cyanobacteria Raphidiopsis, although the bloom does not contain the genes to carry out this process. These data showed enough evidence to infer the occurrence of an OMP pathway at Pantanal soda lakes, including the microbial sources and their relation to the cyanobacterial blooms.
Collapse
Affiliation(s)
- C R Carvalho
- College of Agriculture 'Luiz de Queiroz', University of São Paulo, Piracicaba, São Paulo, Brazil
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - B C E Souza
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - W Bieluczyk
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Y B Feitosa
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - E Delbaje
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - P B Camargo
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - S M Tsai
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
4
|
Zhang Y, Pham TM, Kayrouz C, Ju KS. Biosynthesis of Argolaphos Illuminates the Unusual Biochemical Origins of Aminomethylphosphonate and N ε-Hydroxyarginine Containing Natural Products. J Am Chem Soc 2022; 144:9634-9644. [PMID: 35616638 DOI: 10.1021/jacs.2c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphonate natural products have a history of successful application in medicine and biotechnology due to their ability to inhibit essential cellular pathways. This has inspired efforts to discover phosphonate natural products by prioritizing microbial strains whose genomes encode uncharacterized biosynthetic gene clusters (BGCs). Thus, success in genome mining is dependent on establishing the fundamental principles underlying the biosynthesis of inhibitory chemical moieties to facilitate accurate prediction of BGCs and the bioactivities of their products. Here, we report the complete biosynthetic pathway for the argolaphos phosphonopeptides. We uncovered the biochemical origins of aminomethylphosphonate (AMPn) and Nε-hydroxyarginine, two noncanonical amino acids integral to the antimicrobial function of argolaphos. Critical to this pathway were dehydrogenase and transaminase enzymes dedicated to the conversion of hydroxymethylphosphonate to AMPn. The interconnected activities of both enzymes provided a solution to overcome unfavorable energetics, empower cofactor regeneration, and mediate intermediate toxicity during these transformations. Sequential ligation of l-arginine and l-valine was afforded by two GCN5-related N-acetyltransferases in a tRNA-dependent manner. AglA was revealed to be an unusual heme-dependent monooxygenase that hydroxylated the Nε position of AMPn-Arg. As the first biochemically characterized member of the YqcI/YcgG protein family, AglA enlightens the potential functions of this elusive group, which remains biochemically distinct from the well-established P450 monooxygenases. The widespread distribution of AMPn and YqcI/YcgG genes among actinobacterial genomes suggests their involvement in diverse metabolic pathways and cellular functions. Our findings illuminate new paradigms in natural product biosynthesis and realize a significant trove of AmPn and Nε-hydroxyarginine natural products that await discovery.
Collapse
Affiliation(s)
- Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chase Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States.,Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States.,Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
6
|
Valentino H, Sobrado P. Characterization of a Nitro-Forming Enzyme Involved in Fosfazinomycin Biosynthesis. Biochemistry 2021; 60:2851-2864. [PMID: 34516102 DOI: 10.1021/acs.biochem.1c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-hydroxylating monooxygenases (NMOs) are a subclass of flavin-dependent enzymes that hydroxylate nitrogen atoms. Recently, unique NMOs that perform multiple reactions on one substrate molecule have been identified. Fosfazinomycin M (FzmM) is one such NMO, forming nitrosuccinate from aspartate (Asp) in the fosfazinomycin biosynthetic pathway in some Streptomyces sp. This work details the biochemical and kinetic analysis of FzmM. Steady-state kinetic investigation shows that FzmM performs a coupled reaction with Asp (kcat, 3.0 ± 0.01 s-1) forming nitrosuccinate, which can be converted to fumarate and nitrite by the action of FzmL. FzmM displays a 70-fold higher kcat/KM value for NADPH compared to NADH and has a narrow optimal pH range (7.5-8.0). Contrary to other NMOs where the kred is rate-limiting, FzmM exhibits a very fast kred (50 ± 0.01 s-1 at 4 °C) with NADPH. NADPH binds at a KD value of ∼400 μM, and hydride transfer occurs with pro-R stereochemistry. Oxidation of FzmM in the absence of Asp exhibits a spectrum with a shoulder at ∼370 nm, consistent with the formation of a C(4a)-hydroperoxyflavin intermediate, which decays into oxidized flavin and hydrogen peroxide at a rate 100-fold slower than the kcat. This reaction is enhanced in the presence of Asp with a slightly faster kox than the kcat, suggesting that flavin dehydration or Asp oxidation is partially rate limiting. Multiple sequence analyses of FzmM to NMOs identified conserved residues involved in flavin binding but not for NADPH. Additional sequence analysis to related monooxygenases suggests that FzmM shares sequence motifs absent in other NMOs.
