1
|
Jõemetsa S, Joyce P, Lubart Q, Mapar M, Celauro E, Agnarsson B, Block S, Bally M, Esbjörner EK, Jeffries GDM, Höök F. Independent Size and Fluorescence Emission Determination of Individual Biological Nanoparticles Reveals that Lipophilic Dye Incorporation Does Not Scale with Particle Size. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9693-9700. [PMID: 32787069 DOI: 10.1021/acs.langmuir.0c00941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advancements in nanoparticle characterization techniques are critical for improving the understanding of how biological nanoparticles (BNPs) contribute to different cellular processes, such as cellular communication, viral infection, as well as various drug-delivery applications. Since BNPs are intrinsically heterogeneous, there is a need for characterization methods that are capable of providing information about multiple parameters simultaneously, preferably at the single-nanoparticle level. In this work, fluorescence microscopy was combined with surface-based two-dimensional flow nanometry, allowing for simultaneous and independent determination of size and fluorescence emission of individual BNPs. In this way, the dependence of the fluorescence emission of the commonly used self-inserting lipophilic dye 3,3'-dioctadecyl-5,5'-di(4-sulfophenyl)oxacarbocyanine (SP-DiO) could successfully be correlated with nanoparticle size for different types of BNPs, including synthetic lipid vesicles, lipid vesicles derived from cellular membrane extracts, and extracellular vesicles derived from human SH-SY5Y cell cultures; all vesicles had a radius, r, of ∼50 nm and similar size distributions. The results demonstrate that the dependence of fluorescence emission of SP-DiO on nanoparticle size varies significantly between the different types of BNPs, with the expected dependence on membrane area, r2, being observed for synthetic lipid vesicles, while a significant weaker dependence on size was observed for BNPs with more complex composition. The latter observation is attributed to a size-dependent difference in membrane composition, which may influence either the optical properties of the dye and/or the insertion efficiency, indicating that the fluorescence emission of this type of self-inserting dye may not be reliable for determining size or size distribution of BNPs with complex lipid compositions.
Collapse
Affiliation(s)
- Silver Jõemetsa
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| | - Paul Joyce
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| | - Quentin Lubart
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden
| | - Mokhtar Mapar
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| | - Emanuele Celauro
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, Umeå University, NUS Målpunkt R, 901 85 Umeå, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden
| | - Gavin D M Jeffries
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| |
Collapse
|
2
|
Jiao Y, Zhang L, Gao X, Si W, Duan C. A Cofactor-Substrate-Based Supramolecular Fluorescent Probe for the Ultrafast Detection of Nitroreductase under Hypoxic Conditions. Angew Chem Int Ed Engl 2020; 59:6021-6027. [PMID: 31845434 DOI: 10.1002/anie.201915040] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Identifying the location and expression levels of enzymes under hypoxic conditions in cancer cells is vital in early-stage cancer diagnosis and monitoring. By encapsulating a fluorescent substrate, L-NO2 , within the NADH mimic-containing metal-organic capsule Zn-MPB, we developed a cofactor-substrate-based supramolecular luminescent probe for ultrafast detection of hypoxia-related enzymes in solution in vitro and in vivo. The host-guest structure fuses the coenzyme and substrate into one supramolecular probe to avoid control by NADH, switching the catalytic process of nitroreductase from a double-substrate mechanism to a single-substrate one. This probe promotes enzyme efficiency by altering the substrate catalytic process and enhances the electron transfer efficiency through an intra-molecular pathway with increased activity. The enzyme content and fluorescence intensity showed a linear relationship and equilibrium was obtained in seconds, showing potential for early tumor diagnosis, biomimetic catalysis, and prodrug activation.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian City, 116024, China
| | - Lei Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian City, 116024, China
| | - Xu Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian City, 116024, China
| | - Wen Si
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian City, 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian City, 116024, China
| |
Collapse
|
3
|
Jiao Y, Zhang L, Gao X, Si W, Duan C. A Cofactor‐Substrate‐Based Supramolecular Fluorescent Probe for the Ultrafast Detection of Nitroreductase under Hypoxic Conditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian City 116024 China
| | - Lei Zhang
