1
|
Heel S, Bartosik K, Juen F, Kreutz C, Micura R, Breuker K. Native Top-Down Mass Spectrometry Uncovers Two Distinct Binding Motifs of a Functional Neomycin-Sensing Riboswitch Aptamer. J Am Chem Soc 2023; 145:15284-15294. [PMID: 37420313 PMCID: PMC10360057 DOI: 10.1021/jacs.3c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 07/09/2023]
Abstract
Understanding how ligands bind to ribonucleic acids (RNA) is important for understanding RNA recognition in biological processes and drug development. Here, we have studied neomycin B binding to neomycin-sensing riboswitch aptamer constructs by native top-down mass spectrometry (MS) using electrospray ionization (ESI) and collisionally activated dissociation (CAD). Our MS data for a 27 nt aptamer construct reveal the binding site and ligand interactions, in excellent agreement with the structure derived from nuclear magnetic resonance (NMR) studies. Strikingly, for an extended 40 nt aptamer construct, which represents the sequence with the highest regulatory factor for riboswitch function, we identified two binding motifs for neomycin B binding, one corresponding to the bulge-loop motif of the 27 nt construct and the other one in the minor groove of the lower stem, which according to the MS data are equally populated. By replacing a noncanonical with a canonical base pair in the lower stem of the 40 nt aptamer, we can reduce binding to the minor groove motif from ∼50 to ∼30%. Conversely, the introduction of a CUG/CUG motif in the lower stem shifts the binding equilibrium in favor of minor groove binding. The MS data reveal site-specific and stoichiometry-resolved information on aminoglycoside binding to RNA that is not directly accessible by other methods and underscore the role of noncanonical base pairs in RNA recognition by aminoglycosides.
Collapse
Affiliation(s)
- Sarah
Viola Heel
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Fabian Juen
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
3
|
Phan HD, Norris AS, Du C, Stachowski K, Khairunisa B, Sidharthan V, Mukhopadhyay B, Foster M, Wysocki V, Gopalan V. Elucidation of structure-function relationships in Methanocaldococcus jannaschii RNase P, a multi-subunit catalytic ribonucleoprotein. Nucleic Acids Res 2022; 50:8154-8167. [PMID: 35848927 PMCID: PMC9371926 DOI: 10.1093/nar/gkac595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5' leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae-RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein-protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.
Collapse
Affiliation(s)
- Hong-Duc Phan
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| | - Andrew S Norris
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Du
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kye Stachowski
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| | - Bela H Khairunisa
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Vaishnavi Sidharthan
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| | | | - Mark P Foster
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Abstract
Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed.
Collapse
Affiliation(s)
- Kelly R Karch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Dalton T Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
7
|
Characterization of a Salmonella transcription factor-DNA complex and identification of the inducer by native mass spectrometry. J Mol Biol 2022; 434:167480. [PMID: 35176290 PMCID: PMC8977229 DOI: 10.1016/j.jmb.2022.167480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022]
Abstract
FraR, a transcriptional repressor, was postulated to regulate the metabolism of the Amadori compound fructose-asparagine (F-Asn) in the foodborne pathogen Salmonella enterica. Here, the DNA- and inducer-binding affinities and stoichiometries of FraR were determined and cross-validated by electrophoretic mobility-shift assays (EMSAs) and online buffer exchange coupled to native mass spectrometry (OBE-nMS). We demonstrate the utility of OBE-nMS to characterize protein and protein-DNA complexes that are not amenable to offline exchange into volatile buffers. OBE-nMS complemented EMSAs by revealing that FraR binds to the operator DNA as a dimer and by establishing 6-phosphofructose-aspartate as the inducer that weakens DNA binding by FraR. These results provide insights into how FraR regulates the expression of F-Asn-catabolizing enzymes and add to our understanding of the intricate bacterial circuitry that dictates utilization of diverse nutrients.
