1
|
Konrad Y, Jayaraman A, Krummenacher I, Braunschweig H. Formation and Metallomimetic Reactivity of a Transient Dicoordinate Alkylborylene. Angew Chem Int Ed Engl 2025; 64:e202423669. [PMID: 40066738 DOI: 10.1002/anie.202423669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
While existing literature has primarily focused on carbene-stabilized amino- and arylborylenes of the form [(carbene)BR] (R = substituent), herein we report the generation and metallomimetic reactivity of the first carbene-stabilized alkylborylene [(CAACMe)BCy] (CAACMe = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene, Cy = cyclohexyl). Furthermore, the transition metal-like decarbonylation reactions of a borylene complex, [(CAACMe)BCy(CO)], derived from borylene [(CAACMe)BCy] and CO, are described. Additional findings described include i) the identification of the coordination stages of the ligand to boron towards forming complexes [(CAACMe)BCyL] in the reduction route from starting material [(CAACMe)BCyBr2] and in the photolysis route from carbonyl complex [(CAACMe)BCy(CO], and ii) insights from quantum-chemical computations regarding the molecular and electronic structure of the borylene at various stages.
Collapse
Affiliation(s)
- Yannick Konrad
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Arumugam Jayaraman
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, 89154, USA
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
| |
Collapse
|
2
|
Dabringhaus P, Molino A, McMillion ND, Gilliard RJ. Dicationic Boron Derivatives of Schlenk's and Thiele's Hydrocarbon. J Am Chem Soc 2025; 147:11318-11326. [PMID: 40105695 DOI: 10.1021/jacs.5c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In recent years, neutral NHC-stabilized boryl radicals have been investigated as reactive species in various organic transformations. However, cationic boron radicals have been significantly less explored. In addition, boron-centered open-shell species with S > 1/2 have emerged as attractive synthetic targets. In this study, we provide a synthetic route to an NHC-stabilized boryl radical cation as a salt of the weakly coordinating [Al(ORF)4]- (RF = C(CF3)3) anion. The synthetic procedure was extended to dicationic diboron derivatives of Schlenk's and Thiele's hydrocarbons with meta- and para-phenylene coupling units between the spin centers. While most known isolable boron biradicals have a singlet ground-state with a thermally accessible triplet state, the boron version of Schlenk's hydrocarbon occupies a ground-state triplet spin-state, as shown by combined electron paramagnetic resonance spectroscopy and density functional theory studies. Furthermore, initial reactivity studies of the dications with elemental sulfur and diphenyldiselenide are presented.
Collapse
Affiliation(s)
- Philipp Dabringhaus
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew Molino
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Noah D McMillion
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Kern RH, Schmiedel PL, Schubert H, Wesemann L. Heterocycles in reactions with boradigermaallyl. Chem Commun (Camb) 2025; 61:4844-4847. [PMID: 40040595 DOI: 10.1039/d5cc00639b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Reactions of boradigermaallyl, which can also be regarded as a chloroborylene stabilzed by two germylene donors, with thiophene, furan, pyridazine and 2,2'-bipyridine are presented. Insertion of the boron atom into the heterocycles is observed and the resulting heterocycles continue to react with the bis(germylene) molecule.
Collapse
Affiliation(s)
- Ralf H Kern
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Paul L Schmiedel
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Hartmut Schubert
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Lars Wesemann
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Fan J, Pan S, Yao S, Ding C, Frenking G, Driess M. From Bis(borylene)-Substituted Xanthenes as Reactive Intermediates to Diboraoxirane Complexes. J Am Chem Soc 2025; 147:6925-6933. [PMID: 39943914 PMCID: PMC11869280 DOI: 10.1021/jacs.4c17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The first N-heterocyclic carbene (NHC)-stabilized diboraoxirane complex 4 [NHC = IPr = C{N(iPr)CMe}2] was synthesized through the reduction of the corresponding bis(dichloroboryl-IPr)xanthene 3 with potassium graphite. Intriguingly, its formation stems from a diboron(I)-mediated C-O-C deoxygenation of the xanthene spacer via a bis(borylene)xanthene as a reactive intermediate. Consistent with the proposed pathway, bis(borylene)xanthene 6 with three-coordinate B(I) atoms could be isolated when the sterically less demanding NHC ligand IMe [IMe = C{N(Me)CMe}2] was employed. Due to its ring strain, the B-B bond of the B2O ring in 4 undergoes versatile ring-expansion reactions with small molecules to engender new boron-containing heterocycles. In fact, oxidation of 4 with trimethylamine N-oxide, O2, and elemental sulfur afforded the unprecedented 1,3-dioxa-2,4-diboretane 7, 1,3,4-trioxa-2,5-diborolane 8, and 1-oxa-3,4-dithio-2,5-diborolane 9, respectively. Moreover, 4 activates isocyanide to produce 1-oxa-2,4-diborete 10 and readily reacts with the C═O groups of benzophenone and CO2 to generate the ring-expansion products 11 and 12, respectively.
Collapse
Affiliation(s)
- Jun Fan
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Sudip Pan
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Shenglai Yao
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Chengxiang Ding
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Gernot Frenking
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Fachbereich
Chemie, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Matthias Driess
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| |
Collapse
|
5
|
Phukan AK, Bora BR, Chakraborty B. Theoretical prediction of metallomimetic stable cyclic group 13 carbenoids. Dalton Trans 2025; 54:2742-2746. [PMID: 39898590 DOI: 10.1039/d4dt03342f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Density functional theory calculations were performed to design a new class of strongly nucleophilic cyclic intramolecular base stabilized group 13 carbenoids. The carbenoids were found to exhibit metallomimetic behaviour owing to the presence of frontier orbitals of appropriate energy and symmetry and may be considered as potential candidates for metal-free activation of small molecules.
Collapse
Affiliation(s)
- Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| | - Barsha Rani Bora
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| | - Barsha Chakraborty
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| |
Collapse
|
6
|
Xiao D, Yu Q, Yi H, Zhang Y, Robinson GH, Schaefer HF. Stabilization of [(N 5) 2BX] 2- and [(N 5) 2B 2X 2] 2- (X = H, F, Cl, Br) by Conjugation and Hyperconjugation Effects. Inorg Chem 2025; 64:2433-2442. [PMID: 39868469 DOI: 10.1021/acs.inorgchem.4c04865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The isolation of nucleophilic boron bases has led to a paradigm shift in boron chemistry. Previous studies of the bis(carbene) borylene complexes revealed that these compounds possess strong donor abilities, and their reaction inertness is due to the large steric hindrance between boron reagents and reactant. In the present study, we have theoretically studied the [(N5)2BX]2- and [(N5)2B2X2]2- compounds (X = H, F, Cl, Br). Their electronic structures and properties are discussed by using the NBO, LOL, and ELF methods. We found that both π-conjugation and hyperconjugation effects can effectively stabilize the substituted nucleophilic anionic boron compounds [(N5)2BX]2- and [(N5)2B2X2]2-. Substituents, especially X = H, stabilize the boron center through highly delocalized π-bonding, involving the formally "empty" in-plane p orbitals of the boron atom. While the halogen substituents have high electron withdrawal ability, leading to systems being less stable, we suggest the borinium anions [(N5)2BH]2- and [(N5)2B2H2]2- as possible synthetic targets of novel environmentally friendly catalysts.
