1
|
Huang C, Cui Y, Lin X, Zeng Y, Feng X, Wu J, Huang Y, Chen Z. Robust 1D selective correlation NMR spectroscopy for rapid chemical and biological applications. Talanta 2025; 281:126846. [PMID: 39270607 DOI: 10.1016/j.talanta.2024.126846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Selective homonuclear proton correlation NMR spectroscopy (COSY) provides a useful detection tool for elucidating molecular structures and identifying chemical compositions in 1D spectroscopic patterns. However, conventional 1D selective COSY experiments highly rely on the performance of selective excitation on targeted signals and their applications generally suffer from spectral congestion in complex chemical and biological samples. Herein, based on the concept of targeted excitation on coupled proton pairs and spectroscopic separation on their respective COSY responses, we propose a 1D selective NMR approach that is capable of individually recording direct coupling correlation information of targeted proton groups for analyses on complex samples, free of spectral congestion. The performance of the proposed approach is demonstrated on a medicine sample, a biological molecule, and a real metabonomics sample of human serum. This approach shows a promising analytical technique for structural studies and component analyses in chemical and biological applications. Keywords: NMR spectroscopy, Correlation spectroscopy, Targeted signal excitation, Spectral congestion, Molecular structure analysis.
Collapse
Affiliation(s)
- Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China; Department of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Yinjiang Road 185, Xiamen, China
| | - Yinping Cui
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Xiaoqing Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Yunsong Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Xiaozhen Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China.
| |
Collapse
|
2
|
Bannon MS, Ellena JF, Gourishankar AS, Marsh SR, Trevisan-Silva D, Sherman NE, Jourdan LJ, Gourdie RG, Letteri RA. Multi-site esterification: a tunable, reversible strategy to tailor therapeutic peptides for delivery. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2024; 9:1215-1227. [PMID: 39281343 PMCID: PMC11395315 DOI: 10.1039/d4me00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Peptides are naturally potent and selective therapeutics with massive potential; however, low cell membrane permeability limits their clinical implementation, particularly for hydrophilic, anionic peptides with intracellular targets. To overcome this limitation, esterification of anionic carboxylic acids on therapeutic peptides can simultaneously increase hydrophobicity and net charge to facilitate cell internalization, whereafter installed esters can be cleaved hydrolytically to restore activity. To date, however, most esterified therapeutics contain either a single esterification site or multiple esters randomly incorporated on multiple sites. This investigation provides molecular engineering insight into how the number and position of esters installed onto the therapeutic peptide α carboxyl terminus 11 (αCT11, RPRPDDLEI) with 4 esterification sites affect hydrophobicity and the hydrolysis process that reverts the peptide to its original form. After installing methyl esters onto αCT11 using Fischer esterification, we isolated 5 distinct products and used 2D nuclear magnetic resonance spectroscopy, reverse-phase high performance liquid chromatography, and mass spectrometry to determine which residues were esterified in each and the resulting increase in hydrophobicity. We found esterifying the C-terminal isoleucine to impart the largest increase in hydrophobicity. Monitoring ester hydrolysis showed the C-terminal isoleucine ester to be the most hydrolytically stable, followed by the glutamic acid, whereas esters on aspartic acids hydrolyze rapidly. LC-MS revealed the formation of transient intramolecular aspartimides prior to hydrolysis to carboxylic acids. In vitro proof-of-concept experiments showed esterifying αCT11 to increase cell migration into a scratch, highlighting the potential of multi-site esterification as a tunable, reversible strategy to enable the delivery of therapeutic peptides.