Collapse
|
8
|
Harvey SR, Ben-Nissan G, Sharon M, Wysocki VH. Surface-Induced Dissociation for Protein Complex Characterization. Methods Mol Biol 2022; 2500:211-237. [PMID: 35657596 PMCID: PMC11892799 DOI: 10.1007/978-1-0716-2325-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) enables intact non-covalent complexes to be studied in the gas phase. nMS can provide information on composition, stoichiometry, topology, and, when coupled with surface-induced dissociation (SID), subunit connectivity. Here we describe the characterization of protein complexes by nMS and SID. Substructural information obtained using this method is consistent with the solved complex structure, when a structure exists. This provides confidence that the method can also be used to obtain substructural information for unknowns, providing insight into subunit connectivity and arrangements. High-energy SID can also provide information on proteoforms present. Previously SID has been limited to a few in-house modified instruments and here we focus on SID implemented within an in-house-modified Q Exactive UHMR. However, SID is currently commercially available within the Waters Select Series Cyclic IMS instrument. Projects are underway that involve the NIH-funded native MS resource (nativems.osu.edu), instrument vendors, and third-party vendors, with the hope of bringing the technology to more platforms and labs in the near future. Currently, nMS resource staff can perform SID experiments for interested research groups.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Srivastava R. Chemical reactivity and binding interactions in ribonucleic acid-peptide complexes. Proteins 2021; 90:765-775. [PMID: 34714954 DOI: 10.1002/prot.26272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The covalent and noncovalent backbone binding interactions in RNA-peptide complexes were studied by DFT methods. Four RNA structures R1(GGCUAGCC), R2(AAUCGAUU), R3(GGGAUCCC), and R4(AAAGCUUU) has been selected for eight protonated peptides (DR, ER, GR, KR, NGR, RR, tmeGnd (tme), and VR) interactions based on an experimental study (Anal Chem. 2019; 91:1659-1664). Chemical reactivity theory is used to study the reactivity of eight peptides with global descriptors. Lower hardness values reflected low stability and high reactivity for the protonated peptides. DR, ER, GR, KR, NGR, RR, and VR show lower value of ω, μ while tme has high value of ω, μ. Larger highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for ER, GR, and KR showed greater structural stability for peptides. AutoDock and PatchDock results indicated that R1, R2, and R4 retain hairpin structures while interacting with peptide complexes. The calculated binding energies of (R1-R4)-peptide complexes from AutoDock tools are (1.49-11.12) kcal/mol. Results showed that the noncovalent interactions are stronger than the covalent interactions for R1-peptide complexes. The reason might be the transfer of proton from protonated ligand to deprotonated RNA, which has initiated the loss of the ligand. Also it has been observed that proton transfer has become energetically unfavorable in presence of additional hydrogen bonds which is predicted in the experimental results.
Collapse
Affiliation(s)
- Ruby Srivastava
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
10
|
Phan HD, Lai LB, Zahurancik WJ, Gopalan V. The many faces of RNA-based RNase P, an RNA-world relic. Trends Biochem Sci 2021; 46:976-991. [PMID: 34511335 DOI: 10.1016/j.tibs.2021.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
RNase P is an essential enzyme that catalyzes removal of the 5' leader from precursor transfer RNAs. The ribonucleoprotein (RNP) form of RNase P is present in all domains of life and comprises a single catalytic RNA (ribozyme) and a variable number of protein cofactors. Recent cryo-electron microscopy structures of representative archaeal and eukaryotic (nuclear) RNase P holoenzymes bound to tRNA substrate/product provide high-resolution detail on subunit organization, topology, and substrate recognition in these large, multisubunit catalytic RNPs. These structures point to the challenges in understanding how proteins modulate the RNA functional repertoire and how the structure of an ancient RNA-based catalyst was reshaped during evolution by new macromolecular associations that were likely necessitated by functional/regulatory coupling.
Collapse
Affiliation(s)
- Hong-Duc Phan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Lien B Lai
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Walter J Zahurancik
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Marathe IA, Lai SM, Zahurancik WJ, Poirier MG, Wysocki VH, Gopalan V. Protein cofactors and substrate influence Mg2+-dependent structural changes in the catalytic RNA of archaeal RNase P. Nucleic Acids Res 2021; 49:9444-9458. [PMID: 34387688 PMCID: PMC8450104 DOI: 10.1093/nar/gkab655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023] Open
Abstract
The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5′ leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250–500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10–20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.