Collapse
Affiliation(s)
- Dongyi Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qianyue Yu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haifeng Yi
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yan Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Gregory H Robinson
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Wehmeyer FU, Li Y, Schlossarek A, Ke Z, Langer R. Evidence of boride-borylene ligand-tautomerism leading to a remote C-C-bond and concomitant boryl ligand formation. Dalton Trans 2024; 54:389-395. [PMID: 39552209 DOI: 10.1039/d4dt02997f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The formation of a rhodium pincer-type complex with a boron-based donor ligand and its reactivity are reported. The starting complex contains a formal borylene moiety, stabilised by two pyridine substituents. Quantum chemical investigations indicate the possibility of deprotonation of the central donor group of the type py2BH in this complex. Efforts to isolate the resulting formal boride species, however, led to a boryl complex with concomitant formation of a new C-C-bond, accompanied by a loss of aromaticity. Mechanistic investigations indicate the presence of tautomerism between two deprotonated species, giving rise to a ligand-stabilised boride and a ligand-stabilised borylene motif.
Collapse
Affiliation(s)
- Frerk-Ulfert Wehmeyer
- Institute of Chemistry, Faculty of Natural Sciences II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Yinwu Li
- School of Materials Science Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Anne Schlossarek
- Institute of Chemistry, Faculty of Natural Sciences II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Zhuofeng Ke
- School of Materials Science Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Robert Langer
- Institute of Chemistry, Faculty of Natural Sciences II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
8
|
Hu J, Xing X, Wang X. A Coppoborylene Stabilized by Multicenter Covalent Bonding and Its Amphoteric Reactivity to CO. Angew Chem Int Ed Engl 2024; 63:e202403755. [PMID: 38797711 DOI: 10.1002/anie.202403755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A cationic copper-stabilized coppoborylene was prepared and structurally characterized via infrared photodissociation spectroscopy and density functional theory calculations. This structure exemplifies a new class of borylenes stabilized by three-center-two-electron metal-boron-metal covalent bonding interaction, displaying exceptional σ-acidity and unparalleled π-donor capability for CO activation that outperforms all of the known transition metal cations and is comparable or even superior to the documented base-trapped borylenes. Its neutral form represents a monovalent boron compound with a strongly reactive amphoteric boron center built on transition-metal-boron bonds, which inspires the design and synthesis of new members of the borylene family.
Collapse
Affiliation(s)
- Jin Hu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xiaopeng Xing
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xuefeng Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
9
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Lv W, Dai Y, Guo R, Su Y, Ruiz DA, Liu LL, Tung CH, Kong L. Geometrically Constrained Organoboron Species as Lewis Superacids and Organic Superbases. Angew Chem Int Ed Engl 2023; 62:e202308467. [PMID: 37395499 DOI: 10.1002/anie.202308467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
This report unveils an advancement in the formation of a Lewis superacid (LSA) and an organic superbase by the geometrical deformation of an organoboron species towards a T-shaped geometry. The boron dication [2]2+ supported by an amido diphosphine pincer ligand features both a large fluoride ion affinity (FIA>SbF5 ) and hydride ion affinity (HIA>B(C6 F5 )3 ), which qualifies it as both a hard and soft LSA. The unusual Lewis acidic properties of [2]2+ are further showcased by its ability to abstract hydride and fluoride from Et3 SiH and AgSbF6 respectively, and effectively catalyze the hydrodefluorination, defluorination/arylation, as well as reduction of carbonyl compounds. One and two-electron reduction of [2]2+ affords stable boron radical cation [2]⋅+ and borylene 2, respectively. The former species has an extremely high spin density of 0.798e at the boron atom, whereas the latter compound has been demonstrated to be a strong organic base (calcd. pKBH + (MeCN)=47.4) by both theoretical and experimental assessment. Overall, these results demonstrate the strong ability of geometric constraining to empower the central boron atom.
Collapse
Affiliation(s)
- Weiwei Lv
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuyang Dai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - David A Ruiz
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Cooperative Bond Activation and Catalytic CO 2 Functionalization with a Geometrically Constrained Bis(silylene)-Stabilized Borylene. J Am Chem Soc 2023; 145:7011-7020. [PMID: 36939300 DOI: 10.1021/jacs.3c00949] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Metal-ligand cooperativity has emerged as an important strategy to tune the reactivity of transition-metal complexes for the catalysis and activation of small molecules. Studies of main-group compounds, however, are scarce. Here, we report the synthesis, structural characterization, and reactivity of a geometrically constrained bis(silylene)-stabilized borylene. The one-pot reaction of [(SiNSi)Li(OEt2)] (SiNSi = 4,5-bis(silylene)-2,7,9,9-tetramethyl-9H-acridin-10-ide) with 1 equiv of [BBr3(SMe2)] in toluene at room temperature followed by reduction with 2 equiv of potassium graphite (KC8) leads to borylene [(SiNSi)B] (1), isolated as blue crystals in 45% yield. X-ray crystallography shows that borylene (1) has a tricoordinate boron center with a distorted T-shaped geometry. Computational studies reveal that the HOMO of 1 represents the lone pair orbital on the boron center and is delocalized over the Si-B-Si unit, while the geometric perturbation significantly increases its energy. Borylene (1) shows single electron transfer reactivity toward tris(pentafluorophenyl)borane (B(C6F5)3), forming a frustrated radical pair [(SiNSi)B]•+[B(C6F5)3]•-, which can be trapped by its reaction with PhSSPh, affording an ion pair [(SiNSi)BSPh][PhSB(C6F5)3] (3). Remarkably, the cooperation between borylene and silylene allows the facile cleavage of the N-H bond of aniline, the P-P bond in white phosphorus, and the C═O bond in ketones and carbon dioxide, thus representing a new type of main-group element-ligand cooperativity for the activation of small molecules. In addition, 1 is a strikingly effective catalyst for carbon dioxide reduction. Computational studies reveal that the cooperation between borylene and silylene plays a key role in the catalytic chemical bond activation process.