Collapse
Affiliation(s)
- Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Tang X, Shen L, Liu S, Gao J. Effective removal of the herbicide glyphosate by the kelp Saccharina japonica female gametophytes from saline waters and its mechanism elucidation. CHEMOSPHERE 2021; 274:129826. [PMID: 33556661 DOI: 10.1016/j.chemosphere.2021.129826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate has been widely and extensively used for weed control because of its excellent herbicidal profile and low costs. However, more than 750 glyphosate products are on the market and are increasingly regarded as water pollutants as they cause adverse effects on aquatic life. Dry cell weight and photosynthesis of Saccharina japonica female gametophytes increased when glyphosate was used as the sole phosphorus source at the concentration of less than 20 mg L-1. Nuclear magnetic resonance (NMR) analysis unambiguously confirmed that female gametophytes of the brown alga Saccharina japonica have the capability of breaking the C-P bond of glyphosate to orthophosphate, which finds the enormous potential of the most common seaweed to degrade the most widely used herbicide in the world. Furthermore, this is the first report on the use of glyphosate as the sole phosphorus source for the growth of eukaryotic cells. Because of the wide distribution and relatively easy cultivation of the fast-growing brown alga Saccharina japonica on the coast, our results set a promising stage for developing large macroalgae-based biotechnologies that can be applied for the remediation of contaminated seawater, which is greener and more cost-effective than conventional treatment methods.
Collapse
Affiliation(s)
- Xianming Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Hainan Provincial Key Laboratory of Tropical Maricultural Technology, Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Linsong Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiangtao Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Abstract
Organophosphorus compounds play a vital role as nucleic acids, nucleotide coenzymes, metabolic intermediates and are involved in many biochemical processes. They are part of DNA, RNA, ATP and a number of important biological elements of living organisms. Synthetic compounds of this class have found practical application as agrochemicals, pharmaceuticals, bioregulators, and othrs. In recent years, a large number of phosphorus compounds containing P-O, P-N, P-C bonds have been isolated from natural sources. Many of them have shown interesting biological properties and have become the objects of intensive scientific research. Most of these compounds contain asymmetric centers, the absolute configurations of which have a significant effect on the biological properties of the products of their transformations. This area of research on natural phosphorus compounds is still little-studied, that prompted us to analyze and discuss it in our review. Moreover natural organophosphorus compounds represent interesting models for the development of new biologically active compounds, and a number of promising drugs and agrochemicals have already been obtained on their basis. The review also discusses the history of the development of ideas about the role of organophosphorus compounds and stereochemistry in the origin of life on Earth, starting from the prebiotic period, that allows us in a new way to consider this most important problem of fundamental science.
Collapse
|
9
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
Affiliation(s)
- Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alvaro Gomez Baraibar
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Rottendorf Pharma GmbH, Ostenfelder Str. 51-61, 59320, Ennigerloh, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, HZ 2629, Delft, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
10
|
Kafarski P. Phosphonopeptides containing free phosphonic groups: recent advances. RSC Adv 2020; 10:25898-25910. [PMID: 35518575 PMCID: PMC9055344 DOI: 10.1039/d0ra04655h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
Phosphonopeptides are mimetics of peptides in which phosphonic acid or related (phosphinic, phosphonous etc.) group replaces either carboxylic acid group present at C-terminus, is located in the peptidyl side chain, or phosphonamidate or phosphinic acid mimics peptide bond. Acting as inhibitors of key enzymes related to variable pathological states they display interesting and useful physiologic activities with potential applications in medicine and agriculture. Since the synthesis and biological properties of peptides containing C-terminal diaryl phosphonates and those with phosphonic fragment replacing peptide bond were comprehensively reviewed, this review concentrate on peptides holding free, unsubstituted phosphonic acid moiety. There are two groups of such mimetics: (i) peptides in which aminophosphonic acid is located at C-terminus of the peptide chain with most of them (including antibiotics isolated from bacteria and fungi) exhibiting antimicrobial activity; (ii) non-hydrolysable analogues of phosphonoamino acids, which are useful tools to study physiologic effects of phosphorylations.