Collapse
Affiliation(s)
- Ila A Marathe
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G Poirier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Harvey SR, VanAernum ZL, Kostelic MM, Marty MT, Wysocki VH. Probing the structure of nanodiscs using surface-induced dissociation mass spectrometry. Chem Commun (Camb) 2020; 56:15651-15654. [PMID: 33355562 PMCID: PMC7943047 DOI: 10.1039/d0cc05531j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the study of membrane proteins and antimicrobial peptides, nanodiscs have emerged as a valuable membrane mimetic to solubilze these molecules in a lipid bilayer. We present the structural characterization of nanodiscs using native mass spectrometry and surface-induced dissociation, which are powerful tools in structural biology.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
13
|
Schneeberger EM, Halper M, Palasser M, Heel SV, Vušurović J, Plangger R, Juen M, Kreutz C, Breuker K. Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Nat Commun 2020; 11:5750. [PMID: 33188169 PMCID: PMC7666190 DOI: 10.1038/s41467-020-19144-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Halper
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Palasser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jovana Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
14
|
Zhou M, Lantz C, Brown KA, Ge Y, Paša-Tolić L, Loo JA, Lermyte F. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem Sci 2020; 11:12918-12936. [PMID: 34094482 PMCID: PMC8163214 DOI: 10.1039/d0sc04392c] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
In biology, it can be argued that if the genome contains the script for a cell's life cycle, then the proteome constitutes an ensemble cast of actors that brings these instructions to life. Their interactions with each other, co-factors, ligands, substrates, and so on, are key to understanding nearly any biological process. Mass spectrometry is well established as the method of choice to determine protein primary structure and location of post-translational modifications. In recent years, top-down fragmentation of intact proteins has been increasingly combined with ionisation of noncovalent assemblies under non-denaturing conditions, i.e., native mass spectrometry. Sequence, post-translational modifications, ligand/metal binding, protein folding, and complex stoichiometry can thus all be probed directly. Here, we review recent developments in this new and exciting field of research. While this work is written primarily from a mass spectrometry perspective, it is targeted to all bioanalytical scientists who are interested in applying these methods to their own biochemistry and chemical biology research.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Frederik Lermyte
- Department of Chemistry, Institute of Chemistry and Biochemistry, Technical University of Darmstadt 64287 Darmstadt Germany
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège 4000 Liège Belgium
- School of Engineering, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
15
|
Allison TM, Barran P, Benesch JLP, Cianferani S, Degiacomi MT, Gabelica V, Grandori R, Marklund EG, Menneteau T, Migas LG, Politis A, Sharon M, Sobott F, Thalassinos K. Software Requirements for the Analysis and Interpretation of Native Ion Mobility Mass Spectrometry Data. Anal Chem 2020; 92:10881-10890. [PMID: 32649184 DOI: 10.1021/acs.analchem.9b05792] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The past few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalyzed by the availability of commercial instrumentation capable of carrying out such analyses. As in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realize the full potential of the data sets generated. In this perspective, we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS data sets and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardized processing approaches, and serve as a location for the deposition of data for this emerging field. This perspective has been written by members of the European Cooperation in Science and Technology Action on Native MS and Related Methods for Structural Biology (EU COST Action BM1403) as an introduction to the software tools available in this area. It is intended to serve as an overview for newcomers and to stimulate discussions in the community on further developments in this field, rather than being an in-depth review. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05791) focuses on computational approaches used in this field.
Collapse
Affiliation(s)
- Timothy M Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Matteo T Degiacomi
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom.,Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Valerie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Thomas Menneteau
- Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, Gower Street, London WC1E 6BT, United Kingdom
| | - Lukasz G Migas
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Konstantinos Thalassinos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, Gower Street, London WC1E 6BT, United Kingdom.,Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
16
|
Relative interfacial cleavage energetics of protein complexes revealed by surface collisions. Proc Natl Acad Sci U S A 2019; 116:8143-8148. [PMID: 30944216 DOI: 10.1073/pnas.1817632116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To fulfill their biological functions, proteins must interact with their specific binding partners and often function as large assemblies composed of multiple proteins or proteins plus other biomolecules. Structural characterization of these complexes, including identification of all binding partners, their relative binding affinities, and complex topology, is integral for understanding function. Understanding how proteins assemble and how subunits in a complex interact is a cornerstone of structural biology. Here we report a native mass spectrometry (MS)-based method to characterize subunit interactions in globular protein complexes. We demonstrate that dissociation of protein complexes by surface collisions, at the lower end of the typical surface-induced dissociation (SID) collision energy range, consistently cleaves the weakest protein:protein interfaces, producing products that are reflective of the known structure. We present here combined results for multiple complexes as a training set, two validation cases, and four computational models. We show that SID appearance energies can be predicted from structures via a computationally derived expression containing three terms (number of residues in a given interface, unsatisfied hydrogen bonds, and a rigidity factor).