Collapse
|
12
|
Zhang Y, Wu L, Wang H. Application of N-heterocyclic silylenes in low-valent group 13, 14 and 15 chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Fan J, Yang MC, Su MD, So CW. N-Phosphinoamidinato Silylene- and Phosphine-Borylborylene Complexes. Inorg Chem 2023; 62:863-870. [PMID: 36600552 DOI: 10.1021/acs.inorgchem.2c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work describes a straightforward method to synthesize a borylborylene without proceeding via the rearrangement of a diborene. An amidinato amidosilylene [LSiNMe2] (L = PhC(NtBu)2) and PMe3 were reacted with an N-phosphinoamidinato diborane 1 and KC8 to form a stable silylene-borylborylene 2 and a persistent phosphine-borylborylene 3, respectively. Compound 2 is stable as the borylene center is well stabilized by the silylene donor and boryl substituent, whereas compound 3 is unstable in solution due to labile PMe3. The latter was illustrated by reacting compound 3 with Ar'NC (Ar' = 2,6-Me2C6H3), where Ar'NC displaced PMe3 and inserted into the N-phosphinoamidinate ligand and B-B bond to form compound 4.
Collapse
Affiliation(s)
- Jun Fan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
14
|
Lenz P, Oshimizu R, Klabunde S, Daniliuc CG, Mück‐Lichtenfeld C, Tendyck JC, Mori T, Uhl W, Hansen MR, Eckert H, Yamaguchi S, Studer A. Oxy-Borylenes as Photoreductants: Synthesis and Application in Dehalogenation and Detosylation Reactions. Angew Chem Int Ed Engl 2022; 61:e202209391. [PMID: 36005897 PMCID: PMC9825981 DOI: 10.1002/anie.202209391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/11/2023]
Abstract
While the range of accessible borylenes has significantly broadened over the last decade, applications remain limited. Herein, we present tricoordinate oxy-borylenes as potent photoreductants that can be readily activated by visible light. Facile oxidation of CAAC stabilized oxy-borylenes (CAAC)(IPr2 Me2 )BOR (R=TMS, CH2 CH2 C6 H5 , CH2 CH2 (4-F)C6 H4 ) to their corresponding radical cations is achieved with mildly oxidizing ferrocenium ion. Cyclovoltammetric studies reveal ground-state redox potentials of up to -1.90 V vs. Fc+/0 for such oxy-borylenes placing them among the strongest organic super electron donors. Their ability as photoreductants is further supported by theoretical studies and showcased by the application as stoichiometric reagents for the photochemical hydrodehalogenation of aryl chlorides, aryl bromides and unactivated alkyl bromides as well as the detosylation of anilines.
Collapse
Affiliation(s)
- Philipp Lenz
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Ryo Oshimizu
- Department of ChemistryGraduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS)Nagoya UniversityFuro, ChikusaNagoya 464-8602Japan
| | - Sina Klabunde
- Institut für Physikalische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Jonas C. Tendyck
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
| | - Tatsuya Mori
- Department of ChemistryGraduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS)Nagoya UniversityFuro, ChikusaNagoya 464-8602Japan
| | - Werner Uhl
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
| | - Michael Ryan Hansen
- Institut für Physikalische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Hellmut Eckert
- Institut für Physikalische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
- Instituto de Fisica de São CarlosUniversidade de Sao PauloAvenida Trabalhador Saocarlense 400São CarlosSP, 13566-590Brazil
| | - Shigehiro Yamaguchi
- Department of ChemistryGraduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS)Nagoya UniversityFuro, ChikusaNagoya 464-8602Japan
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
15
|
Komuro T, Nakajima Y, Takaya J, Hashimoto H. Recent progress in transition metal complexes supported by multidentate ligands featuring group 13 and 14 elements as coordinating atoms. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Lenz P, Oshimizu R, Klabunde S, Daniliuc CG, Mück-Lichtenfeld C, Tendyck JC, Mori T, Uhl W, Hansen MR, Eckert H, Yamaguchi S, Studer A. Oxy‐Borylenes as Photoreductants: Synthesis and Application in Dehalogenation and Detosylation Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philipp Lenz
- Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie Chemistry and pharmacy GERMANY
| | - Ryo Oshimizu
- Nagoya University: Nagoya Daigaku Department of Chemistry JAPAN
| | - Sina Klabunde
- Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie Chemistry and pharmacy GERMANY
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie Chemistry and pharmacy GERMANY
| | - Christian Mück-Lichtenfeld
- Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie Chemistry and pharmacy GERMANY
| | - Jonas C. Tendyck
- Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie Chemistry and pharmacy GERMANY
| | - Tatsuya Mori
- Nagoya University: Nagoya Daigaku Department of Chemistry JAPAN
| | - Werner Uhl
- Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie Chemistry and pharmacy GERMANY
| | - Michael R. Hansen
- Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie Chemistry and pharmacy GERMANY
| | - Hellmut Eckert
- Universidade de Sao Paulo Instituto de Fisica de Sao Carlos BRAZIL
| | | | - Armido Studer
- Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
17
|
Fantuzzi F, Jiao Y, Dewhurst RD, Weinhold F, Braunschweig H, Engels B. Can a Wanzlick-like equilibrium exist between dicoordinate borylenes and diborenes? Chem Sci 2022; 13:5118-5129. [PMID: 35655568 PMCID: PMC9093173 DOI: 10.1039/d1sc05988b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/03/2022] [Indexed: 12/23/2022] Open
Abstract
Boron chemistry has experienced tremendous progress in the last few decades, resulting in the isolation of a variety of compounds with remarkable electronic structures and properties. Some examples are the singly Lewis-base-stabilised borylenes, wherein boron has a formal oxidation state of +I, and their dimers featuring a boron-boron double bond, namely diborenes. However, no evidence of a Wanzlick-type equilibrium between borylenes and diborenes, which would open a valuable route to the latter compounds, has been found. In this work, we combine DFT, coupled-cluster, multireference methods, and natural bond orbital/natural resonance theory analyses to investigate the electronic, structural, and kinetic factors controlling the reactivity of the transient CAAC-stabilised cyanoborylene, which spontaneously cyclotetramerises into a butterfly-type, twelve-membered (BCN)4 ring, and the reasons why its dimerisation through the boron atoms is hampered. The computations are also extended to the NHC-stabilised borylene counterparts. We reveal that the borylene ground state multiplicity dictates the preference for self-stabilising cyclooligomerisation over boron-boron dimerisation. Our comparison between NHC- vs. CAAC-stabilised borylenes provides a convincing rationale for why the reduction of the former always gives diborenes while a range of other products is found for the latter. Our findings provide a theoretical background for the rational design of base-stabilised borylenes, which could pave the way for novel synthetic routes to diborenes or alternatively non-dimerising systems for small-molecule activation.