Collapse
Affiliation(s)
- Paweł Kafarski
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-305 Wrocław Poland
| |
Collapse
|
11
|
Chu L, Huang J, Muhammad M, Deng Z, Gao J. Genome mining as a biotechnological tool for the discovery of novel marine natural products. Crit Rev Biotechnol 2020; 40:571-589. [PMID: 32308042 DOI: 10.1080/07388551.2020.1751056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compared to terrestrial environments, the oceans harbor a variety of environments, creating higher biodiversity, which gives marine natural products a high occurrence of significant biology and novel chemistry. However, traditional bioassay-guided isolation and purification strategies are severely limiting the discovery of additional novel natural products from the ocean. With an increasing number of marine microorganisms being sequenced, genome mining is gradually becoming a powerful tool to retrieve novel marine natural products. In this review, we have summarized genome mining approaches used to analyze key enzymes of biosynthetic pathways and predict the chemical structure of new gene clusters by introducing successful stories that used genome mining strategy to identify new marine-derived compounds. Furthermore, we also put forward challenges for genome mining techniques and their proposed solutions. The detailed analysis of the genome mining strategy will help researchers to understand this novel technique and its application. With the development of a genome sequence, genome mining strategies will be applied more widely, which will drive rapid development in the field of marine natural product development.
Collapse
Affiliation(s)
- Leixia Chu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinping Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mustafa Muhammad
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangtao Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Zhou C, Luo X, Chen N, Zhang L, Gao J. C-P Natural Products as Next-Generation Herbicides: Chemistry and Biology of Glufosinate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3344-3353. [PMID: 32125843 DOI: 10.1021/acs.jafc.0c00052] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In modern agriculture and weed management practices, herbicides have been widely used to control weeds effectively and represent more than 50% of commercial pesticides applied in the world. Herbicides with unique mechanisms of actions (MOA) have historically been discovered and commercialized every two or three years from the 1950s to the 1980s. However, this trend lowered dramatically as no herbicide with a novel MOA has been marketed for more than 30 years. The fast-growing resistance to commercial herbicides has reignited the agricultural chemical industry interest in new structural scaffolds targeting novel sites in plants. Carbon-phosphorus bonds (C-P) containing natural products (NPs) have played an essential role in herbicide discovery as the chemical diversity, and the promising bioactivity of natural C-P phytotoxins can provide exciting opportunities for the discovery of both natural and semisynthetic herbicides with novel targets. Among commercial herbicides, glyphosate (Roundup), a famous C-P containing herbicide, is by far the most universally used herbicide worldwide. Furthermore, glufosinate is one of the most widely used natural herbicides in the world. Therefore, C-P NPs are a treasure for discovering new herbicides with novel mechanisms of actions (MOAs). Here, we present an overview of the chemistry and biology of glufosinate including isolation and characterization, mode of action, herbicidal use, biosynthesis, and chemical synthesis since its discovery in order to not only help scientists reassess the role of this famous herbicide in the field of agrichemical chemistry but also build a new stage for discovering novel C-P herbicides with new MOAs.
Collapse
Affiliation(s)
- Chengzeng Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxia Luo
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University, Alar 843300, China
| | - Nengyi Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lili Zhang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University, Alar 843300, China
| | - Jiangtao Gao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
14
|
Baulig A, Helmle I, Bader M, Wolf F, Kulik A, Al-Dilaimi A, Wibberg D, Kalinowski J, Gross H, Kaysser L. Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase. Chem Sci 2019; 10:4486-4490. [PMID: 31057776 PMCID: PMC6482885 DOI: 10.1039/c9sc00641a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
Phosphoramidon is a potent metalloprotease inhibitor and a widespread tool in cell biology research. It contains a dipeptide backbone that is uniquely linked to a 6-deoxysugar via a phosphoramidate bridge. Herein, we report the identification of a gene cluster for the formation of phosphoramidon and its detailed characterization. In vitro reconstitution of the biosynthesis established TalE as a phosphoramidate-forming kinase and TalC as the glycosyltransferase which installs the l-rhamnose moiety by phosphoester linkage.
