1
|
Kandel R, Soto MA, Medina D, Patrick BO, Lelj F, MacLachlan MJ. A Redox-active Cyclometalated Platinum Ring Enables Synthetic Post-processing of a [2]Rotaxane. Angew Chem Int Ed Engl 2025; 64:e202415381. [PMID: 39480143 PMCID: PMC11735883 DOI: 10.1002/anie.202415381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 01/18/2025]
Abstract
Post-synthetic modification of mechanically interlocked molecules (MIMs) is an attractive avenue to add complexity to already intricate systems. This remains an important, challenging topic that is under-developed. In this paper, we report the synthesis and characterization of a [2]rotaxane molecule featuring a ring appended to an emissive cyclometalated PtII unit. Modulation of the oxidation state at the metal center can transform the interlocked molecule into a new PtIV [2]rotaxane or a PtIII [3]rotaxane held together by an intermetallic Pt-Pt bond - a first of its kind. These molecules display distinct structural and photophysical properties, as well as shuttling dynamics. This approach for post-synthetic modification could be used to construct more complex MIMs and inorganic supramolecular assemblies with redox properties.
Collapse
Affiliation(s)
- Raksha Kandel
- Department of ChemistryUniversity of British Columbia2036 Main MallVancouverBCV6T 1Z1Canada
| | - Miguel A. Soto
- Department of ChemistryUniversity of British Columbia2036 Main MallVancouverBCV6T 1Z1Canada
| | - Daniel Medina
- Department of ChemistryUniversity of British Columbia2036 Main MallVancouverBCV6T 1Z1Canada
| | - Brian O. Patrick
- Department of ChemistryUniversity of British Columbia2036 Main MallVancouverBCV6T 1Z1Canada
| | - Francesco Lelj
- La.M.I. and LaSCAMM INSTM Sezione Basilicata, Dipartimento di ScienzeUniversità della BasilicataVia dell'Ateneo Lucano 1085100PotenzaItaly
| | - Mark J. MacLachlan
- Department of ChemistryUniversity of British Columbia2036 Main MallVancouverBCV6T 1Z1Canada
- Stewart Blusson Quantum Matter InstituteUniversity of British Columbia2355 East MallVancouverBCV6T 1Z4Canada
- WPI Nano Life Science InstituteKanazawa UniversityKanazawa920-1192Japan
| |
Collapse
|
2
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
4
|
Puigcerver J, Zamora-Gallego JM, Marin-Luna M, Martinez-Cuezva A, Berna J. Urea-Based [2]Rotaxanes as Effective Phase-Transfer Organocatalysts: Hydrogen-Bonding Cooperative Activation Enabled by the Mechanical Bond. J Am Chem Soc 2024; 146:22887-22892. [PMID: 38975636 PMCID: PMC11345763 DOI: 10.1021/jacs.4c06630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
We finely designed a set of [2]rotaxanes with urea threads and tested them as hydrogen-bonding phase-transfer catalysts in two different nucleophilic substitutions requiring the activation of the reactant fluoride anion. The [2]rotaxane bearing a fluorinated macrocycle and a fluorine-containing urea thread displayed significantly enhanced catalytic activity in comparison with the combination of both noninterlocked components. This fact highlights the notably beneficial role of the mechanical bond, cooperatively activating the processes through hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Julio Puigcerver
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose M. Zamora-Gallego
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Marta Marin-Luna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
5
|
Tang MP, Zhu L, Deng Y, Shi YX, Kin-Man Lai S, Mo X, Pang XY, Liu C, Jiang W, Tse ECM, Au-Yeung HY. Water and Air Stable Copper(I) Complexes of Tetracationic Catenane Ligands for Oxidative C-C Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202405971. [PMID: 38661248 DOI: 10.1002/anie.202405971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Aqueous soluble and stable Cu(I) molecular catalysts featuring a catenane ligand composed of two dicationic, mutually repelling but mechanically interlocked macrocycles are reported. The ligand interlocking not only fine-tunes the coordination sphere and kinetically stabilizes the Cu(I) against air oxidation and disproportionation, but also buries the hydrophobic portions of the ligands and prevents their dissociation which are necessary for their good water solubility and a sustained activity. These catenane Cu(I) complexes can catalyze the oxidative C-C coupling of indoles and tetrahydroisoquinolines in water, using H2O2 as a green oxidant with a good substrate scope. The successful use of catenane ligands in exploiting aqueous Cu(I) catalysis thus highlights the many unexplored potential of mechanical bond as a design element for exploring transition metal catalysis under challenging conditions.