Collapse
Affiliation(s)
- Mark S Bannon
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| | - Jeffrey F Ellena
- Biomolecular Magnetic Resonance Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - Aditi S Gourishankar
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| | - Spencer R Marsh
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Dilza Trevisan-Silva
- Biomolecular Analysis Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - Nicholas E Sherman
- Biomolecular Analysis Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - L Jane Jourdan
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Robert G Gourdie
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| |
Collapse
|
3
|
Yong JRJ, Kupče Ē, Claridge TDW. The NOAH HSQC-COSY module revisited: A theoretical and practical comparison of pulse sequences. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 367:107759. [PMID: 39216461 DOI: 10.1016/j.jmr.2024.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
NMR supersequences, as exemplified by the NOAH (NMR by Ordered Acquisition using 1H detection) technique, are a powerful way of acquiring multiple 2D data sets in much shorter durations. This is accomplished through targeted excitation and detection of the magnetisation belonging to specific isotopologues ('magnetisation pools'). Separately, the HSQC-COSY experiment has recently seen an increase in popularity due to the high signal dispersion in the indirect dimension and the removal of ambiguity traditionally associated with HSQC-TOCSY experiments. Here, we describe how the HSQC-COSY experiment can be integrated as a 'module' within NOAH supersequences. The benefits and drawbacks of several different pulse sequence implementations are discussed, with a particular focus on how sensitivities of other modules in the same supersequence are affected.
Collapse
Affiliation(s)
- Jonathan R J Yong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom; The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, United Kingdom(1)
| | - Ēriks Kupče
- Bruker UK Ltd, R&D, Coventry CV4 9GH, United Kingdom; Latvian Academy of Sciences, Akadēmijas Laukums 1, Riga LV-1050, Latvia(1)
| | - Tim D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom; Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, United Kingdom(1).
| |
Collapse
|
4
|
Lin X, Chen Y, Huang C, Feng X, Chen B, Huang Y, Chen Z. CTCOSY-JRES: A high-resolution three-dimensional NMR method for unveiling J-couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107675. [PMID: 38631172 DOI: 10.1016/j.jmr.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Two-dimensional (2D) J-resolved spectroscopy provides valuable information on J-coupling constants for molecular structure analysis by resolving one-dimensional (1D) spectra. However, it is challenging to decipher the J-coupling connectivity in 2D J-resolved spectra because the J-coupling connectivity cannot be directly provided. In addition, 2D homonuclear correlation spectroscopy (COSY) can directly elucidate molecular structures by tracking the J-coupling connectivity between protons. However, this method is limited by the problem of spectral peak crowding and is only suitable for simple sample systems. To fully understand the intuitive coupling relationship and coupling constant information, we propose a three-dimensional (3D) COSY method called CTCOSY-JRES (Constant-Time COrrelation SpectroscopY and J-REsolved Spectroscopy) in this paper. By combining the J-resolved spectrum with the constant-time COSY technique, a doubly decoupled COSY spectrum can be provided while preserving the J-coupling constant along an additional dimension, ensuring high-resolution analysis of J-coupling connectivity and J-coupling information. Moreover, compression sensing and fold-over correction techniques are introduced to accelerate experimental acquisition. The CTCOSY-JRES method has been successfully validated in a variety of sample systems, including industrial, agricultural, and biopharmaceutical samples, revealing complex coupling interactions and providing deeper insights into the resolution of molecular structures.
Collapse
Affiliation(s)
- Xiaoqing Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Yulei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaozhen Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Bo Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
5
|
Kokubu R, Ohno S, Manabe N, Yamaguchi Y. Solution NMR Analysis of O-Glycopeptide-Antibody Interaction. Methods Mol Biol 2024; 2763:321-327. [PMID: 38347421 DOI: 10.1007/978-1-0716-3670-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
O-Linked glycans potentially play a functional role in cellular recognition events. Recent structural analyses suggest that O-glycosylation can be a specific signal for a lectin receptor which recognizes both the O-glycan and the adjacent polypeptide region. Further, certain antibodies specifically bind to the O-glycosylated peptide. There is growing interest in the mechanism by which O-glycans on proteins are specifically recognized by lectins and antibodies. The recognition system may be common to many O-glycosylated proteins; however, there is limited 3D structural information on the dual recognition of glycan and protein. This chapter describes a solution NMR analysis of the interaction between MUC1 O-glycopeptide and anti-MUC1 antibody MY.1E12.