Collapse
Affiliation(s)
- Alexandra Baulig
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Irina Helmle
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany .
| | - Marius Bader
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Felix Wolf
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Andreas Kulik
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT) , Microbiology/Biotechnology , University of Tübingen , 72076 Tübingen , Germany
| | - Arwa Al-Dilaimi
- Center for Biotechnology (CeBiTec) , Bielefeld University , 33615 Bielefeld , Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec) , Bielefeld University , 33615 Bielefeld , Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec) , Bielefeld University , 33615 Bielefeld , Germany
| | - Harald Gross
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Leonard Kaysser
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| |
Collapse
|
15
|
Gama SR, Vogt M, Kalina T, Hupp K, Hammerschmidt F, Pallitsch K, Zechel DL. An Oxidative Pathway for Microbial Utilization of Methylphosphonic Acid as a Phosphate Source. ACS Chem Biol 2019; 14:735-741. [PMID: 30810303 DOI: 10.1021/acschembio.9b00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Methylphosphonic acid is synthesized by marine bacteria and is a prominent component of dissolved organic phosphorus. Consequently, methylphosphonic acid also serves as a source of inorganic phosphate (Pi) for marine bacteria that are starved of this nutrient. Conversion of methylphosphonic acid into Pi is currently only known to occur through the carbon-phosphorus lyase pathway, yielding methane as a byproduct. In this work, we describe an oxidative pathway for the catabolism of methylphosphonic acid in Gimesia maris DSM8797. G. maris can use methylphosphonic acid as Pi sources despite lacking a phn operon encoding a carbon-phosphorus lyase pathway. Instead, the genome contains a locus encoding homologues of the non-heme Fe(II) dependent oxygenases HF130PhnY* and HF130PhnZ, which were previously shown to convert 2-aminoethylphosphonic acid into glycine and Pi. GmPhnY* and GmPhnZ1 were produced in E. coli and purified for characterization in vitro. The substrate specificities of the enzymes were evaluated with a panel of synthetic phosphonates. Via 31P NMR spectroscopy, it is demonstrated that the GmPhnY* converts methylphosphonic acid to hydroxymethylphosphonic acid, which in turn is oxidized by GmPhnZ1 to produce formic acid and Pi. In contrast, 2-aminoethylphosphonic acid is not a substrate for GmPhnY* and is therefore not a substrate for this pathway. These results thus reveal a new metabolic fate for methylphosphonic acid.
Collapse
Affiliation(s)
- Simanga R. Gama
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
| | - Margret Vogt
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Thomas Kalina
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Kendall Hupp
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
| | | | | | - David L. Zechel
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Bougioukou DJ, Ting CP, Peck SC, Mukherjee S, van der Donk WA. Use of the dehydrophos biosynthetic enzymes to prepare antimicrobial analogs of alaphosphin. Org Biomol Chem 2019; 17:822-829. [PMID: 30608108 DOI: 10.1039/c8ob02860e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-terminal domain of the dehydrophos biosynthetic enzyme DhpH (DhpH-C) catalyzes the condensation of Leu-tRNALeu with (R)-1-aminoethylphosphonate, the aminophosphonate analog of alanine called Ala(P). The product of this reaction, Leu-Ala(P), is a phosphonodipeptide, a class of compounds that have previously been investigated for use as clinical antibiotics. In this study, we show that DhpH-C is highly substrate tolerant and can condense various aminophosphonates (Gly(P), Ser(P), Val(P), 1-amino-propylphosphonate, and phenylglycine(P)) to Leu. Moreover, the enzyme is also tolerant with respect to the amino acid attached to tRNALeu. Using a mutant of leucyl tRNA synthetase that is deficient in its proofreading ability allowed the preparation of a series of aminoacyl-tRNALeu derivatives (Ile, Ala, Val, Met, norvaline, and norleucine). DhpH-C accepted these aminoacyl-tRNA derivatives and condensed the amino acid with l-Ala(P) to form the corresponding phosphonodipeptides. A subset of these peptides displayed antimicrobial activities demonstrating that the enzyme is a versatile biocatalyst for the preparation of antimicrobial peptides. We also investigated another enzyme from the dehydrophos biosynthetic pathway, the 2-oxoglutarate dependent enzyme DhpA. This enzyme oxidizes 2-hydroxyethylphosphonate to 1,2-dihydroxyethylphosphonate en route to l-Ala(P), but longer incubation results in overoxidation to 1-oxo-2-hydroxyethylphosphonate. This α-ketophosphonate was converted by the pyridoxal phosphate dependent enzyme DhpD into l-Ser(P). Thus, the dehydrophos biosynthetic enzymes can generate not only l-Ala(P) but also l-Ser(P).