Collapse
Affiliation(s)
- Man Pang Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lihui Zhu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yi-Xiang Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Samuel Kin-Man Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xiaoyong Mo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Chunyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 100083, P. R. China
| | - Wei Jiang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Edmund Chun Ming Tse
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
6
|
Mapp A, Wilmore JT, Beer PD, Goicoechea JM. An Inorganic Click Reaction for the Synthesis of Interlocked Molecules. Angew Chem Int Ed Engl 2023; 62:e202309211. [PMID: 37449867 PMCID: PMC10953421 DOI: 10.1002/anie.202309211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
We describe the use of the cyaphide-azide 1,3-dipolar cycloaddition reaction for the synthesis of a new class of inorganic rotaxanes containing gold(I) triazaphosphole stoppers. Electron-deficient bis-azides, which thread perethylated pillar[5]arene in aromatic solvents, readily react with two equivalents of Au(IDipp)(CP) (IDipp=1,3-bis-(2,6-diisopropylphenyl)-imidazol-2-ylidene) to afford interlocked molecules via an inorganic click reaction. These transformations proceed in good yields (ca. 65 %) and in the absence of a catalyst. The resulting organometallic rotaxanes are air- and moisture-stable and can be purified by column chromatography under aerobic conditions. The targeted rotaxanes were characterized by multi-element nuclear magnetic resonance (NMR) spectroscopy, mass-spectrometry, and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Alex Mapp
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Jamie T. Wilmore
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryIndiana University800 East Kirkwood Ave.BloomingtonIN47405USA
| |
Collapse
|
7
|
Wilmore JT, Cheong Tse Y, Docker A, Whitehead C, Williams CK, Beer PD. Dynamic Metalloporphyrin-Based [2]Rotaxane Molecular Shuttles Stimulated by Neutral Lewis Base and Anion Coordination. Chemistry 2023; 29:e202300608. [PMID: 36929530 PMCID: PMC10947143 DOI: 10.1002/chem.202300608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
A series of dynamic metalloporphyrin [2]rotaxane molecular shuttles comprising of bis-functionalised Zn(II) porphyrin axle and pyridyl functionalised macrocycle components are prepared in high yield via active metal template synthetic methodology. Extensive variable temperature 1 H NMR and quantitative UV-Vis spectroscopic titration studies demonstrate dynamic macrocycle translocation is governed by an inter-component co-ordination interaction between the macrocycle pyridyl and axle Zn(II) metalloporphyrin, which serves to bias a 'resting state' co-conformation. The dynamic shuttling behaviour of the interlocked structures is dramatically inhibited by the addition of a neutral Lewis base such as pyridine, but can also be tuned via post-synthetic rotaxane demetallation of the porphyrin axle core to give free-base, or upon subsequent metallation, Ni(II) [2]rotaxane analogues. Importantly, the Lewis acidic Zn(II) porphyrin axle component is also capable of coordinating anions which induces mechanical bond shuttling behaviour resulting in a novel optical sensing response.
Collapse
Affiliation(s)
- Jamie T. Wilmore
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yuen Cheong Tse
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Andrew Docker
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Caspar Whitehead
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Charlotte K. Williams
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
8
|
Jinks M, Howard M, Rizzi F, Goldup SM, Burnett AD, Wilson AJ. Direct Detection of Hydrogen Bonds in Supramolecular Systems Using 1H- 15N Heteronuclear Multiple Quantum Coherence Spectroscopy. J Am Chem Soc 2022; 144:23127-23133. [PMID: 36508201 PMCID: PMC9782782 DOI: 10.1021/jacs.2c10742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogen-bonded supramolecular systems are usually characterized in solution through analysis of NMR data such as complexation-induced shifts and nuclear Overhauser effects (nOe). Routine direct detection of hydrogen bonding particularly in multicomponent mixtures, even with the aid of 2D NMR experiments for full assignment, is more challenging. We describe an elementary rapid 1H-15N HMQC NMR experiment which addresses these challenges without the need for complex pulse sequences. Under readily accessible conditions (243/263 K, 50 mM solutions) and natural 15N abundance, unambiguous assignment of 15N resonances facilitates direct detection of intra- and intermolecular hydrogen bonds in mechanically interlocked structures and quadruply hydrogen-bonded dimers─of dialkylaminoureidopyrimidinones, ureidopyrimidinones, and diamidonaphthyridines─in single or multicomponent mixtures to establish tautomeric configuration, conformation, and, to resolve self-sorted speciation.
Collapse
Affiliation(s)
- Michael
A. Jinks
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Mark Howard
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Federica Rizzi
- Department
of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 2BJ, U.K.
| | - Stephen M. Goldup
- Department
of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 2BJ, U.K.
| | - Andrew D. Burnett
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Andrew J. Wilson
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.,Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.,
| |
Collapse
|
9
|
Hoyas Pérez N, Sherin PS, Posligua V, Greenfield JL, Fuchter MJ, Jelfs KE, Kuimova MK, Lewis JEM. Emerging properties from mechanical tethering within a post-synthetically functionalised catenane scaffold. Chem Sci 2022; 13:11368-11375. [PMID: 36320581 PMCID: PMC9533469 DOI: 10.1039/d2sc04101d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 09/06/2024] Open
Abstract
Maintaining close spatial proximity of functional moieties within molecular systems can result in fascinating emergent properties. Whilst much work has been done on covalent tethering of functional units for myriad applications, investigations into mechanically linked systems are relatively rare. Formation of the mechanical bond is usually the final step in the synthesis of interlocked molecules, placing limits on the throughput of functionalised architectures. Herein we present the synthesis of a bis-azide [2]catenane scaffold that can be post-synthetically modified using CuAAC 'click' chemistry. In this manner we have been able to access functionalised catenanes from a common precursor and study the properties of electrochemically active, emissive and photodimerisable units within the mechanically interlocked system in comparison to non-interlocked analogues. Our data demonstrates that the greater (co-)conformational flexibility that can be obtained with mechanically interlocked systems compared to traditional covalent tethers paves the way for developing new functional molecules with exciting properties.