Collapse
Affiliation(s)
- Ryoka Kokubu
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| |
Collapse
|
6
|
Bauer AK, Conrad J, Beifuss U. Efficient approach to 1,1'-bisindoles via copper(I)-catalyzed double domino reaction. Org Biomol Chem 2023; 21:8003-8019. [PMID: 37767762 DOI: 10.1039/d3ob01231j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A highly efficient copper(I)-catalyzed approach for the synthesis of 1,1'-bisindoles that is based on the formation of four bonds in one step has been developed. The unprecedented three component reaction between one molecule of a 1,2-bis(2-bromoaryl)hydrazine and two molecules of a 1,3-diketone employing 10 mol% CuI as a catalyst and Cs2CO3 as a base in DMSO at 100 °C for 24 h delivers substituted 1,1'-bisindoles with yields up to 92%. The new method proceeds as a double domino condensation/Ullmann type C-C coupling. It allows an efficient and practical access to substituted 1,1'-bisindoles in one step from easily available starting materials.
Collapse
Affiliation(s)
- Ann-Kathrin Bauer
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany.
| | - Jürgen Conrad
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany.
| | - Uwe Beifuss
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany.
| |
Collapse
|
7
|
Taylor DA, Kiraly P, Bowyer P, Nilsson M, Castañar L, Morris GA, Adams RW. Ultra-selective 1D clean in-phase correlation spectroscopy. Chem Commun (Camb) 2023; 59:6734-6737. [PMID: 37191266 DOI: 10.1039/d3cc01333b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Selective 1D COSY can unambiguously identify coupled spins but is often limited both by lack of selectivity, and by unfavourable multiplet lineshapes. Here, ultra-selective GEMSTONE excitation is employed with CLIP-COSY to provide through-bond correlations for nuclei whose NMR signals overlap. The new method is illustrated using the coccidiostat lasalocid and the immunosuppressant cyclosporin.
Collapse
Affiliation(s)
- Daniel A Taylor
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Peter Kiraly
- JEOL UK Ltd., Bankside, Long Hanborough, OX29 8LJ, UK
| | - Paul Bowyer
- JEOL UK Ltd., Silver Court, Welwyn Garden City, AL7 1LT, UK
| | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Laura Castañar
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Department of Organic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Gareth A Morris
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ralph W Adams
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
8
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Gerasymenko I, Sheludko YV, Navarro Fuertes I, Schmidts V, Steinel L, Haumann E, Warzecha H. Engineering of a Plant Isoprenyl Diphosphate Synthase for Development of Irregular Coupling Activity. Chembiochem 2022; 23:e202100465. [PMID: 34672410 PMCID: PMC9297866 DOI: 10.1002/cbic.202100465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Indexed: 11/17/2022]
Abstract
We performed mutagenesis on a regular isoprenyl diphosphate synthase (IDS), neryl diphosphate synthase from Solanum lycopersicum (SlNPPS), that has a structurally related analogue performing non-head-to-tail coupling of two dimethylallyl diphosphate (DMAPP) units, lavandulyl diphosphate synthase from Lavandula x intermedia (LiLPPS). Wild-type SlNPPS catalyses regular coupling of isopentenyl diphosphate (IPP) and DMAPP in cis-orientation resulting in the formation of neryl diphosphate. However, if the enzyme is fed with DMAPP only, it is able to catalyse the coupling of two DMAPP units and synthesizes two irregular monoterpene diphosphates; their structures were elucidated by the NMR analysis of their dephosphorylation products. One of the alcohols is lavandulol. The second compound is the trans-isomer of planococcol, the first example of an irregular cyclobutane monoterpene with this stereochemical configuration. The irregular activity of SlNPPS constitutes 0.4 % of its regular activity and is revealed only if the enzyme is supplied with DMAPP in the absence of IPP. The exchange of asparagine 88 for histidine considerably enhanced the non-head-to-tail coupling. While still only observed in the absence of IPP, irregular activity of the mutant reaches 13.1 % of its regular activity. The obtained results prove that regular IDS are promising starting points for protein engineering aiming at the development of irregular activities and leading to novel monoterpene structures.