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian City 116024 China
| | - Xu Gao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian City 116024 China
| | - Wen Si
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian City 116024 China
| | - Chunying Duan
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian City 116024 China
| |
Collapse
|
4
|
Yang H, Li H, Liu T. Photobleaching statistics in single-molecule on-/off-time distributions. J Chem Phys 2019; 151:174101. [PMID: 31703494 DOI: 10.1063/1.5126500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The on- and and off-time distributions from fluorescence single-molecule experiments are widely used to extract kinetics parameters with the goal to provide a quantitative description for the molecule's behavior on the ensemble level. Such experiments are inevitably influenced by photobleaching, where the fluorescent probe transitions to a nonemissive state. Yet, it appears that few reports went beyond acknowledging this unavoidable complication; in fact, it has so far been ignored when evaluating off-time distributions. Here, we present a theoretical framework that allows the derivation of analytical equations in which photobleaching kinetics are rigorously incorporated. Unexpectedly, our results indicate that the off-time distribution should be nonexponential even when all the rate processes are single exponential. With the analytical theory understood and demonstrated as easy to implement, such ubiquitous photochemical processes can now be readily included in routine experimental analyses.
Collapse
Affiliation(s)
- Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Hao Li
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Tao Liu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
5
|
Vallooran JJ, Assenza S, Mezzenga R. Spatiotemporal Control of Enzyme‐Induced Crystallization Under Lyotropic Liquid Crystal Nanoconfinement. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jijo J. Vallooran
- Department of Health Science and TechnologyETH Zurich Schmelzbergstrasse 9 8092 Zürich Switzerland
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Salvatore Assenza
- Department of Health Science and TechnologyETH Zurich Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Raffaele Mezzenga
- Department of Health Science and TechnologyETH Zurich Schmelzbergstrasse 9 8092 Zürich Switzerland
- Department of MaterialsETH Zurich Wolfgang-Pauli-Strasse 10 8093 Zurich Switzerland
| |
Collapse
|
6
|
Vallooran JJ, Assenza S, Mezzenga R. Spatiotemporal Control of Enzyme‐Induced Crystallization Under Lyotropic Liquid Crystal Nanoconfinement. Angew Chem Int Ed Engl 2019; 58:7289-7293. [DOI: 10.1002/anie.201901078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/19/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jijo J. Vallooran
- Department of Health Science and TechnologyETH Zurich Schmelzbergstrasse 9 8092 Zürich Switzerland
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Salvatore Assenza
- Department of Health Science and TechnologyETH Zurich Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Raffaele Mezzenga
- Department of Health Science and TechnologyETH Zurich Schmelzbergstrasse 9 8092 Zürich Switzerland
- Department of MaterialsETH Zurich Wolfgang-Pauli-Strasse 10 8093 Zurich Switzerland
| |
Collapse
|
7
|
Joyce P, Gustafsson H, Prestidge CA. Engineering intelligent particle-lipid composites that control lipase-mediated digestion. Adv Colloid Interface Sci 2018; 260:1-23. [PMID: 30119842 DOI: 10.1016/j.cis.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Nanostructured particle-lipid composites have emerged as state-of-the-art carrier systems for poorly water-soluble bioactive molecules due to their ability to control and enhance the lipase-mediated hydrolysis of encapsulated triglycerides, leading to a subsequent improvement in the solubilisation and absorption of encapsulated species. The first generation of particle-lipid composites (i.e. silica-lipid hybrid (SLH) microparticles) were designed and fabricated by spray drying a silica nanoparticle-stabilised Pickering emulsion, to create a novel three-dimensional architecture, whereby lipid droplets were encapsulated within a porous matrix support. The development of SLH microparticles has acted as a solid foundation for the synthesis of several next generation particle-lipid composites, including polymer-lipid hybrid (PLH) and clay-lipid hybrid systems (CLH), which present lipase with unique lipid microenvironments for optimised lipolysis. This review details the methods utilised to engineer lipid hybrid particles and the strategic investigations that have been performed to determine the influence of key material characteristics on digestion enzyme activity. In doing so, this provides insight into manipulating the mechanism of lipase action through the intelligent design of lipid-based biomaterials for their use in drug delivery formulations and novel functional foods.