Collapse
Affiliation(s)
- Nadia Hoyas Pérez
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Peter S Sherin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Victor Posligua
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Jake L Greenfield
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - James E M Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
10
|
Wang G, Yang Y, Liu H, Chen M, Jiang Z, Bai Q, Yuan J, Jiang Z, Li Y, Wang P. Modular Construction of a Tessellated Octahedron, its Hierarchical Spherical Aggregate Behavior, and Electrocatalytic CO
2
Reduction Activity. Angew Chem Int Ed Engl 2022; 61:e202205851. [DOI: 10.1002/anie.202205851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Guotao Wang
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| | - Yunna Yang
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
| | - Hui Liu
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Yiming Li
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| |
Collapse
|
11
|
Wang G, Yang Y, liu H, Chen M, Jiang Z, Bai Q, Yuan J, jiang Z, Li Y, Wang P. Modular Construction of a Tessellated Octahedron and its Hierarchical Spherical Aggregate Behavior. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guotao Wang
- Central South University School of Metallurgy and Environment CHINA
| | - Yunna Yang
- Central South University School of Metallurgy and Environment CHINA
| | - Hui liu
- Central South University School of Metallurgy and Environment CHINA
| | - Mingzhao Chen
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Zhiyuan Jiang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Qixia Bai
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Jie Yuan
- Henan Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhilong jiang
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Yiming Li
- Central South University College of Chemistry and Chemical Engineering CHINA
| | - Pingshan Wang
- Central South University College of Chemistry and Chemical Engineering 932 S. Lushan Rd. 410083 Changsha CHINA
| |
Collapse
|
12
|
d'Orchymont F, Holland JP. Supramolecular Rotaxane‐Based Multi‐Modal Probes for Cancer Biomarker Imaging**. Angew Chem Int Ed Engl 2022; 61:e202204072. [PMID: 35532102 PMCID: PMC9400884 DOI: 10.1002/anie.202204072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 01/06/2023]
Abstract
Mechanically interlocked molecules present opportunities to construct therapeutic drugs and diagnostic imaging agents but harnessing supramolecular chemistry to make biologically active probes in water is a challenge. Here, we describe a rotaxane‐based approach to synthesise radiolabelled proteins and peptides for molecular imaging of cancer biomarkers in vivo. Host–guest chemistry using β‐cyclodextrin‐ and cucurbit[6]uril‐catalysed cooperative capture synthesis produced gallium‐68 or zirconium‐89 radiolabelled metallo[4]rotaxanes. Photochemical conjugation to trastuzumab led to a viable positron emission tomography (PET) radiotracer. The rotaxane architecture can be tuned to accommodate different radiometal ion complexes, other protein‐ or peptide‐based drugs, and fluorophores for optical detection. This technology provides a platform to explore how mechanical bonding can improve drug delivery, enhance tumour specificity, control radiotracer pharmacokinetics, and reduce dosimetry.
Collapse
Affiliation(s)
- Faustine d'Orchymont
- University of Zurich Department of Chemistry Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Jason P. Holland
- University of Zurich Department of Chemistry Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
13
|
Supramolecular Rotaxane‐Based Multi‐Modal Probes for Cancer Biomarker Imaging**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022; 61:e202200638. [DOI: 10.1002/anie.202200638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
15
|
Maynard JRJ, Galmés B, Stergiou AD, Symes MD, Frontera A, Goldup SM. Anion-π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022; 61:e202115961. [PMID: 35040543 PMCID: PMC9303940 DOI: 10.1002/anie.202115961] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/13/2022]
Abstract
We report a series of rotaxane-based anion-π catalysts in which the mechanical bond between a bipyridine macrocycle and an axle containing an NDI unit is intrinsic to the activity observed, including a [3]rotaxane that catalyses an otherwise disfavoured Michael addition in >60 fold selectivity over a competing decarboxylation pathway that dominates under Brønsted base conditions. The results are rationalized by detailed experimental investigations, electrochemical and computational analysis.
Collapse
Affiliation(s)
| | - Bartomeu Galmés
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | - Athanasios D. Stergiou
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Mark D. Symes
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | | |
Collapse
|
16
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
17
|
Zhang D, Gan Q, Plajer AJ, Lavendomme R, Ronson TK, Lu Z, Jensen JD, Laursen BW, Nitschke JR. Templation and Concentration Drive Conversion Between a Fe II12L 12 Pseudoicosahedron, a Fe II4L 4 Tetrahedron, and a Fe II2L 3 Helicate. J Am Chem Soc 2022; 144:1106-1112. [PMID: 35014803 PMCID: PMC9097479 DOI: 10.1021/jacs.1c11536] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/30/2022]
Abstract
We report the construction of three structurally distinct self-assembled architectures: FeII12L12 pseudoicosahedron 1, FeII2L3 helicate 2, and FeII4L4 tetrahedron 3, formed from a single triazatriangulenium subcomponent A under different reaction conditions. Pseudoicosahedral capsule 1 is the largest formed through subcomponent self-assembly to date, with an outer-sphere diameter of 5.4 nm and a cavity volume of 15 nm3. The outcome of self-assembly depended upon concentration, where the formation of pseudoicosahedron 1 was favored at higher concentrations, while helicate 2 exclusively formed at lower concentrations. The conversion of pseudoicosahedron 1 or helicate 2 into tetrahedron 3 occurred following the addition of a CB11H12- or B12F122- template.