Collapse
Affiliation(s)
- Iryna Gerasymenko
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
| | - Yuriy V. Sheludko
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | | | - Volker Schmidts
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Lara Steinel
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
| | - Elisabeth Haumann
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
| | - Heribert Warzecha
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
| |
Collapse
|
10
|
Valcarcel J, Vázquez JA, Varela UR, Reis RL, Novoa-Carballal R. Isolation and Characterization of Polysaccharides from the Ascidian Styela clava. Polymers (Basel) 2021; 14:polym14010016. [PMID: 35012039 PMCID: PMC8747265 DOI: 10.3390/polym14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Styela clava is an edible sea squirt farmed in Korea that has gradually invaded other seas, negatively impacting the ecology and economy of coastal areas. Extracts from S. clava have shown wide bioactivities, and ascidians have the unique capability among animals of biosynthesizing cellulose. Thus, S. clava is a relevant candidate for valorization. Herein, we aimed at surveying and characterizing polysaccharides in both tunic and flesh of this ascidian. To this end, we enzymatically hydrolyzed both tissues, recovering crystalline cellulose from the tunic with high aspect ratios, based on results from microscopy, X-ray diffraction, and infrared spectroscopy analyses. Alkaline hydroalcoholic precipitation was applied to isolate the polysaccharide fraction that was characterized by gel permeation chromatography (with light scattering detection) and NMR. These techniques allowed the identification of glycogen in the flesh with an estimated Mw of 7 MDa. Tunic polysaccharides consisted of two fractions of different Mw. Application of Diffusion-Ordered NMR allowed spectroscopically separating the low-molecular-weight fraction to analyze the major component of an estimated Mw of 40–66 kDa. We identified six different sugar residues, although its complexity prevented the determination of the complete structure and connectivities of the residues. The two more abundant residues were N-acetylated and possibly components of the glycosaminoglycan-like (GAG-like) family, showing the remaining similarities to sulfated galactans. Therefore, Styela clava appears as a source of nanocrystalline cellulose and GAG-like polysaccharides.
Collapse
Affiliation(s)
- Jesus Valcarcel
- Recycling and Valorisation of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.A.V.); (U.R.V.)
- Correspondence: (J.V.); (R.N.-C.)
| | - José Antonio Vázquez
- Recycling and Valorisation of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.A.V.); (U.R.V.)
| | - Uxía R. Varela
- Recycling and Valorisation of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.A.V.); (U.R.V.)
| | - Rui L. Reis
- 3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017 Guimaraes, Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Braga, Portugal
| | - Ramon Novoa-Carballal
- 3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017 Guimaraes, Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Braga, Portugal
- Correspondence: (J.V.); (R.N.-C.)