Collapse
|
8
|
Hydrolase-Like Activity Provided by Zinc(II) and Oleoyl-Histidine at Liposome Membrane Surface. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Park SJ, Song S, Jeong IC, Koh HR, Kim JH, Sung J. Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes. J Phys Chem Lett 2017; 8:3152-3158. [PMID: 28609615 DOI: 10.1021/acs.jpclett.7b01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.
Collapse
Affiliation(s)
- Seong Jun Park
- National Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University , Seoul 06974, Korea
- National Institute of Innovative Functional Imaging, Chung-Ang University , Seoul 06974, Korea
| | - Sanggeun Song
- National Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University , Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University , Seoul 06974, Korea
- National Institute of Innovative Functional Imaging, Chung-Ang University , Seoul 06974, Korea
| | - In-Chun Jeong
- National Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University , Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University , Seoul 06974, Korea
- National Institute of Innovative Functional Imaging, Chung-Ang University , Seoul 06974, Korea
| | - Hye Ran Koh
- National Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University , Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University , Seoul 06974, Korea
| | - Ji-Hyun Kim
- National Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University , Seoul 06974, Korea
| | - Jaeyoung Sung
- National Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University , Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University , Seoul 06974, Korea
- National Institute of Innovative Functional Imaging, Chung-Ang University , Seoul 06974, Korea
| |
Collapse
|
10
|
Friedrich R, Block S, Alizadehheidari M, Heider S, Fritzsche J, Esbjörner EK, Westerlund F, Bally M. A nano flow cytometer for single lipid vesicle analysis. LAB ON A CHIP 2017; 17:830-841. [PMID: 28128381 DOI: 10.1039/c6lc01302c] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a nanofluidic device for fluorescence-based detection and characterization of small lipid vesicles on a single particle basis. The device works like a nano flow cytometer where individual vesicles are visualized by fluorescence microscopy while passing through parallel nanochannels in a pressure-driven flow. An experiment requires less than 20 μl sample volume to quantify both the vesicle content and the fluorescence signals emitted by individual vesicles. We show that the device can be used to accurately count the number of fluorescent synthetic lipid vesicles down to a vesicle concentration of 170 fM. We also show that the size-distribution of the vesicles can be resolved from their fluorescence intensity distribution after calibration. We demonstrate the applicability of the assay in two different examples. In the first, we use the nanofluidic device to determine the particle concentration in a sample containing cell-derived extracellular vesicles labelled with a lipophilic dye. In the second, we demonstrate that dual-color detection can be used to probe peptide binding to synthetic lipid vesicles; we identify a positive membrane-curvature sensing behavior of an arginine enriched version of the Antennapedia homeodomain peptide penetratin. Altogether, these results illustrate the potential of this nanofluidic-based methodology for characterization and quantification of small biological vesicles and their interactors without ensemble averaging. The device is therefore likely to find use as a quantitative analytical tool in a variety of fields ranging from diagnostics to fundamental biology research. Moreover, our results have potential to facilitate further development of automated lab-on-a-chip devices for vesicle analysis.