Collapse
Affiliation(s)
- Dawei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, People’s Republic
of China
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Quan Gan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Hubei Key
Laboratory of Bioinorganic Chemistry & Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Alex J. Plajer
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Oxford Chemistry, Chemical Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Roy Lavendomme
- COMOC—Center
for Ordered Materials, Organometallics and Catalysis, Department of
Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Zifei Lu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Jesper D. Jensen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Bo W. Laursen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|
18
|
Heard AW, Suárez JM, Goldup SM. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat Rev Chem 2022; 6:182-196. [PMID: 37117433 DOI: 10.1038/s41570-021-00348-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
Mechanically interlocked molecules, such as rotaxanes and catenanes, are receiving increased attention as scaffolds for the development of new catalysts, driven by both their increasing accessibility and high-profile examples of the mechanical bond delivering desirable behaviours and properties. In this Review, we survey recent advances in the catalytic applications of mechanically interlocked molecules organized by the effect of the mechanical bond on key catalytic properties, namely, activity, chemoselectivity and stereoselectivity, and focus on how the mechanically bonded structure leads to the observed behaviour. Our aim is to inspire future investigations of mechanically interlocked catalysts, including those outside of the supramolecular community.
Collapse
|
19
|
Maynard JRJ, Galmés B, Stergiou A, Symes M, Frontera A, Goldup SM. Anion‐π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Mark Symes
- University of Glasgow Chemistry UNITED KINGDOM
| | | | | |
Collapse
|
20
|
Rad N, Sashuk V. A light-gated regulation of the reaction site by a cucurbit[7]uril macrocycle. Chem Sci 2022; 13:12440-12444. [DOI: 10.1039/d2sc02077g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
On–off competitive inhibition is presented. Photoswitchable pseudorotaxane controls the rate of self-reaction and product selectivity of external reactions.
Collapse
Affiliation(s)
- Nazar Rad
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
21
|
Perez JDM, Alajarin M, Martinez-Cuezva A, Berna J. Modulating the Catalytic Activity by the Mechanical Bond: Organocatalysis with Polyamide [2]Rotaxanes bearing a Secondary Amino Function at the Thread. Org Chem Front 2022. [DOI: 10.1039/d2qo00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation of the catalytic activity of degenerate succinamide-based [2]rotaxanes by changes at their macrocyclic component is disclosed herein. These systems, bearing an acyclic secondary amine function at the thread...
Collapse
|
22
|
|
23
|
McCarney EP, Lovitt JI, Gunnlaugsson T. Mechanically Interlocked Chiral Self-Templated [2]Catenanes from 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Ligands. Chemistry 2021; 27:12052-12057. [PMID: 34106499 PMCID: PMC8457180 DOI: 10.1002/chem.202101773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/24/2022]
Abstract
We report the efficient self-templated formation of optically active 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) derived homocircuit [2]catenane enantiomers. This represents the first example of the enantiopure formation of chiral btp homocircuit [2]catenanes from starting materials consisting of a classical chiral element; X-ray diffraction crystallography enabled the structural characterization of the [2]catenane. The self-assembly reaction was monitored closely in solution facilitating the characterization of the pseudo-rotaxane reaction intermediate prior to mechanically interlocking the pre-organised system via ring-closing metathesis.
Collapse
Affiliation(s)
- Eoin P. McCarney
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - June I. Lovitt
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| |
Collapse
|
24
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
25
|
Cera G, Giovanardi G, Secchi A, Arduini A. Merging Molecular Recognition and Gold(I) Catalysis with Triphoscalix[6]arene Ligands. Chemistry 2021; 27:10261-10266. [PMID: 34002908 DOI: 10.1002/chem.202101323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/17/2022]
Abstract
We report the synthesis and characterization of novel triphosphine calix[6]arene ligands. These supramolecular wheels, with recognition features governed by the hydrogen-bonding domain, were employed to synthesize multitasking trinuclear gold(I) complexes as a new platform for the synthesis of interwoven (pseudo)rotaxane species. In parallel, the multivalent, metal-bonded upper rim displayed catalytic features promoting highly selective gold-catalyzed cycloisomerization reactions of 1,6-enynes.
Collapse
Affiliation(s)
- Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Giovanardi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
26
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
27
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter*. Angew Chem Int Ed Engl 2021; 60:12066-12073. [PMID: 33666324 PMCID: PMC8251797 DOI: 10.1002/anie.202101870] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/12/2022]
Abstract
We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.
Collapse
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Materials Research CentreIndian Institute of ScienceBangalore560012India
| | - Federica Rizzi
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Wenbo Li
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Michael A. Jinks
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ifor D. W. Samuel
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
28
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Materials Research Centre Indian Institute of Science Bangalore 560012 India
| | - Federica Rizzi
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Wenbo Li
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Michael A. Jinks
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Stephen M. Goldup
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
29
|
Gualandi L, Franchi P, Mezzina E, Goldup SM, Lucarini M. Spin-labelled mechanically interlocked molecules as models for the interpretation of biradical EPR spectra. Chem Sci 2021; 12:8385-8393. [PMID: 34221319 PMCID: PMC8221063 DOI: 10.1039/d1sc01462e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Biradical spin probes can provide detailed information about the distances between molecules/regions of molecules because the through-space coupling of radical centres, characterised by J, is strongly distance dependent. However, if the system can adopt multiple configurations, as is common in supramolecular complexes, the shape of the EPR spectrum is influenced not only by J but also the rate of exchange between different states. In practice, it is often hard to separate these variables and as a result, the effect of the latter is sometimes overlooked. To demonstrate this challenge unequivocally we synthesised rotaxane biradicals containing nitronyl nitroxide units at the termini of their axles. The rotaxanes exchange between the available biradical conformations more slowly than the corresponding non-interlocked axles but, despite this, in some cases, the EPR spectra of the axle and rotaxane remain remarkably similar. Detailed analysis allowed us to demonstrate that the similar EPR spectral shapes result from different combinations of J and rates of conformational interconversion, a phenomenon suggested theoretically more than 50 years ago. This work reinforces the idea that thorough analysis must be performed when interpreting the spectra of biradicals employed as spin probes in solution.