| |
Collapse
|
11
|
Kupče Ē, Yong JRJ, Widmalm G, Claridge TDW. Parallel NMR Supersequences: Ten Spectra in a Single Measurement. JACS AU 2021; 1:1892-1897. [PMID: 34841408 PMCID: PMC8611666 DOI: 10.1021/jacsau.1c00423] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Indexed: 05/05/2023]
Abstract
The principles employed in parallel NMR and MRI are applied to NMR supersequences yielding as many as ten 2D NMR spectra in one measurement. We present a number of examples where two NOAH (NMR by Ordered Acquisition using 1H-detection) supersequences are recorded in parallel, thus dramatically increasing the information content obtained in a single NMR experiment. The two parallel supersequences entangled by time-sharing schemes (IPAP-seHSQC, HSQC-COSY, and HSQC-TOCSY) incorporate also modified (sequential and/or interleaved) conventional pulse schemes (modules), including HMBC, TOCSY, COSY, CLIP-COSY, NOESY, and ROESY. Such parallel supersequences can be tailored for specific applications, for instance, the analysis and characterization of molecular structure of complex organic molecules from a single measurement. In particular, the CASPER software was used to establish the structure of a tetrasaccharide, β-LNnTOMe, with a high degree of confidence from a single measurement involving a parallel NOAH-5 supersequence.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker
UK Ltd, R&D, Banner
Lane, Coventry CV4 9GH, United Kingdom
| | - Jonathan R. J. Yong
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Tim D. W. Claridge
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
12
|
Meng Z, Spohr SM, Tobegen S, Farès C, Fürstner A. A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate: Total Syntheses of Keramaphidin B, Ingenamine, and Nominal Njaoamine I. J Am Chem Soc 2021; 143:14402-14414. [PMID: 34448391 PMCID: PMC8431342 DOI: 10.1021/jacs.1c07955] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Many
polycyclic marine
alkaloids are thought to derive from partly
reduced macrocyclic alkylpyridine derivatives via a transannular Diels–Alder
reaction that forms their common etheno-bridged diaza-decaline core
(“Baldwin–Whitehead hypothesis”). Rather than
trying to emulate this biosynthesis pathway, a route to these natural
products following purely chemical logic was pursued. Specifically,
a Michael/Michael addition cascade provided rapid access to this conspicuous
tricyclic scaffold and allowed different handles to be introduced
at the bridgehead quarternary center. This flexibility opened opportunities
for the formation of the enveloping medium-sized and macrocyclic rings.
Ring closing alkyne metathesis (RCAM) proved most reliable and became
a recurrent theme en route to keramaphidin B, ingenamine, xestocyclamine
A, and nominal njaoamine I (the structure of which had to be corrected
in the aftermath of the synthesis). Best results were obtained with
molybdenum alkylidyne catalysts endowed with (tripodal) silanolate
ligands, which proved fully operative in the presence of tertiary
amines, quinoline, and other Lewis basic sites. RCAM was successfully
interlinked with macrolactamization, an intricate hydroboration/protonation/alkyl-Suzuki
coupling sequence, or ring closing olefin metathesis (RCM) for the
closure of the second lateral ring; the use of RCM for the formation
of an 11-membered cycle is particularly noteworthy. Equally rare are
RCM reactions that leave a pre-existing triple bond untouched, as
the standard ruthenium catalysts are usually indiscriminative vis-à-vis
the different π-bonds. Of arguably highest significance, however,
is the use of two consecutive or even concurrent RCAM reactions en
route to nominal njaoamine I as the arguably most complex of the chosen
targets.
Collapse
Affiliation(s)
- Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Simon M Spohr
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Sandra Tobegen
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
13
|
Yong JRJ, Hansen AL, Kupče Ē, Claridge TDW. Increasing sensitivity and versatility in NMR supersequences with new HSQC-based modules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107027. [PMID: 34246882 DOI: 10.1016/j.jmr.2021.107027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 05/22/2023]
Abstract
The sensitivity-enhanced HSQC, as well as HSQC-TOCSY, experiments have been modified for incorporation into NOAH (NMR by Ordered Acquisition using 1H detection) supersequences, adding diversity for 13C and 15N modules. Importantly, these heteronuclear modules have been specifically tailored to preserve the magnetisation required for subsequent acquisition of other heteronuclear or homonuclear modules in a supersequence. In addition, we present protocols for optimally combining HSQC and HSQC-TOCSY elements within the same supersequences, yielding high-quality 2D spectra suitable for structure characterisation but with greatly reduced experiment durations. We further demonstrate that these time savings can translate to increased detection sensitivity per unit time.