Collapse
Affiliation(s)
- Felipe Fantuzzi
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg Emil-Fischer-Str. 42 97074 Würzburg Germany
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- School of Physical Sciences, Ingram Building, University of Kent Park Wood Road Canterbury CT2 7NH UK
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Hunan University of Science and Technology Xiangtan 411201 China
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg Emil-Fischer-Str. 42 97074 Würzburg Germany
| |
Collapse
|
18
|
Ghorai S, Jemmis ED. From a Möbius-aromatic interlocked Mn 2B 10H 10 wheel to the metal-doped boranaphthalenes M 2@B 10H 8 and M 2B 5 2D-sheets (M = Mn and Fe): a molecules to materials continuum using DFT studies. Chem Sci 2022; 13:8968-8978. [PMID: 36091213 PMCID: PMC9365082 DOI: 10.1039/d2sc02244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
The design of (1) Möbius aromatic interlocked boron wheel Mn2B10H10, (2) Hückel aromatic boron analogs of naphthalene (M2@B10H8; M = Mn and Fe), and (3) metal boride monolayers (FeB5 and Fe2B5), creating a molecules to materials continuum.
Collapse
Affiliation(s)
- Sagar Ghorai
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore-560012, India
| | - Eluvathingal D. Jemmis
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
19
|
Zhang X, Liu LL. A Free Aluminylene with Diverse σ‐Donating and Doubly σ/π‐Accepting Ligand Features for Transition Metals**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
20
|
Zhang X, Liu LL. A Free Aluminylene with Diverse σ-Donating and Doubly σ/π-Accepting Ligand Features for Transition Metals*. Angew Chem Int Ed Engl 2021; 60:27062-27069. [PMID: 34614275 DOI: 10.1002/anie.202111975] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Indexed: 12/15/2022]
Abstract
We report herein the synthesis, characterization, and coordination chemistry of a free N-aluminylene, namely a carbazolylaluminylene 2 b. This species is prepared via a reduction reaction of the corresponding carbazolyl aluminium diiodide. The coordination behavior of 2 b towards transition metal centers (W, Cr) is shown to afford a series of novel aluminylene complexes 3-6 with diverse coordination modes. We demonstrate that the tri-active ambiphilic Al center in 2 b can behave as: 1. a σ-donating and doubly π-accepting ligand; 2. a σ-donating, σ-accepting and π-accepting ligand; and 3. a σ-donating and doubly σ-accepting ligand. Additionally, we show ligand exchange at the aluminylene center providing access to the modulation of electronic properties of transition metals without changing the coordinated atoms. Investigations of 2 b with IDippCuCl (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) show an unprecedented aluminylene-alumanyl transformation leading to a rare terminal Cu-alumanyl complex 8. The electronic structures of such complexes and the mechanism of the aluminylene-alumanyl transformation are investigated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
21
|
Hagspiel S, Elezi D, Arrowsmith M, Fantuzzi F, Vargas A, Rempel A, Härterich M, Krummenacher I, Braunschweig H. Reactivity of cyano- and isothiocyanatoborylenes: metal coordination, one-electron oxidation and boron-centred Brønsted basicity. Chem Sci 2021; 12:7937-7942. [PMID: 34168848 PMCID: PMC8188585 DOI: 10.1039/d1sc01580j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 01/20/2023] Open
Abstract
Doubly base-stabilised cyano- and isothiocyanatoborylenes of the form LL'BY (L = CAAC = cyclic alkyl(amino)carbene; L' = NHC = N-heterocyclic carbene; Y = CN, NCS) coordinate to group 6 carbonyl complexes via the terminal donor of the pseudohalide substituent and undergo facile and fully reversible one-electron oxidation to the corresponding boryl radical cations [LL'BY]˙+. Furthermore, calculations show that the borylenes have very similar proton affinities, both to each other and to NHC superbases. However, while the protonation of LL'B(CN) with PhSH yielding [LL'BH(CN)+][PhS-] is fully reversible, that of LL'B(NCS) is rendered irreversible by a subsequent B-to-CCAAC hydrogen shift and nucleophilic attack of PhS- at boron.
Collapse
Affiliation(s)
- Stephan Hagspiel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Dren Elezi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alfredo Vargas
- Department of Chemistry, School of Life Sciences, University of Sussex Brighton BN1 9QJ Sussex UK
| | - Anna Rempel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marcel Härterich
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
22
|
Borthakur B, Ghosh B, Phukan AK. The flourishing chemistry of carbene stabilized compounds of group 13 and 14 elements. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Pranckevicius C, Weber M, Krummenacher I, Phukan AK, Braunschweig H. Phosphinoborylenes as stable sources of fleeting borylenes. Chem Sci 2020; 11:11055-11059. [PMID: 34123195 PMCID: PMC8162303 DOI: 10.1039/d0sc04826g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/04/2022] Open
Abstract
Base-stabilised borylenes that mimic the ability of transition metals to bind and activate inert substrates have attracted significant attention in recent years. However, such species are typically highly reactive and fleeting, and often cannot be isolated at ambient temperature. Herein, we describe a readily accessible trimethylphosphine-stabilised borylborylene which was found to possess a labile P-B bond that reversibly cleaves upon gentle heating. Exchange of the labile phosphine with other nucleophiles (CO, isocyanide, 4-dimethylaminopyridine) was investigated, and the binding strength of a range of potential borylene "ligands" has been evaluated computationally. The room-temperature-stable PMe3-bound borylenes were subsequently applied to novel bond activations including [2 + 2] cycloaddition with carbodiimides and the reduction of dichalcogenides, revealing that PMe3-stabilised borylenes can effectively behave as stable sources of the analogous fleeting dicoordinate species under mild conditions.
Collapse
Affiliation(s)
- Conor Pranckevicius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marco Weber
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University Napaam 784028 India
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
24
|
Affiliation(s)
- Matthias Vogt
- Institute of Chemistry Faculty of Natural Science II Martin Luther University Halle‐Wittenberg Kurt‐Mothes‐Str. 2 06120 Halle (Saale) Germany
| | - Robert Langer
- Institute of Chemistry Faculty of Natural Science II Martin Luther University Halle‐Wittenberg Kurt‐Mothes‐Str. 2 06120 Halle (Saale) Germany
| |
Collapse
|
25
|
Liu S, Légaré MA, Seufert J, Prieschl D, Rempel A, Englert L, Dellermann T, Paprocki V, Stoy A, Braunschweig H. 2,2′-Bipyridyl as a Redox-Active Borylene Abstraction Agent. Inorg Chem 2020; 59:10866-10873. [DOI: 10.1021/acs.inorgchem.0c01383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siyuan Liu
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marc-André Légaré
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Seufert
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dominic Prieschl
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anna Rempel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lukas Englert
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Dellermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valerie Paprocki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Stoy
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
26
|
Reactions of Dihaloboranes with Electron-Rich 1,4-Bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadienes. Molecules 2020; 25:molecules25122875. [PMID: 32580464 PMCID: PMC7356994 DOI: 10.3390/molecules25122875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
The reactions of electron-rich organosilicon compounds 1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (1), 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2), and 1,1'-bis(trimethylsilyl)-1,1'-dihydro-4,4'-bipyridine (12) with B-amino and B-aryl dihaloboranes afforded a series of novel B=N-bond-containing compounds 3-11 and 13. The B=N rotational barriers of 7 (>71.56 kJ/mol), 10 (58.79 kJ/mol), and 13 (58.65 kJ/mol) were determined by variable-temperature 1H-NMR spectroscopy, thus reflecting different degrees of B=N double bond character in the corresponding compounds. In addition, ring external olefin isomers 11 were obtained by a reaction between 2 and DurBBr2. All obtained B=N-containing products were characterized by multinuclear NMR spectroscopy. Compounds 5, 9, 10a, 11, and 13a were also characterized by single-crystal X-ray diffraction analysis.