Collapse
Affiliation(s)
- Lorenzo Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| | - Paola Franchi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| | - Elisabetta Mezzina
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| | - Stephen M Goldup
- Department of Chemistry, University of Southampton University Road, Highfield Southampton UK
| | - Marco Lucarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| |
Collapse
|
30
|
Martín‐Torres I, Ogalla G, Yang J, Rinaldi A, Echavarren AM. Enantioselective Alkoxycyclization of 1,6-Enynes with Gold(I)-Cavitands: Total Synthesis of Mafaicheenamine C. Angew Chem Int Ed Engl 2021; 60:9339-9344. [PMID: 33576560 PMCID: PMC8251978 DOI: 10.1002/anie.202017035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Chiral gold(I)-cavitand complexes have been developed for the enantioselective alkoxycyclization of 1,6-enynes. This enantioselective cyclization has been applied for the first total synthesis of carbazole alkaloid (+)-mafaicheenamine C and its enantiomer, establishing its configuration as R. The cavity effect was also evaluated in the cycloisomerization of dienynes. A combination of experiments and theoretical studies demonstrates that the cavity of the gold(I) complexes forces the enynes to adopt constrained conformations, which results in the high observed regio- and stereoselectivities.
Collapse
Affiliation(s)
- Inmaculada Martín‐Torres
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Gala Ogalla
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Jin‐Ming Yang
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| | - Antonia Rinaldi
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| |
Collapse
|
31
|
Martín‐Torres I, Ogalla G, Yang J, Rinaldi A, Echavarren AM. Enantioselective Alkoxycyclization of 1,6‐Enynes with Gold(I)‐Cavitands: Total Synthesis of Mafaicheenamine C. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Inmaculada Martín‐Torres
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Gala Ogalla
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Jin‐Ming Yang
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonia Rinaldi
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
32
|
Orton GRF, Pilgrim BS, Champness NR. The chemistry of phosphines in constrained, well-defined microenvironments. Chem Soc Rev 2021; 50:4411-4431. [PMID: 33606857 DOI: 10.1039/d0cs01556c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Developments in the confinement of phosphines within micro- or nano-environments are explored. Phosphines are ubiquitous across metal coordination chemistry and underpin some of the most famous homogeneous transition metal catalysts. Constraining phosphines within confined environments influences not only their behaviour but also that of their metal complexes. Notable examples include the use of metal-organic frameworks (MOFs) or metal-organic cages (MOCs) to support phosphines which demonstrate how the microenvironment within such constructs leads to reactivity modification. The development of phosphine confinement is explored and parallels are drawn with related constrained macrocyclic systems and mechanically interlocked molecules. The review concludes by identifying areas that remain a challenge and those that will provide new avenues for research.
Collapse
Affiliation(s)
- Georgia R F Orton
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | |
Collapse
|
33
|
Liu W, Jones LO, Wu H, Stern CL, Sponenburg RA, Schatz GC, Stoddart JF. Supramolecular Gold Stripping from Activated Carbon Using α-Cyclodextrin. J Am Chem Soc 2021; 143:1984-1992. [PMID: 33378203 DOI: 10.1021/jacs.0c11769] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the molecular recognition of the Au(CN)2- anion, a crucial intermediate in today's gold mining industry, by α-cyclodextrin. Three X-ray single-crystal superstructures-KAu(CN)2⊂α-cyclodextrin, KAu(CN)2⊂(α-cyclodextrin)2, and KAg(CN)2⊂(α-cyclodextrin)2-demonstrate that the binding cavity of α-cyclodextrin is a good fit for metal-coordination complexes, such as Au(CN)2- and Ag(CN)2- with linear geometries, while the K+ ions fulfill the role of linking α-cyclodextrin tori together as a result of [K+···O] ion-dipole interactions. A 1:1 binding stoichiometry between Au(CN)2- and α-cyclodextrin in aqueous solution, revealed by 1H NMR titrations, has produced binding constants in the order of 104 M-1. Isothermal calorimetry titrations indicate that this molecular recognition is driven by a favorable enthalpy change overcoming a small entropic penalty. The adduct formation of KAu(CN)2⊂α-cyclodextrin in aqueous solution is sustained by multiple [C-H···π] and [C-H···anion] interactions in addition to hydrophobic effects. The molecular recognition has also been investigated by DFT calculations, which suggest that the 2:1 binding stoichiometry between α-cyclodextrin and Au(CN)2- is favored in the presence of ethanol. We have demonstrated that this molecular recognition process between α-cyclodextrin and KAu(CN)2 can be applied to the stripping of gold from the surface of activated carbon at room temperature. Moreover, this stripping process is selective for Au(CN)2- in the presence of Ag(CN)2-, which has a lower binding affinity toward α-cyclodextrin. This molecular recognition process could, in principle, be integrated into commercial gold-mining protocols and lead to significantly reduced costs, energy consumption, and environmental impact.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rebecca A Sponenburg
- Quantitative Bio-Element Imaging Center, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
34
|
Abstract
Mechanically interlocked molecules (MIMs) have gained attention in the field of catalysis due to their unique molecular properties. Central to MIMs, rotaxanes are highly promising and attractive supramolecular catalysts due to their unique three-dimensional structures and the flexibility of their subcomponents. This Minireview discusses the use of rotaxanes in organocatalysis and transition-metal catalysis.