Collapse
Affiliation(s)
- Jonathan R J Yong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, UK
| | - Tim D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
14
|
Targeted 1H NMR metabolomics and immunological phenotyping of human fresh blood and serum samples discriminate between healthy individuals and inflammatory bowel disease patients treated with anti-TNF. J Mol Med (Berl) 2021; 99:1251-1264. [PMID: 34021361 PMCID: PMC8367886 DOI: 10.1007/s00109-021-02094-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Abstract Inflammatory bowel disease is a multifactorial etiology, associated with environmental factors that can trigger both debut and relapses. A high level of tumor necrosis factor-α in the gut is the main consequence of immune system imbalance. The aim of treatment is to restore gut homeostasis. In this study, fresh blood and serum samples were used to identify biomarkers and to discriminate between Crohn’s disease and ulcerative colitis patients under remission treated with anti-TNF. Metabolomics based on Nuclear Magnetic Resonance spectroscopy (NMR) was used to detect unique biomarkers for each class of patients. Blood T lymphocyte repertories were characterized, as well as cytokine and transcription factor profiling, to complement the metabolomics data. Higher levels of homoserine-methionine and isobutyrate were identified as biomarkers of Crohn’s disease with ileocolic localization. For ulcerative colitis, lower levels of creatine-creatinine, proline, and tryptophan were found that reflect a deficit in the absorption of essential amino acids in the gut. T lymphocyte phenotyping and its functional profiling revealed that the overall inflammation was lower in Crohn’s disease patients than in those with ulcerative colitis. These results demonstrated that NMR metabolomics could be introduced as a high-throughput evaluation method in routine clinical practice to stratify both types of patients related to their pathology. Key messages NMR metabolomics is a non-invasive tool that could be implemented in the normal clinical practice for IBD to assess beneficial effect of the treatment. NMR metabolomics is a useful tool for precision medicine, in order to sew a specific treatment to a specific group of patients. Finding predictors of response to IFX would be desirable to select patients affected by IBD. Immunological status of inflammations correlates with NMR metabolomics biomarkers.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02094-y.
Collapse
|
15
|
Haschimi B, Giorgetti A, Mogler L, Nagy TZ, Kramer S, Halter S, Boros S, Dobos A, Hidvégi E, Auwärter V. The Novel Psychoactive Substance Cumyl-CH-MEGACLONE: Human Phase-I Metabolism, Basic Pharmacological Characterization and Comparison to Other Synthetic Cannabinoid Receptor Agonists with a γ-Carboline-1-One Core. J Anal Toxicol 2021; 45:277-290. [PMID: 32514544 DOI: 10.1093/jat/bkaa065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synthetic cannabinoids (SC) remain one of the largest groups of new psychoactive substances on the European drug market. In December 2018, Cumyl-CH-MEGACLONE, a novel SC based on a γ-carboline-1-one core structure, was firstly identified in Hungary and later also other European countries. This work aims to reveal the pharmacological characteristics and phase-I metabolism of Cumyl-CH-MEGACLONE and compare the data to its analogs Cumyl-PEGACLONE and 5F-Cumyl-PEGACLONE. The purified substance was characterized by means of gas chromatography-mass spectrometry (GC-MS), liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QToF-MS), attenuated total reflection infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance spectroscopy. Phase-I metabolites were identified by LC-QToF-MS analysis combined with a scheduled precursor ion list of authentic urine samples and confirmed by comparison with metabolites built in vitro by pooled human liver microsome assays. Pharmacological data were obtained in a competitive ligand binding assay and a receptor activation assay at the human cannabinoid receptor 1 (hCB1). The structure of 5-cyclohexylmethyl-2-(2-phenylpropan-2-yl)-2,5-dihydro-1H-pyrido[4,3-b]indol-1-one (semisystematic name: Cumyl-CH-MEGACLONE) was identified in a herbal blend as the main active ingredient. Investigation of phase-I biotransformation of Cumyl-CH-MEGACLONE led to three monohydroxylated metabolites (M08, M10 and M13) as reliable urinary markers for proof of consumption. At the hCB1, Cumyl-CH-MEGACLONE shows high binding affinity with Ki = 1.01 nM (2.5-fold higher than JWH-018), an EC50 of 1.22 nM and high efficacy with EMAX = 143.4% above constitutive activity of the receptor (1.13-fold higher than JWH-018). Comparison to the analogs 5F-Cumyl-PEGACLONE and Cumyl-PEGACLONE (both are hCB1 full agonists carrying a 5-fluoropentyl or pentyl chain instead of the cyclohexylmethyl moiety) suggests that Cumyl-CH-MEGACLONE is more likely to resemble the pharmacologic profile of the latter one.