Collapse
Affiliation(s)
- Remo Friedrich
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Stephan Block
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | | | - Susanne Heider
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden. and Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden. and Institut Curie, Centre de Recherche, CNRS, UMR168, Physico-Chimie Curie, Paris, France
| |
Collapse
|
11
|
Berg J, Block S, Höök F, Brzezinski P. Single Proteoliposomes with E. coli
Quinol Oxidase: Proton Pumping without Transmembrane Leaks. Isr J Chem 2017. [DOI: 10.1002/ijch.201600138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Johan Berg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences; Stockholm University; SE-106 91 Stockholm Sweden
| | - Stephan Block
- Department of Physics, Division of Biological Physics; Chalmers University of Technology; Göteborg SE-412 96 Sweden
| | - Fredrik Höök
- Department of Physics, Division of Biological Physics; Chalmers University of Technology; Göteborg SE-412 96 Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences; Stockholm University; SE-106 91 Stockholm Sweden
| |
Collapse
|
12
|
Zhdanov VP, Agnarsson B, Höök F. Kinetics of enzyme-mediated hydrolysis of lipid vesicles. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Tabaei SR, Gillissen JJJ, Block S, Höök F, Cho NJ. Hydrodynamic Propulsion of Liposomes Electrostatically Attracted to a Lipid Membrane Reveals Size-Dependent Conformational Changes. ACS NANO 2016; 10:8812-8820. [PMID: 27603118 DOI: 10.1021/acsnano.6b04572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The efficiency of lipid nanoparticle uptake across cellular membranes is strongly dependent on the very first interaction step. Detailed understanding of this step is in part hampered by the large heterogeneity in the physicochemical properties of lipid nanoparticles, such as liposomes, making conventional ensemble-averaging methods too blunt to address details of this complex process. Here, we contribute a means to explore whether individual liposomes become deformed upon binding to fluid cell-membrane mimics. This was accomplished by using hydrodynamic forces to control the propulsion of nanoscale liposomes electrostatically attracted to a supported lipid bilayer. In this way, the size of individual liposomes could be determined by simultaneously measuring both their individual drift velocity and diffusivity, revealing that for a radius of ∼45 nm, a close agreement with dynamic light scattering data was observed, while larger liposomes (radius ∼75 nm) displayed a significant deformation unless composed of a gel-phase lipid. The relevance of being able to extract this type of information is discussed in the context of membrane fusion and cellular uptake.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Jurriaan J J Gillissen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Stephan Block
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Göteborg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Göteborg, Sweden
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
14
|
Tabaei SR, Gillissen JJJ, Vafaei S, Groves JT, Cho NJ. Size-dependent, stochastic nature of lipid exchange between nano-vesicles and model membranes. NANOSCALE 2016; 8:13513-13520. [PMID: 27355613 DOI: 10.1039/c6nr03817d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction of nanoscale lipid vesicles with cell membranes is of fundamental importance for the design and development of vesicular drug delivery systems. Here, we introduce a novel approach to study vesicle-membrane interactions whereby we are able to probe the influence of nanoscale membrane properties on the dynamic adsorption, exchange, and detachment of vesicles. Using total internal reflection fluorescence (TIRF) microscopy, we monitor these processes in real-time upon the electrostatically tuned attachment of individual, sub-100 nm vesicles to a supported lipid bilayer. The observed exponential vesicle detachment rate depends strongly on the vesicle size, but not on the vesicle charge, which suggests that lipid exchange occurs during a single stochastic event, which is consistent with membrane stalk formation. The fluorescence microscopy assay developed in this work may enable measuring of the probability of stalk formation in a controlled manner, which is of fundamental importance in membrane biology, offering a new tool to understand nanoscale phenomena in the context of biological sciences.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.
| | | | | | | | | |
Collapse
|
15
|
Jackman JA, Kim MC, Zhdanov VP, Cho NJ. Relationship between vesicle size and steric hindrance influences vesicle rupture on solid supports. Phys Chem Chem Phys 2016; 18:3065-72. [DOI: 10.1039/c5cp06786c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although it is thermodynamically favorable for adsorbed vesicles to rupture with increasing vesicle size, this study demonstrates that steric hindrance acts as a kinetic barrier to impede large vesicles from rupturing.