Collapse
|
27
|
|
28
|
Schmidt U, Fantuzzi F, Arrowsmith M, Hermann A, Prieschl D, Rempel A, Engels B, Braunschweig H. Tuneable reduction of cymantrenylboranes to diborenes or borylene-derived boratafulvenes. Chem Commun (Camb) 2020; 56:14809-14812. [DOI: 10.1039/d0cc06398c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By switching the reaction conditions, the reduction of a N-heterocyclic carbene-stabilised cymantrenyldibromoborane can be tuned to yield either the corresponding diborene or borylene, the latter being stabilised through a boratafulvene conformation.
Collapse
Affiliation(s)
- Uwe Schmidt
- Institute for Inorganic Chemistry
- Julius-Maximilians-Universität Würzburg
- Am Hubland
- Germany
- Institute for Sustainable Chemistry & Catalysis with Boron
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry
- Julius-Maximilians-Universität Würzburg
- Am Hubland
- Germany
- Institute for Sustainable Chemistry & Catalysis with Boron
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry
- Julius-Maximilians-Universität Würzburg
- Am Hubland
- Germany
- Institute for Sustainable Chemistry & Catalysis with Boron
| | - Alexander Hermann
- Institute for Inorganic Chemistry
- Julius-Maximilians-Universität Würzburg
- Am Hubland
- Germany
- Institute for Sustainable Chemistry & Catalysis with Boron
| | - Dominic Prieschl
- Institute for Inorganic Chemistry
- Julius-Maximilians-Universität Würzburg
- Am Hubland
- Germany
- Institute for Sustainable Chemistry & Catalysis with Boron
| | - Anna Rempel
- Institute for Inorganic Chemistry
- Julius-Maximilians-Universität Würzburg
- Am Hubland
- Germany
- Institute for Sustainable Chemistry & Catalysis with Boron
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry
- Julius-Maximilians-Universität Würzburg
- Am Hubland
- Germany
- Institute for Sustainable Chemistry & Catalysis with Boron
| |
Collapse
|
29
|
Taylor JW, McSkimming A, Essex LA, Harman WH. CO 2 reduction with protons and electrons at a boron-based reaction center. Chem Sci 2019; 10:9084-9090. [PMID: 31827750 PMCID: PMC6889837 DOI: 10.1039/c9sc02792k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/30/2019] [Indexed: 11/21/2022] Open
Abstract
Borohydrides are widely used reducing agents in chemical synthesis and have emerging energy applications as hydrogen storage materials and reagents for the reduction of CO2. Unfortunately, the high energy cost associated with the multistep preparation of borohydrides starting from alkali metals precludes large scale implementation of these latter uses. One potential solution to this issue is the direct synthesis of borohydrides from the protonation of reduced boron compounds. We herein report reactions of the redox series [Au(B2P2)] n (n = +1, 0, -1) (B2P2, 9,10-bis(2-(diisopropylphosphino)phenyl)-9,10-dihydroboranthrene) and their conversion into corresponding mono- and diborohydride complexes. Crucially, the monoborohydride can be accessed via protonation of [Au(B2P2)]-, a masked borane dianion equivalent accessible at relatively mild potentials (-2.05 V vs. Fc/Fc+). This species reduces CO2 to produce the corresponding formate complex. Cleavage of the formate complex can be achieved by reduction (ca. -1.7 V vs. Fc/Fc+) or by the addition of electrophiles including H+. Additionally, direct reaction of [Au(B2P2)]- with CO2 results in reductive disproportion to release CO and generate a carbonate complex. Together, these reactions constitute a synthetic cycle for CO2 reduction at a boron-based reaction center that proceeds through a B-H unit generated via protonation of a reduced borane with weak organic acids.
Collapse
Affiliation(s)
- Jordan W Taylor
- Department of Chemistry , University of California , Riverside , California 92521 , USA .
| | - Alex McSkimming
- Department of Chemistry , University of California , Riverside , California 92521 , USA .
| | - Laura A Essex
- Department of Chemistry , University of California , Riverside , California 92521 , USA .
| | - W Hill Harman
- Department of Chemistry , University of California , Riverside , California 92521 , USA .
| |
Collapse
|
30
|
Pranckevicius C, Herok C, Fantuzzi F, Engels B, Braunschweig H. Bindungsstärkende Rückbindung in Aminoborylen‐stabilisierten Aminoborylenen: an der Grenze zwischen Borylenen und Diborenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Conor Pranckevicius
- Institut für anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Christoph Herok
- Institut für anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Felipe Fantuzzi
- Institut für anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für physikalische und theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer Straße 42 97074 Würzburg Deutschland
| | - Bernd Engels
- Institut für physikalische und theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer Straße 42 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
31
|
Pranckevicius C, Herok C, Fantuzzi F, Engels B, Braunschweig H. Bond-Strengthening Backdonation in Aminoborylene-Stabilized Aminoborylenes: At the Intersection of Borylenes and Diborenes. Angew Chem Int Ed Engl 2019; 58:12893-12897. [PMID: 31241232 DOI: 10.1002/anie.201906671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Singly NHC-coordinated (aminoboryl)aminoborenium salts react with Na2 [Fe(CO)4 ] to yield stable coordination complexes of aminoborylene-stabilized aminoborylenes, which exhibit exceptional σ-donor properties. Upon photolytic CO extrusion from the metal center, the diboron ligand adopts a novel η3 -BBN coordination mode, where bond-strengthening backdonation from the metal center into the vacant B-B π-orbital is observed. This bonding situation can be alternatively described as a Fe-diaminodiborene complex. In a related reduction of CAAC-stabilized (aminoboryl)aminoborenium with KC8 , the reduced species can be captured with nucleophiles to form three-coordinate (diaminoboryl)borylenes, where both amino groups have migrated to the distal boron atom. Collectively, these reactions illustrate the isomeric flexibility imparted by amino groups on this reduced diboron system, thus opening multiple avenues of novel reactivity.
Collapse
Affiliation(s)
- Conor Pranckevicius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Herok
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer Strasse 42, 97074, Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer Strasse 42, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
32
|
Pécharman AF, Hill MS, McMullon G, McMullin CL, Mahon MF. Snapshots of magnesium-centred diborane heterolysis by an outer sphere S N2 process. Chem Sci 2019; 10:6672-6682. [PMID: 31367321 PMCID: PMC6624991 DOI: 10.1039/c9sc02087j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/24/2019] [Indexed: 01/07/2023] Open
Abstract
Reactions of a magnesium diboranate as a source of [Bpin]– anions are initiated by ‘outer sphere’ attack of C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N bonded substrates.