Collapse
Affiliation(s)
- Despina J Bougioukou
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
17
|
Wang KKA, Ng TL, Wang P, Huang Z, Balskus EP, van der Donk WA. Glutamic acid is a carrier for hydrazine during the biosyntheses of fosfazinomycin and kinamycin. Nat Commun 2018; 9:3687. [PMID: 30206228 PMCID: PMC6133997 DOI: 10.1038/s41467-018-06083-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023] Open
Abstract
Fosfazinomycin and kinamycin are natural products that contain nitrogen-nitrogen (N-N) bonds but that are otherwise structurally unrelated. Despite their considerable structural differences, their biosynthetic gene clusters share a set of genes predicted to facilitate N-N bond formation. In this study, we show that for both compounds, one of the nitrogen atoms in the N-N bond originates from nitrous acid. Furthermore, we show that for both compounds, an acetylhydrazine biosynthetic synthon is generated first and then funneled via a glutamyl carrier into the respective biosynthetic pathways. Therefore, unlike other pathways to N-N bond-containing natural products wherein the N-N bond is formed directly on a biosynthetic intermediate, during the biosyntheses of fosfazinomycin, kinamycin, and related compounds, the N-N bond is made in an independent pathway that forms a branch of a convergent route to structurally complex natural products.
Collapse
Affiliation(s)
- Kwo-Kwang A Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Tai L Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, MA, USA
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Zedu Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemistry, Fudan University, Shanghai, 200438-6789, China
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, MA, USA.
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Howard Hughes Medical Institute, Chevy Chase, 20815, MD, USA.
| |
Collapse
|
18
|
Matsuda K, Tomita T, Shin-ya K, Wakimoto T, Kuzuyama T, Nishiyama M. Discovery of Unprecedented Hydrazine-Forming Machinery in Bacteria. J Am Chem Soc 2018; 140:9083-9086. [DOI: 10.1021/jacs.8b05354] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kenichi Matsuda
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuo Shin-ya
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
19
|
Bartlett C, Bansal S, Burnett A, Suits MD, Schaefer J, Cegelski L, Horsman GP, Weadge JT. Whole-Cell Detection of C-P Bonds in Bacteria. Biochemistry 2017; 56:5870-5873. [PMID: 29068202 DOI: 10.1021/acs.biochem.7b00814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Naturally produced molecules possessing a C-P bond, such as phosphonates and phosphinates, remain vastly underexplored. Although success stories like fosfomycin have reinvigorated small molecule phosphonate discovery efforts, bioinformatic analyses predict an enormous unexplored biological reservoir of C-P bond-containing molecules, including those attached to complex macromolecules. However, high polarity, a lack of chromophores, and complex macromolecular association impede phosphonate discovery and characterization. Here we detect widespread transcriptional activation of phosphonate biosynthetic machinery across diverse bacterial phyla and describe the use of solid-state nuclear magnetic resonance to detect C-P bonds in whole cells of representative Gram-negative and Gram-positive bacterial species. These results suggest that phosphonate tailoring is more prevalent than previously recognized and set the stage for elucidating the fascinating chemistry and biology of these modifications.
Collapse
Affiliation(s)
| | - Sonal Bansal
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | | | | | - Jacob Schaefer
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | |
Collapse
|
20
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
21
|
Abstract
AbstractThe development of practical, efficient and atom-economical methods of formation of carbon-phosphorus bonds remains a topic of considerable interest for the current synthetic organic chemistry and electrochemistry. This review summarizes selected topics from the recent publications with particular emphasis on phosphine and phosphine oxides formation from white phosphorus, chlorophosphines in electrocatalytic processes using aryl, hetaryl or perfluoroalkyl halides as reagents. This review includes selected highlights concerning recent progress in modification of catalytic systems for aromatic C–H bonds phosphonation involving metal-catalyzed ligand directed or metal-induced oxidative processes. Furthermore, a part of this review is devoted to phosphorylation of olefins with white phosphorus under reductive conditions in water-organic media. Finally, we have also documented recent advances in ferrocene C–H activation and phosphorylation.