Collapse
|
17
|
He M, Luo P, Hong J, Wang X, Wu H, Zhang R, Qu F, Xiang Y, Xu W. Structural Analysis of Biomolecules through a Combination of Mobility Capillary Electrophoresis and Mass Spectrometry. ACS OMEGA 2019; 4:2377-2386. [PMID: 31459477 PMCID: PMC6648644 DOI: 10.1021/acsomega.8b03224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/24/2019] [Indexed: 05/08/2023]
Abstract
The 3D structures of biomolecules determine their biological function. Established methods in biomolecule structure determination typically require purification, crystallization, or modification of target molecules, which limits their applications for analyzing trace amounts of biomolecules in complex matrices. Here, we developed instruments and methods of mobility capillary electrophoresis (MCE) and its coupling with MS for the 3D structural analysis of biomolecules in the liquid phase. Biomolecules in complex matrices could be separated by MCE and sequentially detected by MS. The effective radius and the aspect ratio of each separated biomolecule were simultaneously determined through the separation by MCE, which were then used as restraints in determining biomolecule conformations through modeling. Feasibility of this method was verified by analyzing a mixture of somatostatin and bradykinin, two peptides with known liquid-phase structures. Proteins could also be structurally analyzed using this method, which was demonstrated for lysozyme. The combination of MCE and MS for complex sample analysis was also demonstrated. MCE and MCE-MS would allow us to analyze trace amounts of biomolecules in complex matrices, which has the potential to be an alternative and powerful biomolecule structure analysis technique.
Collapse
Affiliation(s)
- Muyi He
- College
of Information Science, Shenzhen University, Shenzhen 518060, China
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pan Luo
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Hong
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaofeng Wang
- Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haimei Wu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongkai Zhang
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Qu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ye Xiang
- Beijing
Advanced Innovation Center for Structural Biology, Department of Basic
Medical Sciences, School of Medicine, Tsinghua
University, Beijing 100084, China
- E-mail: (Y.X.)
| | - Wei Xu
- College
of Information Science, Shenzhen University, Shenzhen 518060, China
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
- E-mail: (W.X.)
| |
Collapse
|
18
|
Vušurović J, Breuker K. Relative Strength of Noncovalent Interactions and Covalent Backbone Bonds in Gaseous RNA-Peptide Complexes. Anal Chem 2019; 91:1659-1664. [PMID: 30614682 PMCID: PMC6335609 DOI: 10.1021/acs.analchem.8b05387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interactions of ribonucleic acids (RNA) with basic ligands such as proteins or aminoglycosides play a key role in fundamental biological processes. Native top-down mass spectrometry (MS) has recently been extended to binding site mapping of RNA-ligand interactions by collisionally activated dissociation, without the need for laborious sample preparation procedures. The technique relies on the preservation of noncovalent interactions at energies that are sufficiently high to cause RNA backbone cleavage. In this study, we address the question of how many and what types of noncovalent interactions allow for binding site mapping by top-down MS. We show that proton transfer from protonated ligand to deprotonated RNA within salt bridges initiates loss of the ligand, but that proton transfer becomes energetically unfavorable in the presence of additional hydrogen bonds such that the noncovalent interactions remain stronger than the covalent RNA backbone bonds.
Collapse
Affiliation(s)
- Jovana Vušurović
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI) , Universität Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Kathrin Breuker
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI) , Universität Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| |
Collapse
|
19
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
20
|
Vušurović J, Schneeberger E, Breuker K. Interactions of Protonated Guanidine and Guanidine Derivatives with Multiply Deprotonated RNA Probed by Electrospray Ionization and Collisionally Activated Dissociation. ChemistryOpen 2017; 6:739-750. [PMID: 29226062 PMCID: PMC5715244 DOI: 10.1002/open.201700143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/06/2017] [Indexed: 11/25/2022] Open
Abstract
Interactions of ribonucleic acid (RNA) with guanidine and guanidine derivatives are important features in RNA-protein and RNA-drug binding. Here we have investigated noncovalently bound complexes of an 8-nucleotide RNA and six different ligands, all of which have a guanidinium moiety, by using electrospray ionization (ESI) and collisionally activated dissociation (CAD) mass spectrometry (MS). The order of complex stability correlated almost linearly with the number of ligand atoms that can potentially be involved in hydrogen-bond or salt-bridge interactions with the RNA, but not with the proton affinity of the ligands. However, ligand dissociation of the complex ions in CAD was generally accompanied by proton transfer from ligand to RNA, which indicated conversion of salt-bridge into hydrogen-bond interactions. The relative stabilities and dissociation pathways of [RNA+m L-n H] n- complexes with different stoichiometries (m=1-5) and net charge (n= 2-5) revealed both specific and unspecific ligand binding to the RNA.