Collapse
Affiliation(s)
- Carel Kwamen
- Faculty of ChemistryOrganic Chemistry and Center for NanointegrationDuisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Jochen Niemeyer
- Faculty of ChemistryOrganic Chemistry and Center for NanointegrationDuisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| |
Collapse
|
35
|
Perez JDM, Puigcerver J, Orlando T, Pastor A, Martins MAP, Alajarin M, Martinez-Cuezva A, Berna J. Mechanical bonding activation in rotaxane-based organocatalysts. Org Chem Front 2021. [DOI: 10.1039/d1qo00789k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interlocked organocatalysts show enhanced catalytic performance when compared with their non-interlocked threads.The ring cooperatively activates the substrates, facilitating the formation and stabilization of catalytically active intermediates.
Collapse
Affiliation(s)
- Jesus de Maria Perez
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Julio Puigcerver
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Tainara Orlando
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria-RS
- Brazil
| | - Aurelia Pastor
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria-RS
- Brazil
| | - Mateo Alajarin
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Jose Berna
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| |
Collapse
|
36
|
Schmittel M, Howlader P. Toward Molecular Cybernetics - the Art of Communicating Chemical Systems. CHEM REC 2020; 21:523-543. [PMID: 33350570 DOI: 10.1002/tcr.202000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
The emerging field of molecular cybernetics has the potential to widely broaden our perception of chemistry. Chemistry will develop beyond its current focus that is mainly concerned with single transformations, pure compounds, and/or defined mixtures. On this way, chemistry will become autonomous, networked and smart through communicating molecules each of which serves a control engineering purpose, like the set of wheels in the machinery of life. The present personal account describes our latest developments in this field.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Prodip Howlader
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
37
|
Del Giudice D, Spatola E, Cacciapaglia R, Casnati A, Baldini L, Ercolani G, Di Stefano S. Time Programmable Locking/Unlocking of the Calix[4]arene Scaffold by Means of Chemical Fuels. Chemistry 2020; 26:14954-14962. [PMID: 32757429 DOI: 10.1002/chem.202002574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/18/2020] [Indexed: 12/30/2022]
Abstract
In this work, we report that 2-cyano-2-phenylpropanoic acid and its p-Cl, p-CH3 and p-OCH3 derivatives can be used as chemical fuels to control the geometry of the calix[4]arene scaffold in its cone conformation. It is shown that, under the action of the fuel, the cone calix[4]arene platform assumes a "locked" shape with two opposite aromatic rings strongly convergent and the other two strongly divergent ("pinched cone" conformation). Only when the fuel is exhausted, the cone calix[4]arene scaffold returns to its resting, "unlocked" shape. Remarkably, the duration of the "locked" state can be controlled at will by varying the fuel structure or amount. A kinetic study of the process shows that the consume of the fuel is catalyzed by the "unlocked" calixarene that behaves as an autocatalyst for its own production. A mechanism is proposed for the reaction of fuel consumption.
Collapse
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma-Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Emanuele Spatola
- Dipartimento di Chimica, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma-Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Roberta Cacciapaglia
- Dipartimento di Chimica, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma-Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità, Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Laura Baldini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità, Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gianfranco Ercolani
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma-Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
38
|
Martinez-Cuezva A, Pastor A, Marin-Luna M, Diaz-Marin C, Bautista D, Alajarin M, Berna J. Cyclization of interlocked fumaramides into β-lactams: experimental and computational mechanistic assessment of the key intercomponent proton transfer and the stereocontrolling active pocket. Chem Sci 2020; 12:747-756. [PMID: 34163808 PMCID: PMC8178992 DOI: 10.1039/d0sc05757f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A detailed mechanistic study of the diastereoselective CsOH-promoted cyclization of interlocked fumaramides to give β-lactams is described. The mechanistic analysis comprises the experimental evaluation of the structure-reactivity relationship for a wide range of fumaramides [2]rotaxanes (Hammet-plots), KIE studies with deuterium-labelled interlocked fumaramides and computational analysis of two alternative mechanistic pathways for the cyclization process. The obtained results confirm that: (a) the rate-determining step is the deprotonation of the N-benzyl group of the thread by the amidate group of the macrocycle generated by the external base, (b) the polyamide macrocycle plays an important role not only as activating element but also as the stereodifferenciating factor responsible for the observed diastereoselection and (c) the higher flexibility of the adamantyl core speeds up the cyclization process in diadamantyl-derived rotaxanes. A mechanistic study of the diastereoselective cyclization of interlocked fumaramides to give β-lactams unveils the key factors for successfully taming the process.![]()
Collapse
Affiliation(s)
- Alberto Martinez-Cuezva
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | - Aurelia Pastor
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | - Marta Marin-Luna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | - Carmen Diaz-Marin
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | | | - Mateo Alajarin
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | - Jose Berna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| |
Collapse
|
39
|