Collapse
|
22
|
Moutiez M, Belin P, Gondry M. Aminoacyl-tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev 2017; 117:5578-5618. [DOI: 10.1021/acs.chemrev.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mireille Moutiez
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Belin
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
23
|
Paterson J, Jahanshah G, Li Y, Wang Q, Mehnaz S, Gross H. The contribution of genome mining strategies to the understanding of active principles of PGPR strains. FEMS Microbiol Ecol 2016; 93:fiw249. [PMID: 27986826 DOI: 10.1093/femsec/fiw249] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/11/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022] Open
Abstract
Pathogenic microorganisms and insects affecting plant health are a major and chronic threat to food production and the ecosystem worldwide. As agricultural production has intensified over the years, the use of agrochemicals has in turn increased. However, this extensive usage has had several detrimental effects, with a pervasive environmental impact and the emergence of pathogen resistance. In addition, there is an increasing tendency among consumers to give preference to pesticide-free food products. Biological control, through the employment of plant growth-promoting rhizobacteria (PGPR), is therefore considered a possible route to the reduction, even the elimination, of the use of agrochemicals. PGPR exert their beneficial influence by a multitude of mechanisms, often involving antibiotics and proteins, to defend the host plant against pathogens. To date, these key metabolites have been uncovered only by systematic investigation or by serendipity; their discovery has nevertheless been propelled by the genomic revolution of recent years, as increasing numbers of genomic studies have been integrated into this field, facilitating a holistic view of this topic and the rapid identification of ecologically important metabolites. This review surveys the highlights and advances of genome-driven compound and protein discovery in the field of bacterial PGPR strains, and aims to advocate for the benefits of this strategy.
Collapse
Affiliation(s)
- Julia Paterson
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076 Tübingen, Germany
| | - Ghazaleh Jahanshah
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076 Tübingen, Germany
| | - Yan Li
- Department of Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College University, Lahore 54600, Pakistan
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Ulrich EC, van der Donk WA. Cameo appearances of aminoacyl-tRNA in natural product biosynthesis. Curr Opin Chem Biol 2016; 35:29-36. [PMID: 27599269 PMCID: PMC5161580 DOI: 10.1016/j.cbpa.2016.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022]
Abstract
The breadth of unprecedented enzymatic reactions performed during the formation of microbial natural products has continued to expand as new biosynthetic gene clusters are unearthed by genome mining. Enzymes that use aminoacyl-tRNA (aa-tRNA) outside of the translation machinery have been known for decades, and accounts of their use in natural product biosynthesis are just beginning to accumulate. This review will highlight the recent discoveries and advances in our mechanistic understanding of aa-tRNA-dependent enzymes that play key roles in the biosynthesis of a growing number of microbial natural products.
Collapse
Affiliation(s)
- Emily C Ulrich
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
25
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
26
|
Abstract
The biosynthetic origin of a unique hydrazide moiety in the phosphonate natural product fosfazinomycin is investigated.
The biosynthetic origin of a unique hydrazide moiety in the phosphonate natural product fosfazinomycin is unknown. This study presents the activities of five proteins encoded in its gene cluster. The flavin-dependent oxygenase FzmM catalyses the oxidation of l-Asp to N-hydroxy-Asp. When FzmL is added, fumarate is produced in addition to nitrous acid. The adenylosuccinate lyase homolog FzmR eliminates acetylhydrazine from N-acetyl-hydrazinosuccinate, which in turn is the product of FzmQ-catalysed acetylation of hydrazinosuccinate. Collectively, these findings suggest a path to N-acetylhydrazine from l-Asp. The incorporation of nitrogen from l-Asp into fosfazinomycin was confirmed by isotope labelling studies. Installation of the N-terminal Val of fosfazinomycin is catalysed by FzmI in a Val-tRNA dependent process.
Collapse
Affiliation(s)
- Zedu Huang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801
| | - Kwo-Kwang Abraham Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801
| |
Collapse
|
27
|
Chin JP, McGrath JW, Quinn JP. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling. Curr Opin Chem Biol 2016; 31:50-7. [DOI: 10.1016/j.cbpa.2016.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/24/2022]
|
28
|
Volle JN, Guillon R, Bancel F, Bekro YA, Pirat JL, Virieux D. Phosphono- and Phosphinolactones in the Life Sciences. ADVANCES IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/bs.aihch.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Sugai Y, Katsuyama Y, Ohnishi Y. A nitrous acid biosynthetic pathway for diazo group formation in bacteria. Nat Chem Biol 2015; 12:73-5. [DOI: 10.1038/nchembio.1991] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023]
|
30
|
Conserved biosynthetic pathways for phosalacine, bialaphos and newly discovered phosphonic acid natural products. J Antibiot (Tokyo) 2015; 69:15-25. [PMID: 26328935 PMCID: PMC4731264 DOI: 10.1038/ja.2015.77] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/14/2015] [Accepted: 06/15/2015] [Indexed: 12/03/2022]
Abstract
Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus-methylation remain poorly understood. In addition, the model for NRPS assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it to the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analysed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery.