Collapse
Affiliation(s)
- Jovana Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Eva‐Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
21
|
Lai LB, Tanimoto A, Lai SM, Chen WY, Marathe IA, Westhof E, Wysocki VH, Gopalan V. A novel double kink-turn module in euryarchaeal RNase P RNAs. Nucleic Acids Res 2017; 45:7432-7440. [PMID: 28525600 PMCID: PMC5499556 DOI: 10.1093/nar/gkx388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 01/18/2023] Open
Abstract
RNase P is primarily responsible for the 5΄ maturation of transfer RNAs (tRNAs) in all domains of life. Archaeal RNase P is a ribonucleoprotein made up of one catalytic RNA and five protein cofactors including L7Ae, which is known to bind the kink-turn (K-turn), an RNA structural element that causes axial bending. However, the number and location of K-turns in archaeal RNase P RNAs (RPRs) are unclear. As part of an integrated approach, we used native mass spectrometry to assess the number of L7Ae copies that bound the RPR and site-specific hydroxyl radical-mediated footprinting to localize the K-turns. Mutagenesis of each of the putative K-turns singly or in combination decreased the number of bound L7Ae copies, and either eliminated or changed the L7Ae footprint on the mutant RPRs. In addition, our results support an unprecedented ‘double K-turn’ module in type A and type M archaeal RPR variants.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Akiko Tanimoto
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Wen-Yi Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ila A Marathe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Westhof
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l'ARN, UPR9002, F-67084, Strasbourg, France
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Laszlo KJ, Bush MF. Interpreting the Collision Cross Sections of Native-like Protein Ions: Insights from Cation-to-Anion Proton-Transfer Reactions. Anal Chem 2017. [PMID: 28636334 DOI: 10.1021/acs.analchem.7b01474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effects of charge state on structures of native-like cations of serum albumin, streptavidin, avidin, and alcohol dehydrogenase were probed using cation-to-anion proton-transfer reactions (CAPTR), ion mobility, mass spectrometry, and complementary energy-dependent experiments. The CAPTR products all have collision cross-section (Ω) values that are within 5.5% of the original precursor cations. The first CAPTR event for each precursor yields products that have smaller Ω values and frequently exhibit the greatest magnitude of change in Ω resulting from a single CAPTR event. To investigate how the structures of the precursors affect the structures of the products, ions were activated as a function of energy prior to CAPTR. In each case, the Ω values of the activated precursors increase with increasing energy, but the Ω values of the CAPTR products are smaller than the activated precursors. To investigate the stabilities of the CAPTR products, the products were activated immediately prior to ion mobility. These results show that additional structures with smaller or larger Ω values can be populated and that the structures and stabilities of these ions depend most strongly on the identity of the protein and the charge state of the product, rather than the charge state of the precursor or the number of CAPTR events. Together, these results indicate that the excess charges initially present on native-like ions have a modest, but sometimes statistically significant, effect on their Ω values. Therefore, potential contributions from charge state should be considered when using experimental Ω values to elucidate structures in solution.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
23
|
Li J, Lyu W, Rossetti G, Konijnenberg A, Natalello A, Ippoliti E, Orozco M, Sobott F, Grandori R, Carloni P. Proton Dynamics in Protein Mass Spectrometry. J Phys Chem Lett 2017; 8:1105-1112. [PMID: 28207277 DOI: 10.1021/acs.jpclett.7b00127] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-β peptide (Aβ(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.