Zhu L, Li J, Yang J, Au-Yeung HY. Cross dehydrogenative C-O coupling catalysed by a catenane-coordinated copper(i). Chem Sci 2020; 11:13008-13014. [PMID: 34094485 PMCID: PMC8163234 DOI: 10.1039/d0sc05133k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Catalytic activity of copper(i) complexes supported by phenanthroline-containing catenane ligands towards a new C(sp3)–O dehydrogenative cross-coupling of phenols and bromodicarbonyls is reported. As the phenanthrolines are interlocked by the strong and flexible mechanical bond in the catenane, the active catalyst with an open copper coordination site can be revealed only transiently and the stable, coordinatively saturated Cu(i) pre-catalyst is quickly regenerated after substrate transformation. Compared with a control Cu(i) complex supported by non-interlocked phenanthrolines, the catenane-supported Cu(i) is highly efficient with a broad substrate scope, and can be applied in gram-scale transformations without a significant loss of the catalytic activity. This work demonstrates the advantages of the catenane ligands that provide a dynamic and responsive copper coordination sphere, highlighting the potential of the mechanical bond as a design element in transition metal catalyst development. The use of a catenane-supported copper(i) complex for the cross dehydrogenative C–O coupling of phenols and bromodicarbonyls is described.![]()
Collapse
Affiliation(s)
- Lihui Zhu
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jiasheng Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China .,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
40
|
Martinez-Cuezva A, Saura-Sanmartin A, Alajarin M, Berna J. Mechanically Interlocked Catalysts for Asymmetric Synthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02032] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alberto Martinez-Cuezva
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Adrian Saura-Sanmartin
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Mateo Alajarin
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
41
|
Zhang D, Ronson TK, Xu L, Nitschke JR. Transformation Network Culminating in a Heteroleptic Cd 6L 6L' 2 Twisted Trigonal Prism. J Am Chem Soc 2020; 142:9152-9157. [PMID: 32357009 PMCID: PMC7243256 DOI: 10.1021/jacs.0c03798] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Transformations between three-dimensional metallosupramolecular assemblies can enable switching between the different functions of these structures. Here we report a network of such transformations, based upon a subcomponent displacement strategy. The flow through this network is directed by the relative reactivities of different amines, aldehydes, and di(2-pyridyl)ketone. The network provides access to an unprecedented heteroleptic Cd6L6L'2 twisted trigonal prism. The principles underpinning this network thus allow for the design of diverse structural transformations, converting one helicate into another, a helicate into a tetrahedron, a tetrahedron into a different tetrahedron, and a tetrahedron into the new trigonal prismatic structure type. The selective conversion from one host to another also enabled the uptake of a desired guest from a mixture of guests.
Collapse
Affiliation(s)
- Dawei Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Lin Xu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
42
|
Xu L, Zhang D, Ronson TK, Nitschke JR. Improved Acid Resistance of a Metal-Organic Cage Enables Cargo Release and Exchange between Hosts. Angew Chem Int Ed Engl 2020; 59:7435-7438. [PMID: 32073709 PMCID: PMC7217015 DOI: 10.1002/anie.202001059] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/06/2023]
Abstract
The use of di(2-pyridyl)ketone in subcomponent self-assembly is introduced. When combined with a flexible triamine and zinc bis(trifluoromethanesulfonyl)imide, this ketone formed a new Zn4 L4 tetrahedron 1 bearing twelve uncoordinated pyridyl units around its metal-ion vertices. The acid stability of 1 was found to be greater than that of the analogous tetrahedron 2 built from 2-formylpyridine. Intriguingly, the peripheral presence of additional pyridine rings in 1 resulted in distinct guest binding behavior from that of 2, affecting guest scope as well as binding affinities. The different stabilities and guest affinities of capsules 1 and 2 enabled the design of systems whereby different cargoes could be moved between cages using acid and base as chemical stimuli.
Collapse
Affiliation(s)
- Lin Xu
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
| | - Dawei Zhang
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | |
Collapse
|
43
|
Tugny C, del Rio N, Koohgard M, Vanthuyne N, Lesage D, Bijouard K, Zhang P, Meijide Suárez J, Roland S, Derat E, Bistri-Aslanoff O, Sollogoub M, Fensterbank L, Mouriès-Mansuy V. β-Cyclodextrin–NHC–Gold(I) Complex (β-ICyD)AuCl: A Chiral Nanoreactor for Enantioselective and Substrate-Selective Alkoxycyclization Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Coralie Tugny
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Natalia del Rio
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Mehdi Koohgard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Denis Lesage
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Kajetan Bijouard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Pinglu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Jorge Meijide Suárez
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Sylvain Roland
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Olivia Bistri-Aslanoff
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| | - Virginie Mouriès-Mansuy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France
| |
Collapse
|
44
|
Heard AW, Goldup SM. Synthesis of a Mechanically Planar Chiral Rotaxane Ligand for Enantioselective Catalysis. Chem 2020; 6:994-1006. [PMID: 32309674 PMCID: PMC7153771 DOI: 10.1016/j.chempr.2020.02.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/01/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022]
Abstract
Rotaxanes are interlocked molecules in which a molecular ring is trapped on a dumbbell-shaped axle because of its inability to escape over the bulky end groups, resulting in a so-called mechanical bond. Interlocked molecules have mainly been studied as components of molecular machines, but the crowded, flexible environment created by threading one molecule through another has also been explored in catalysis and sensing. However, so far, the applications of one of the most intriguing properties of interlocked molecules, their ability to display stereogenic units that do not rely on the stereochemistry of their covalent subunits, termed "mechanical chirality," have yet to be properly explored, and prototypical demonstration of the applications of mechanically chiral rotaxanes remain scarce. Here, we describe a mechanically planar chiral rotaxane-based Au complex that mediates a cyclopropanation reaction with stereoselectivities that are comparable with the best conventional covalent catalyst reported for this reaction.