Collapse
|
31
|
Walker MC, van der Donk WA. The many roles of glutamate in metabolism. J Ind Microbiol Biotechnol 2015; 43:419-30. [PMID: 26323613 DOI: 10.1007/s10295-015-1665-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/25/2015] [Indexed: 12/20/2022]
Abstract
The amino acid glutamate is a major metabolic hub in many organisms and as such is involved in diverse processes in addition to its role in protein synthesis. Nitrogen assimilation, nucleotide, amino acid, and cofactor biosynthesis, as well as secondary natural product formation all utilize glutamate in some manner. Glutamate also plays a role in the catabolism of certain amines. Understanding glutamate's role in these various processes can aid in genome mining for novel metabolic pathways or the engineering of pathways for bioremediation or chemical production of valuable compounds.
Collapse
Affiliation(s)
- Mark C Walker
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
32
|
Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc Natl Acad Sci U S A 2015; 112:12175-80. [PMID: 26324907 DOI: 10.1073/pnas.1500873112] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.
Collapse
|
33
|
Battula S, Battini N, Singh D, Ahmed QN. 2-Oxo promoted hydrophosphonylation & aerobic intramolecular nucleophilic displacement reaction. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01310k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient catalyst free methods for the synthesis of α-hydroxy-β-oxo phosphonates (HOP) and α-oxoesters (OE) have been described for the first time. The existence of a 2-oxo group in α-oxoaldehydes (OA) was a key factor in promoting the reaction of the tervalent phosphite form towards activated aldehydes (OA) in the synthesis of HOP.
Collapse
Affiliation(s)
- Satyanarayana Battula
- Medicinal Chemistry Division
- Indian Institute of Integrative Medicine (IIIM)
- Jammu
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Narsaiah Battini
- Medicinal Chemistry Division
- Indian Institute of Integrative Medicine (IIIM)
- Jammu
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Deepika Singh
- Quality Control and Quality Assurance (QC & QA)
- IIIM
- Jammu
- India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division
- Indian Institute of Integrative Medicine (IIIM)
- Jammu
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
34
|
Huang Z, Wang KKA, Lee J, van der Donk WA. Biosynthesis of fosfazinomycin is a convergent process. Chem Sci 2015; 6:1282-1287. [PMID: 25621145 PMCID: PMC4303578 DOI: 10.1039/c4sc03095h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fosfazinomycin A is a phosphonate natural product in which the C-terminal carboxylate of a Val-Arg dipeptide is connected to methyl 2-hydroxy-2-phosphono-acetate (Me-HPnA) via a unique hydrazide linkage. We report here that Me-HPnA is generated from phosphonoacetaldehyde (PnAA) in three biosynthetic steps through the combined action of an O-methyltransferase (FzmB) and an α-ketoglutarate (α-KG) dependent non-heme iron dioxygenase (FzmG). Unexpectedly, the latter enzyme is involved in two different steps, oxidation of the PnAA to phosphonoacetic acid as well as hydroxylation of methyl 2-phosphonoacetate. The N-methyltransferase (FzmH) was able to methylate Arg-NHNH2 (3) to give Arg-NHNHMe (4), constituting the second segment of the fosfazinomycin molecule. Methylation of other putative intermediates such as desmethyl fosfazinomycin B was not observed. Collectively, our current data support a convergent biosynthetic pathway to fosfazinomycin.
Collapse
Affiliation(s)
- Zedu Huang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801. ; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801. ; Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kwo-Kwang A Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801. ; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801. ; Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jaeheon Lee
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Wilfred A van der Donk
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801. ; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801. ; Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
35
|
Cox CL, Tietz JI, Sokolowski K, Melby JO, Doroghazi JR, Mitchell DA. Nucleophilic 1,4-additions for natural product discovery. ACS Chem Biol 2014; 9:2014-22. [PMID: 24937678 PMCID: PMC4168802 DOI: 10.1021/cb500324n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Natural
products remain an important source of drug candidates,
but the difficulties inherent to traditional isolation, coupled with
unacceptably high rates of compound rediscovery, limit the pace of
natural product detection. Here we describe a reactivity-based screening
method to rapidly identify exported bacterial metabolites that contain
dehydrated amino acids (i.e., carbonyl- or imine-activated
alkenes), a common motif in several classes of natural products. Our
strategy entails the use of a commercially available thiol, dithiothreitol,
for the covalent labeling of activated alkenes by nucleophilic 1,4-addition.