Collapse
Affiliation(s)
- Jinyu Li
- College of Chemistry, Fuzhou University , 350002 Fuzhou, China
| | - Wenping Lyu
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH-Aachen University , 52056 Aachen, Germany
- Computation-Based Science and Technology Research Center, Cyprus Institute , 2121 Aglantzia, Nicosia, Cyprus
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University , 52062 Aachen, Germany
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich , D-52425 Jülich, Germany
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Emiliano Ippoliti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
| | - Modesto Orozco
- Joint BSC-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona , Avgda Diagonal 647, Barcelona 08028, Spain
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- JARA-HPC, 52425 Jülich, Germany
| |
Collapse
|
24
|
Holden DD, Brodbelt JS. Ultraviolet Photodissociation of Native Proteins Following Proton Transfer Reactions in the Gas Phase. Anal Chem 2016; 88:12354-12362. [PMID: 28193062 DOI: 10.1021/acs.analchem.6b03565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing use of mass spectrometry in the field of structural biology has catalyzed the development of many new strategies to examine intact proteins in the gas phase. Native mass spectrometry methods have further accelerated the need for methods that can manipulate proteins and protein complexes while minimizing disruption of noncovalent interactions critical for stabilizing conformations. Proton-transfer reactions (PTR) in the gas phase offer the ability to effectively modulate the charge states of proteins, allowing decongestion of mass spectra through separation of overlapping species. PTR was combined with ultraviolet photodissociation (UVPD) to probe the degree of structural changes that occur upon charge reduction reactions in the gas phase. For protein complexes myoglobin·heme (17.6 kDa) and dihydrofolate reductase·methotrexate (19.4 kDa), minor changes were found in the fragmentation patterns aside from some enhancement of fragmentation near the N- and C-terminal regions consistent with slight fraying. After finding little perturbation was caused by charge reduction using PTR, homodimeric superoxide dismutase/CuZn (31.4 kDa) was subjected to PTR in order to separate overlapping monomer and dimer species of the protein that were observed at identical m/z values.
Collapse
Affiliation(s)
- Dustin D Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
25
|
Schennach M, Schneeberger EM, Breuker K. Unfolding and Folding of the Three-Helix Bundle Protein KIX in the Absence of Solvent. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1079-88. [PMID: 26936183 PMCID: PMC4863917 DOI: 10.1007/s13361-016-1363-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 05/11/2023]
Abstract
Electron capture dissociation was used to probe the structure, unfolding, and folding of KIX ions in the gas phase. At energies for vibrational activation that were sufficiently high to cause loss of small molecules such as NH3 and H2O by breaking of covalent bonds in about 5% of the KIX (M + nH)(n+) ions with n = 7-9, only partial unfolding was observed, consistent with our previous hypothesis that salt bridges play an important role in stabilizing the native solution fold after transfer into the gas phase. Folding of the partially unfolded ions on a timescale of up to 10 s was observed only for (M + nH)(n+) ions with n = 9, but not n = 7 and n = 8, which we attribute to differences in the distribution of charges within the (M + nH)(n+) ions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Moritz Schennach
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Eva-Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
26
|
Xu B, Ju Y, Soukup RJ, Ramsey DM, Fishel R, Wysocki VH, Wozniak DJ. The Pseudomonas aeruginosa AmrZ C-terminal domain mediates tetramerization and is required for its activator and repressor functions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:85-90. [PMID: 26549743 PMCID: PMC4769699 DOI: 10.1111/1758-2229.12354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/01/2015] [Indexed: 05/14/2023]
Abstract
Pseudomonas aeruginosa is an important bacterial opportunistic pathogen, presenting a significant threat towards individuals with underlying diseases such as cystic fibrosis. The transcription factor AmrZ regulates expression of multiple P. aeruginosa virulence factors. AmrZ belongs to the ribbon-helix-helix protein superfamily, in which many members function as dimers, yet others form higher order oligomers. In this study, four independent approaches were undertaken and demonstrated that the primary AmrZ form in solution is tetrameric. Deletion of the AmrZ C-terminal domain leads to loss of tetramerization and reduced DNA binding to both activated and repressed target promoters. Additionally, the C-terminal domain is essential for efficient AmrZ-mediated activation and repression of its targets.