Reactions of the β-diketiminato magnesium diboranate derivative, [(BDI)Mg{pinB(n-Bu)Bpin}] (BDI = HC{(Me)CNDipp}2; Dipp = 2,6-i-Pr2C6H3), with N,N′-dialkyl and N,N′-diaryl carbodiimides provided the corresponding C-borylated magnesium borylamidinates. This reactivity occurs with the displacement of n-BuBpin and with the apparent addition of a nucleophilic {Bpin} anion to the electrophilic unsaturated carbodiimide carbon centres. In contrast, while analogous reactions of [(BDI)Mg{pinB(n-Bu)Bpin}] with N-alkyl or N-aryl aldimines and ketimines also resulted in facile displacement of n-BuBpin, they provided the organomagnesium products of {Bpin} addition to the imine nitrogen atom rather than the more electrophilic trigonal imine carbon. Computational assessment by density functional theory (DFT) indicated that, although the energetic differences are marginal, the organomagnesium products may be considered as the kinetic outcome of these reactions with respect to the generation of alternative amidomagnesium regioisomers. This latter deduction was borne out by the thermally-induced conversion of two such organomagnesium species to their C-borylated amidomagnesium isomers, both of which occur with negligible entropies of activation indicative of purely intramolecular processes. Detailed analysis by DFT of the reaction of [(BDI)Mg{pinB(n-Bu)Bpin}] with PhN
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CHPh indicated that B–N bond formation is initiated by attack of the imine nitrogen at the three-coordinate boron atom of the diboranate anion rather than the more crowded magnesium centre. Consistent with an effectively spontaneous reaction, the resultant cleavage of the B–B bond of the diboranate unit is accomplished via the traversal of two very modest barriers of only 8.3 and 6.7 kcal mol–1. This analysis was also supportive of a subsequent intramolecular B–N to B–C isomerisation process. Of greater general significance, however, the addition of the {Bpin}– anion to the reducible aldimine is best rationalised as a consequence of the electrophilic character of this three-coordinate boron centre rather than any intrinsic nucleophilicity associated with the B–B bond of the [pinBB(n-Bu)pin]– anion.
Collapse
Affiliation(s)
| | - Michael S Hill
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK . ;
| | - Grace McMullon
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK . ;
| | - Claire L McMullin
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK . ;
| | - Mary F Mahon
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK . ;
| |
Collapse
|
33
|
Rohman SS, Sarmah B, Borthakur B, Remya GS, Suresh CH, Phukan AK. Extending the Library of Boron Bases: A Contribution from Theory. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Bikash Sarmah
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam India
| | - Bitupon Borthakur
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam India
| | - Geetha S. Remya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Ashwini K. Phukan
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam India
| |
Collapse
|
34
|
Zhao L, Pan S, Holzmann N, Schwerdtfeger P, Frenking G. Chemical Bonding and Bonding Models of Main-Group Compounds. Chem Rev 2019; 119:8781-8845. [DOI: 10.1021/acs.chemrev.8b00722] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Nicole Holzmann
- Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Peter Schwerdtfeger
- The New Zealand Institute for Advanced Study, Massey University (Albany), 0632 Auckland, New Zealand
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
- Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| |
Collapse
|
35
|
Bäcker A, Li Y, Fritz M, Grätz M, Ke Z, Langer R. Redox-Active, Boron-Based Ligands in Iron Complexes with Inverted Hydride Reactivity in Dehydrogenation Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreas Bäcker
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Maximilian Fritz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Maik Grätz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Robert Langer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| |
Collapse
|
36
|
Sarkar SK, Siddiqui MM, Kundu S, Ghosh M, Kretsch J, Stollberg P, Herbst-Irmer R, Stalke D, Stückl AC, Schwederski B, Kaim W, Ghorai S, Jemmis ED, Roesky HW. Isolation of base stabilized fluoroborylene and its radical cation. Dalton Trans 2019; 48:8551-8555. [PMID: 31139807 DOI: 10.1039/c9dt01899a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we report the synthesis and characterization of the metal free low valent fluoroborylene [(Me-cAAC)2BF] (1) stabilized by cyclic (alkyl)(amino) carbene (cAAC). The fluoroborylene 1 is obtained by the reductive defluorination of Me-cAAC:BF3 with 2.0 equivalents of KC8 in the presence of 1.0 equivalent of Me-cAAC. Due to its highly electron rich nature, 1 underwent one-electron oxidation with 1.0 equivalent of lithium tetrakis(pentafluorophenyl)borate [LiB(C6F5)4] to form the radical cation [(Me-cAAC)2BF]˙+[B(C6F5)4]- (2). DFT studies suggested that the lone pair of electrons is localized on the boron atom in 1, which explains its unprecedented reactivity. Both compounds 1 and 2 were characterized by X-ray crystallography. The radical cation 2 was studied by EPR spectroscopy.
Collapse
Affiliation(s)
- Samir Kumar Sarkar
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Mujahuddin M Siddiqui
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Subrata Kundu
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Munmun Ghosh
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Johannes Kretsch
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Peter Stollberg
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany. and Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore-560012, India.
| | - A Claudia Stückl
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Brigitte Schwederski
- Institute für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | - Wolfgang Kaim
- Institute für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | - Sagar Ghorai
- Inorganic and Physical Chemistry Department Indian Institute of Science, Bangalore-560012, India.
| | - Eluvathingal D Jemmis
- Inorganic and Physical Chemistry Department Indian Institute of Science, Bangalore-560012, India.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| |
Collapse
|
37
|
Abstract
In the current manuscript, we describe the reactivity of a series of iridium(III) pincer complexes with the general formulae [(PEP)IrCl(CO)(H)]n (n = +1, +2) towards base, where PEP is a pincer-type ligand with different central donor groups, and E is the ligating atom of this group (E = B, C, N). The donor groups encompass a secondary amine, a phosphine-stabilised borylene and a protonated carbodiphosphorane. As all ligating atoms E exhibit an E–H bond, we addressed the question of wether the coordinated donor group can be deprotonated in competition to the reductive elimination of HCl from the iridium(III) centre. Based on experimental and quantum chemical investigations, it is shown that the ability for deprotonation of the coordinated ligand decreases in the order of (R3P)2CH+ > R2NH > (R3P)2BH. The initial product of the reductive elimination of HCl from [(PBP)IrCl(CO)(H)]n (1c), the square planar iridium(I) complex, [(PBP)Ir(CO)]+ (3c), was found to be unstable and further reacts to [(PBP)Ir(CO)2]+ (5c). Comparing the C–O stretching vibrations of the latter with those of related complexes, it is demonstrated that neutral ligands based on tricoordinate boron are very strong donors.