Collapse
Affiliation(s)
- Andrew W. Heard
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Stephen M. Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
45
|
Xu L, Zhang D, Ronson TK, Nitschke JR. Improved Acid Resistance of a Metal–Organic Cage Enables Cargo Release and Exchange between Hosts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lin Xu
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dawei Zhang
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
46
|
Calles M, Puigcerver J, Alonso DA, Alajarin M, Martinez-Cuezva A, Berna J. Enhancing the selectivity of prolinamide organocatalysts using the mechanical bond in [2]rotaxanes. Chem Sci 2020; 11:3629-3635. [PMID: 34094051 PMCID: PMC8152698 DOI: 10.1039/d0sc00444h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of a pair of switchable interlocked prolinamides and their use as organocatalysts in three different enamine-activated processes are reported. A diacylaminopyridine moiety was incorporated into the thread for directing [2]rotaxane formation further allowing the association of complementary small molecules. The rotaxane-based systems were tested as organocatalysts in asymmetric enamine-mediated processes, revealing a significantly improved catalytic ability if compared with the non-interlocked thread. The presence of an electron-withdrawing nitro group at the macrocycle helps to achieve high conversions and enantioselectivities. These systems are able to interact with N-hexylthymine as a cofactor to form supramolecular catalysts displaying a divergent catalytic behaviour. The presence or absence of the cofactor controls the chemoselectivity in competitive reactions.
Collapse
Affiliation(s)
- María Calles
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| | - Julio Puigcerver
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| | - Diego A Alonso
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante E-03080 Alicante Spain
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| |
Collapse
|
47
|
Tominaga M, Hyodo T, Maekawa Y, Kawahata M, Yamaguchi K. One‐Step Synthesis of Cyclophanes as Crystalline Sponge and Their [2]Catenanes through S
N
Ar Reactions. Chemistry 2020; 26:5157-5161. [DOI: 10.1002/chem.201905854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri University 1314-1 Shido, Sanuki Kagawa 769-2193 Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri University 1314-1 Shido, Sanuki Kagawa 769-2193 Japan
| | - Yumi Maekawa
- Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri University 1314-1 Shido, Sanuki Kagawa 769-2193 Japan
| | - Masatoshi Kawahata
- Showa Pharmaceutical University 3–3165 Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri University 1314-1 Shido, Sanuki Kagawa 769-2193 Japan
| |
Collapse
|
48
|
Carreras L, Franconetti A, Grabulosa A, Frontera A, Vidal-Ferran A. Selective functionalisation of aromatic alcohols with supramolecularly regulated gold(i) catalysts. Org Chem Front 2020. [DOI: 10.1039/d0qo00416b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphite-based Au(i) catalytic systems containing an array of structurally diverse polyether-based regulation sites were designed and synthesised.
Collapse
Affiliation(s)
- Lucas Carreras
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona
- Spain
| | - Antonio Franconetti
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Arnald Grabulosa
- Section of Inorganic Chemistry
- Department of Inorganic and Organic Chemistry
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Anton Vidal-Ferran
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona
- Spain
- Section of Inorganic Chemistry
- Department of Inorganic and Organic Chemistry
| |
Collapse
|
49
|
Abstract
The hydrophobic interaction plays a key role in the host–guest systems.
Collapse
Affiliation(s)
- Wei-Bin Yu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Feng-Yi Qiu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Zhi-Feng Xin
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Po Sun
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| |
Collapse
|
50
|
Benda L, Doistau B, Rossi-Gendron C, Chamoreau LM, Hasenknopf B, Vives G. Substrate-dependent allosteric regulation by switchable catalytic molecular tweezers. Commun Chem 2019. [DOI: 10.1038/s42004-019-0246-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AbstractAllosteric regulation is exploited by biological systems to regulate the activity and/or selectivity of enzymatic reactions but remains a challenge for artificial catalysts. Here we report switchable terpy(Zn-salphen)2 molecular tweezers and their metal-dependent allosteric regulation of the acetylation of pyridinemethanol isomers. Zinc-salphen moieties can both act as a Lewis acid to activate the anhydride reagents and provide a binding site for pyridinemethanol substrates. The tweezers’ conformation can be reversibly switched between an open and a closed form by a metal ion stimulus. Both states offer distinct catalytic profiles, with closed tweezers showing superior catalytic activity towards ortho substrates, while open tweezers presenting higher rate for the acetylation of meta and para substrates. This notable substrate dependent allosteric response is rationalized by a combination of experimental results and calculations supporting a bimetallic reaction in the closed form for ortho substrate and an inhibition of the cavity for meta and para substrates.
Collapse
|