Collapse
Affiliation(s)
- Binjie Xu
- Department of Microbiology, The Ohio State University, Columbus, Ohio, 43210
- Department of Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, 43210
| | - Yue Ju
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Randal J. Soukup
- Department of Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Deborah M. Ramsey
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Richard Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Daniel J. Wozniak
- Department of Microbiology, The Ohio State University, Columbus, Ohio, 43210
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, 43210
- Department of Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, 43210
- All correspondence should be addressed to Daniel J. Wozniak, . Address: BRT 704, 460 W. 12 Ave, Columbus, OH, 43210. Phone: 614-247-7629; Fax: 614-2929-616
| |
Collapse
|
27
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
28
|
Laszlo KJ, Bush MF. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2152-61. [PMID: 26323617 PMCID: PMC4655144 DOI: 10.1007/s13361-015-1245-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/23/2015] [Accepted: 08/01/2015] [Indexed: 05/08/2023]
Abstract
Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
29
|
Quintyn RS, Zhou M, Yan J, Wysocki VH. Surface-Induced Dissociation Mass Spectra as a Tool for Distinguishing Different Structural Forms of Gas-Phase Multimeric Protein Complexes. Anal Chem 2015; 87:11879-86. [PMID: 26499904 DOI: 10.1021/acs.analchem.5b03441] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Royston S. Quintyn
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Mowei Zhou
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Jing Yan
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Vicki H. Wysocki
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
30
|
Hamasaki M, Hazeyama K, Iwasaki F, Ueda T, Nakashima T, Kakuta Y, Kimura M. Functional implication of archaeal homologues of human RNase P protein pair Pop5 and Rpp30. J Biochem 2015; 159:31-40. [PMID: 26152732 DOI: 10.1093/jb/mvv067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/09/2015] [Indexed: 12/19/2022] Open
Abstract
PhoPop5 and PhoRpp30 in the hyperthermophilic archaeon Pyrococcus horikoshii, homologues of human ribonuclease P (RNase P) proteins hPop5 and Rpp30, respectively, fold into a heterotetramer [PhoRpp30-(PhoPop5)2-PhoRpp30], which plays a crucial role in the activation of RNase P RNA (PhopRNA). Here, we examined the functional implication of PhoPop5 and PhoRpp30 in the tetramer. Surface plasmon resonance (SPR) analysis revealed that the tetramer strongly interacts with an oligonucleotide including the nucleotide sequence of a stem-loop SL3 in PhopRNA. In contrast, PhoPop5 had markedly reduced affinity to SL3, whereas PhoRpp30 had little affinity to SL3. SPR studies of PhoPop5 mutants further revealed that the C-terminal helix (α4) in PhoPop5 functions as a molecular recognition element for SL3. Moreover, gel filtration indicated that PhoRpp30 exists as a monomer, whereas PhoPop5 is an oligomer in solution, suggesting that PhoRpp30 assists PhoPop5 in attaining a functionally active conformation by shielding hydrophobic surfaces of PhoPop5. These results, together with available data, allow us to generate a structural and mechanistic model for the PhopRNA activation by PhoPop5 and PhoRpp30, in which the two C-terminal helices (α4) of PhoPop5 in the tetramer whose formation is assisted by PhoRpp30 act as binding elements and bridge SL3 and SL16 in PhopRNA.
Collapse
Affiliation(s)
- Masato Hamasaki
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and
| | - Kohsuke Hazeyama
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and
| | - Fumihiko Iwasaki
- Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Toshifumi Ueda
- Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Takashi Nakashima
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yoshimitsu Kakuta
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Makoto Kimura
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| |
Collapse
|
31
|
Affiliation(s)
- Jody C. May
- Department
of Chemistry,
Center for Innovative Technology, Vanderbilt Institute for Chemical
Biology, Vanderbilt Institute for Integrative Biosystems Research
and Education , Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A. McLean
- Department
of Chemistry,
Center for Innovative Technology, Vanderbilt Institute for Chemical
Biology, Vanderbilt Institute for Integrative Biosystems Research
and Education , Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
32
|
Maurer MM, Donohoe GC, Valentine SJ. Advances in ion mobility-mass spectrometry instrumentation and techniques for characterizing structural heterogeneity. Analyst 2015; 140:6782-98. [PMID: 26114255 DOI: 10.1039/c5an00922g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enabling IM-MS instrumentation and techniques for characterizing sample structural heterogeneity have developed rapidly over the last five years.
Collapse
Affiliation(s)
- Megan M. Maurer
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Gregory C. Donohoe
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | | |
Collapse
|