Collapse
|
38
|
Maser L, Schneider C, Vondung L, Alig L, Langer R. Quantifying the Donor Strength of Ligand-Stabilized Main Group Fragments. J Am Chem Soc 2019; 141:7596-7604. [DOI: 10.1021/jacs.9b02598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leon Maser
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christian Schneider
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Lisa Vondung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Lukas Alig
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Robert Langer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
39
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
40
|
Zhao Q, Dewhurst RD, Braunschweig H, Chen X. Boranchemie aus einer neuen Perspektive: Nukleophilie der B-H-Bindungselektronen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; School of Chemistry and Chemical Engineering; Henan Normal University; 46 E. Jianshe Rd. Xinxiang Henan 453007 China
| | - Rian D. Dewhurst
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; School of Chemistry and Chemical Engineering; Henan Normal University; 46 E. Jianshe Rd. Xinxiang Henan 453007 China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan 450001 China
| |
Collapse
|
41
|
Zhao Q, Dewhurst RD, Braunschweig H, Chen X. A New Perspective on Borane Chemistry: The Nucleophilicity of the B−H Bonding Pair Electrons. Angew Chem Int Ed Engl 2019; 58:3268-3278. [DOI: 10.1002/anie.201809733] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/22/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; School of Chemistry and Chemical Engineering; Henan Normal University; 46 E. Jianshe Rd. Xinxiang Henan 453007 China
| | - Rian D. Dewhurst
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; School of Chemistry and Chemical Engineering; Henan Normal University; 46 E. Jianshe Rd. Xinxiang Henan 453007 China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan 450001 China
| |
Collapse
|
42
|
Abstract
Recent studies on boron carbonyl complexes show their intriguing structural and bonding properties, enriching our knowledge on main group coordination chemistry. The isolobal relationships between BCO and CH and the more generally applicable CO/H- and B-/C analogies are employed to understand the structure and bonding of boron carbonyl complexes, bridging the boron carbonyl chemistry to the well-known hydrocarbon analogues.
Collapse
Affiliation(s)
- Jiaye Jin
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| | | |
Collapse
|
43
|
Ghorai S, Jemmis ED. B-B Coupling and B-B Catenation: Computational Study of the Structure and Reactions of Metal-Bis(borylene) Complexes. Chemistry 2018; 24:17844-17851. [PMID: 30303575 DOI: 10.1002/chem.201804599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/06/2018] [Indexed: 11/11/2022]
Abstract
A detailed molecular orbital analysis of the metal-bis(borylene) complex [Fe(CO)3 {B(Dur)B(N(SiMe3 )2 )}] (Dur=2,3,5,6-tetramethylphenyl) (1 a) serves as a focal point of recent developments in this area of chemistry, such as B-B coupling and B-B catenation reactions. There is strong a π delocalization between the Fe(CO)3 and (B-Dur)(B-N(SiMe3 )2 ) units; the short B-B distance in 1 a is due to this π delocalization. The π-donor ligand N(SiMe3 )2 on the boron provides a decisive stability to the complex 1 a. The LUMO of 1 a has B-B σ-bonding character. Hence B-B coupling is facilitated by filling the LUMO. Strong σ-donating ligands, such as PMe3 or PCy3 , induce B-B coupling. Expulsion of one CO from 1 a followed by dimerization leads to [Fe(CO)2 {B(Dur)B(N(SiMe3 )2 )}]2 (3 a) with a short Fe-Fe distance of 2.355 Å. A detailed mechanism for the reaction of 3 a with CO to give the B-B catenation product 2 f is presented. The bonding of all intermediates is compared to their isolobal main-group analogues.
Collapse
Affiliation(s)
- Sagar Ghorai
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Eluvathingal D Jemmis
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
44
|
Pécharman AF, Hill MS, McMullin CL, Mahon MF. Magnesium-Mediated Nucleophilic Borylation of Carbonyl Electrophiles. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Michael S. Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Claire L. McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
45
|
Pranckevicius C, Jimenéz-Halla JOC, Kirsch M, Krummenacher I, Braunschweig H. Complexation and Release of N-Heterocyclic Carbene-Aminoborylene Ligands from Group VI and VIII Metals. J Am Chem Soc 2018; 140:10524-10529. [PMID: 30048122 DOI: 10.1021/jacs.8b05398] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coordination chemistry and stability of aminoborylene ligands bearing different N-heterocyclic carbene (NHC) stabilizing groups has been investigated with Group VI and VIII metals. NHC-aminoborylene complexes have been accessed via reduction of NHC-dihaloaminoborane adducts with Na2[M(CO) x] species (M = Fe, Ru, Cr, W). Imidazol-2-ylidene-stabilized aminoborylene ligands were found to afford thermally robust metal-borylene complexes, which are inert to oxidation, hydrolysis, and insertion of unsaturated substrates. Such ligands have additionally been demonstrated to be significantly more electron releasing than NHCs and other carbon-based ligands by infrared spectroscopy, and can be regarded as unique examples of highly nucleophilic borylene ligands isolobal to classical NHCs. In contrast, cyclic alkylaminocarbene (CAAC)-bound dihaloaminoboranes were found to be reduced by one or two electrons upon reaction with Na2[M(CO) x] species to form either a stable borane-centered radical, or the free CAAC-aminoborylene complex, which further reacts to form a carbonyl-stabilized aminoborylene. Borylene-to-CO migration was also observed upon reaction of a ruthenium imidazol-2-ylidene aminoborylene complex with B(C6F5)3, where the product borylene remains trapped by the Ru center.
Collapse
Affiliation(s)
- Conor Pranckevicius
- Institute for Inorganic Chemistry , Julius-Maximilians-Universität Würzburg, Am Hubland , 97074 Würzburg , Germany.,Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg, Am Hubland , 97074 Würzburg , Germany
| | - J Oscar C Jimenéz-Halla
- Department of Chemistry, Division of Natural and Exact Sciences , Universidad de Guanajuato , Noria Alta s/n , 36050 Guanajuato , Mexico
| | - Marius Kirsch
- Institute for Inorganic Chemistry , Julius-Maximilians-Universität Würzburg, Am Hubland , 97074 Würzburg , Germany.,Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg, Am Hubland , 97074 Würzburg , Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry , Julius-Maximilians-Universität Würzburg, Am Hubland , 97074 Würzburg , Germany.,Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg, Am Hubland , 97074 Würzburg , Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry , Julius-Maximilians-Universität Würzburg, Am Hubland , 97074 Würzburg , Germany.,Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg, Am Hubland , 97074 Würzburg , Germany
| |
Collapse
|
46
|
Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S. NHCs in Main Group Chemistry. Chem Rev 2018; 118:9678-9842. [PMID: 29969239 DOI: 10.1021/acs.chemrev.8b00079] [Citation(s) in RCA: 556] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the discovery of the first stable N-heterocyclic carbene (NHC) in the beginning of the 1990s, these divalent carbon species have become a common and available class of compounds, which have found numerous applications in academic and industrial research. Their important role as two-electron donor ligands, especially in transition metal chemistry and catalysis, is difficult to overestimate. In the past decade, there has been tremendous research attention given to the chemistry of low-coordinate main group element compounds. Significant progress has been achieved in stabilization and isolation of such species as Lewis acid/base adducts with highly tunable NHC ligands. This has allowed investigation of numerous novel types of compounds with unique electronic structures and opened new opportunities in the rational design of novel organic catalysts and materials. This Review gives a general overview of this research, basic synthetic approaches, key features of NHC-main group element adducts, and might be useful for the broad research community.