Modification is easily discerned by comparing mass spectra of reacted
and unreacted cell surface extracts. When combined with bioinformatic
analysis of putative natural product gene clusters, targeted screening
and isolation can be performed on a prioritized list of strains. Moreover,
known compounds are easily dereplicated, effectively eliminating superfluous
isolation and characterization. As a proof of principle, this labeling
method was used to identify known natural products belonging to the
thiopeptide, lanthipeptide, and linaridin classes. Further, upon screening
a panel of only 23 actinomycetes, we discovered and characterized
a novel thiopeptide antibiotic, cyclothiazomycin C.
Collapse
Affiliation(s)
- Courtney L. Cox
- Department of Microbiology, ‡Institute for Genomic
Biology, and §Department of
Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan I. Tietz
- Department of Microbiology, ‡Institute for Genomic
Biology, and §Department of
Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Karol Sokolowski
- Department of Microbiology, ‡Institute for Genomic
Biology, and §Department of
Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Joel O. Melby
- Department of Microbiology, ‡Institute for Genomic
Biology, and §Department of
Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - James R. Doroghazi
- Department of Microbiology, ‡Institute for Genomic
Biology, and §Department of
Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department of Microbiology, ‡Institute for Genomic
Biology, and §Department of
Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Janso JE, Haltli BA, Eustáquio AS, Kulowski K, Waldman AJ, Zha L, Nakamura H, Bernan VS, He H, Carter GT, Koehn FE, Balskus EP. Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica.. Tetrahedron 2014; 70:4156-4164. [PMID: 25045187 PMCID: PMC4101813 DOI: 10.1016/j.tet.2014.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lomaiviticins are a family of cytotoxic marine natural products that have captured the attention of both synthetic and biological chemists due to their intricate molecular scaffolds and potent biological activities. Here we describe the identification of the gene cluster responsible for lomaiviticin biosynthesis in Salinispora pacifica strains DPJ-0016 and DPJ-0019 using a combination of molecular approaches and genome sequencing. The link between the lom gene cluster and lomaiviticin production was confirmed using bacterial genetics, and subsequent analysis and annotation of this cluster revealed the biosynthetic basis for the core polyketide scaffold. Additionally, we have used comparative genomics to identify candidate enzymes for several unusual tailoring events, including diazo formation and oxidative dimerization. These findings will allow further elucidation of the biosynthetic logic of lomaiviticin assembly and provide useful molecular tools for application in biocatalysis and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey E. Janso
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Brad A. Haltli
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Alessandra S. Eustáquio
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Kerry Kulowski
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Li Zha
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Hitomi Nakamura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Valerie S. Bernan
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Haiyin He
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Guy T. Carter
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Frank E. Koehn
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
37
|
Liu LL, Wu Y, Wang Z, Zhu J, Zhao Y. Mechanistic Insight into the Copper-Catalyzed Phosphorylation of Terminal Alkynes: A Combined Theoretical and Experimental Study. J Org Chem 2014; 79:6816-22. [DOI: 10.1021/jo5007174] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Liu Leo Liu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0343, United States
| | - Yile Wu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zeshu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Ju KS, Doroghazi JR, Metcalf WW. Genomics-enabled discovery of phosphonate natural products and their biosynthetic pathways. J Ind Microbiol Biotechnol 2014; 41:345-56. [PMID: 24271089 PMCID: PMC3946943 DOI: 10.1007/s10295-013-1375-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
Phosphonate natural products have proven to be a rich source of useful pharmaceutical, agricultural, and biotechnology products, whereas study of their biosynthetic pathways has revealed numerous intriguing enzymes that catalyze unprecedented biochemistry. Here we review the history of phosphonate natural product discovery, highlighting technological advances that have played a key role in the recent advances in their discovery. Central to these developments has been the application of genomics, which allowed discovery and development of a global phosphonate metabolic framework to guide research efforts. This framework suggests that the future of phosphonate natural products remains bright, with many new compounds and pathways yet to be discovered.
Collapse
Affiliation(s)
- Kou-San Ju
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - James R. Doroghazi
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - William W. Metcalf
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL 61801
| |
Collapse
|