Collapse
Affiliation(s)
- Joshua A. Jackman
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Min Chul Kim
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Vladimir P. Zhdanov
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|
16
|
Agnarsson B, Lundgren A, Gunnarsson A, Rabe M, Kunze A, Mapar M, Simonsson L, Bally M, Zhdanov VP, Höök F. Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells. ACS NANO 2015; 9:11849-11862. [PMID: 26517791 DOI: 10.1021/acsnano.5b04168] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Advancement in the understanding of biomolecular interactions has benefited greatly from the development of surface-sensitive bioanalytical sensors. To further increase their broad impact, significant efforts are presently being made to enable label-free and specific biomolecule detection with high sensitivity, allowing for quantitative interpretation and general applicability at low cost. In this work, we have addressed this challenge by developing a waveguide chip consisting of a flat silica core embedded in a symmetric organic cladding with a refractive index matching that of water. This is shown to reduce stray light (background) scattering and thereby allow for label-free detection of faint objects, such as individual sub-20 nm gold nanoparticles as well as sub-100 nm lipid vesicles. Measurements and theoretical analysis revealed that light-scattering signals originating from single surface-bound lipid vesicles enable characterization of their sizes without employing fluorescent lipids as labels. The concept is also demonstrated for label-free measurements of protein binding to and enzymatic (phospholipase A2) digestion of individual lipid vesicles, enabling an analysis of the influence on the measured kinetics of the dye-labeling of lipids required in previous assays. Further, diffraction-limited imaging of cells (platelets) binding to a silica surface showed that distinct subcellular features could be visualized and temporally resolved during attachment, activation, and spreading. Taken together, these results underscore the versatility and general applicability of the method, which due to its simplicity and compatibility with conventional microscopy setups may reach a widespread in life science and beyond.
Collapse
Affiliation(s)
- Björn Agnarsson
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
| | - Anders Lundgren
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
| | - Anders Gunnarsson
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
| | - Michael Rabe
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
| | - Angelika Kunze
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
- Institute of Physical Chemistry, University of Göttingen , D-37077 Göttingen, Germany
| | - Mokhtar Mapar
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
| | - Lisa Simonsson
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
| | - Marta Bally
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
| | - Vladimir P Zhdanov
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Fredrik Höök
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology , SE-41296 Göteborg, Sweden
| |
Collapse
|
17
|
Zhdanov VP. Kinetics of virus entry by endocytosis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042715. [PMID: 25974535 DOI: 10.1103/physreve.91.042715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 06/04/2023]
Abstract
Entry of virions into the host cells is either endocytotic or fusogenic. In both cases, it occurs via reversible formation of numerous relatively weak bonds resulting in wrapping of a virion by the host membrane with subsequent membrane rupture or scission. The corresponding kinetic models are customarily focused on the formation of bonds and do not pay attention to the energetics of the whole process, which is crucially dependent, especially in the case of endocytosis, on deformation of actin filaments forming the cytoskeleton of the host cell. The kinetic model of endocytosis, proposed by the author, takes this factor into account and shows that the whole process can be divided into a rapid initial transient stage and a long steady-state stage. The entry occurs during the latter stage and can be described as a first-order reaction. Depending on the details of the dependence of the grand canonical potential on the number of bonds, the entry can be limited either by the interplay of bond formation and membrane rupture (or scission) or by reaching a maximum of this potential.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Tabaei SR, Cho NJ. Lamellar sheet exfoliation of single lipid vesicles by a membrane-active peptide. Chem Commun (Camb) 2015; 51:10272-5. [DOI: 10.1039/c5cc02769a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using total internal fluorescence microscopy, highly parallel measurements of single lipid vesicles unexpectedly reveal that a small fraction of vesicles rupture in multiple discrete steps when destabilized by a membrane-active peptide which is in contrast to classical solubilization models.
Collapse
Affiliation(s)
- Seyed R. Tabaei
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - N. J. Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|