Collapse
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Dominik Reiter
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Prasenjit Bag
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Philipp Frisch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Richard Holzner
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Amelie Porzelt
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| |
Collapse
|
47
|
Pécharman AF, Hill MS, Mahon MF. Diborane heterolysis: breaking and making B-B bonds at magnesium. Dalton Trans 2018; 47:7300-7305. [PMID: 29770411 DOI: 10.1039/c8dt01451e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Reaction of the dimeric β-diketiminato magnesium hydride [(BDI)MgH]2 (BDI = HC{(Me)CN-2,6-i-Pr2C6H3}2) with bis-pinacolatodiborane (B2pin2) resulted in B-O bond activation and formation of a magnesium complex of an unusual borylborohydride anion. In contrast, similar treatment of the mononuclear organomagnesium [{BDI}Mg(n-Bu)] with 4,4,4',4',6,6'-hexamethyl-2,2'-bi(1,3,2-dioxaborinane) (B2hex2) provided a B(sp2)-B(sp3) diborane anion, [(hex)BB(n-Bu)(hex)]-, with a constitution which is analogous to that formed in the previously reported reaction with bis(pinacolato)diboron (B2pin2). Subsequent addition of 4-dimethylaminopyridine to a solution of this compound induced alkylborane displacement and provided a magnesium boryl derivative containing a terminal Mg-B(hex) interaction (Mg-B 2.319(3) Å), a result which reinforces the generality of this approach for the synthesis of boryl anions by B-B bond heterolysis. Further studies of the reactivity of the initially formed B(sp2)-B(sp3) anions with diborane small molecules also resulted in alkylborane displacement and the production of triboron anions, which are propagated by contiguous and electron precise (2c-2e) B-B-B interactions.
Collapse
|
48
|
Zhou J, Liu LL, Cao LL, Stephan DW. An umpolung of Lewis acidity/basicity at nitrogen by deprotonation of a cyclic (amino)(aryl)nitrenium cation. Chem Commun (Camb) 2018. [PMID: 29527605 DOI: 10.1039/c8cc01331d] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A cyclic (amino)(aryl)nitrenium cation 2 has been achieved by treatment of spiro[fluorene-9,3'-indazole] (1) with Ph2CHCl and AgBF4. This cation 2 is Lewis acidic at nitrenium N1, reacting with PMe3 affording a Lewis acid/base adduct 3. In contrast, deprotonation of 2 with other bases provides a neutral compound 4 which is Lewis basic at N1, reacting with electrophiles including GaCl3, MeOTf and PhNCO.
Collapse
Affiliation(s)
- Jiliang Zhou
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada.
| | | | | | | |
Collapse
|
49
|
Nutz M, Borthakur B, Pranckevicius C, Dewhurst RD, Schäfer M, Dellermann T, Glaab F, Thaler M, Phukan AK, Braunschweig H. Release of Isonitrile- and NHC-Stabilized Borylenes from Group VI Terminal Borylene Complexes. Chemistry 2018; 24:6843-6847. [PMID: 29498441 DOI: 10.1002/chem.201800593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/01/2018] [Indexed: 11/05/2022]
Abstract
A family of doubly isonitrile-stabilized terphenyl borylenes could be obtained by addition of three equivalents of isonitrile to the corresponding Cr and W terminal terphenyl-borylene complexes. The mechanism of isonitrile- and carbon-monoxide-induced borylene liberation was investigated computationally and found to be significantly exergonic in both cases. Furthermore, addition of a small N-heterocyclic carbene (NHC) to a terminal Cr borylene complex results in release of an NHC-stabilized borylene carbonyl species, whereas the analogous reaction with bulkier phosphines results in metal-centered substitution.
Collapse
Affiliation(s)
- Marco Nutz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Bitupon Borthakur
- Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
| | - Conor Pranckevicius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marius Schäfer
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Theresa Dellermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Fabian Glaab
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Melanie Thaler
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
50
|
Kaese T, Trageser T, Budy H, Bolte M, Lerner HW, Wagner M. A redox-active diborane platform performs C(sp 3)-H activation and nucleophilic substitution reactions. Chem Sci 2018; 9:3881-3891. [PMID: 29780520 PMCID: PMC5942040 DOI: 10.1039/c8sc00743h] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
Targeted C(sp3)–H activation or nucleophilic substitution reactions have been achieved through the interaction of a diborane dianion with haloalkanes.
Organoboranes are among the most versatile and widely used reagents in synthetic chemistry. A significant further expansion of their application spectrum would be achievable if boron-containing reactive intermediates capable of inserting into C–H bonds or performing nucleophilic substitution reactions were readily available. However, current progress in the field is still hampered by a lack of universal design concepts and mechanistic understanding. Herein we report that the doubly arylene-bridged diborane(6) 1H2 and its B
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
B-bonded formal deprotonation product Li2[1] can activate the particularly inert C(sp3)–H bonds of added H3CLi and H3CCl, respectively. The first case involves the attack of [H3C]– on a Lewis-acidic boron center, whereas the second case follows a polarity-inverted pathway with nucleophilic attack of the B
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
B double bond on H3CCl. Mechanistic details were elucidated by means of deuterium-labeled reagents, a radical clock, α,ω-dihaloalkane substrates, the experimental identification of key intermediates, and quantum-chemical calculations. It turned out that both systems, H3CLi/1H2 and H3CCl/Li2[1], ultimately funnel into the same reaction pathway, which likely proceeds past a borylene-type intermediate and requires the cooperative interaction of both boron atoms.
Collapse
Affiliation(s)
- Thomas Kaese
- Institut für Anorganische und Analytische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Straße 7 , D-60438 Frankfurt am Main , Germany .
| | - Timo Trageser
- Institut für Anorganische und Analytische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Straße 7 , D-60438 Frankfurt am Main , Germany .
| | - Hendrik Budy
- Institut für Anorganische und Analytische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Straße 7 , D-60438 Frankfurt am Main , Germany .
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Straße 7 , D-60438 Frankfurt am Main , Germany .
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Straße 7 , D-60438 Frankfurt am Main , Germany .
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Straße 7 , D-60438 Frankfurt am Main , Germany .
| |
Collapse
|