Collapse
Affiliation(s)
- Belal Haschimi
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Arianna Giorgetti
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany.,Legal Medicine and Toxicology, University Hospital of Padova, Via S. Giovanni di Verdara 123, 35137 Padova, Italy
| | - Lukas Mogler
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Tibor Zsigmond Nagy
- Hungarian Institute for Forensic Sciences, Drug Investigation Department, Mosonyi 9, 1087 Budapest, Hungary
| | - Selina Kramer
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Sebastian Halter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Sándor Boros
- Hungarian Institute for Forensic Sciences, Drug Investigation Department, Mosonyi 9, 1087 Budapest, Hungary
| | - Adrienn Dobos
- Hungarian Institute for Forensic Sciences, Department of Forensic Toxicology, Mosonyi 9, 1087 Budapest, Hungary
| | - Előd Hidvégi
- Hungarian Institute for Forensic Sciences, Department of Forensic Toxicology, Mosonyi 9, 1087 Budapest, Hungary
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Zeng Q, Zhan C, Dong X, Chen J, Chen Z, Lin Y. Unambiguous and accurate measurement of scalar coupling constants through a selective refocusing NMR experiment. Anal Chim Acta 2021; 1159:338429. [PMID: 33867039 DOI: 10.1016/j.aca.2021.338429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Scalar coupling plays an important role in the analysis of molecular structure and dynamics. A great number of nuclear magnetic resonance (NMR) selective refocusing experiments, such as 2D G-SERF and PSYCHEDELIC, were developed to extract scalar coupling constants involving a selected proton from overlapped spectra. However, intense axial peaks occur in this type of experiments, leading to possible ambiguity in the assignment of spectral peaks and subsequent accurate measurement of 1H-1H scalar coupling constants. Here, a method based on selective coherence transfer and PSYCHEDELIC module is designed to acquire absorption-mode selective refocusing spectrum while suppressing intense axial peaks. Therefore, unambiguous and accurate measurement of scalar coupling constants involving the selectively excited proton can be achieved. The performances of the proposed method are demonstrated on several samples.
Collapse
Affiliation(s)
- Qing Zeng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chaoqun Zhan
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xi Dong
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jinyong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
17
|
Ilgen J, Nowag J, Kaltschnee L, Schmidts V, Thiele CM. Gradient selected pure shift EASY-ROESY techniques facilitate the quantitative measurement of 1H, 1H-distance restraints in congested spectral regions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106900. [PMID: 33503522 DOI: 10.1016/j.jmr.2020.106900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
For elucidating molecular structure and dynamics in solution, NMR experiments such as NOESY, ROESY and EXSY have been used excessively over the past decades, to provide interatomic distance restraints or rates for chemical exchange. The extraction of such information, however, is often prohibited by signal overlap in these spectra. To reduce this problem, pure shift methods for improving the spectral resolution have become popular. We report on pure shift EASY-ROESY experiments and their application to extract cross-relaxation rates, proton-proton distances and exchange rates. Homonuclear decoupling (pure shift) is applied in the indirect dimension using the PSYCHE or the perfectBASH technique, to enhance the spectral resolution of severely overcrowded spectral regions. The spectral quality is further improved by using a gradient selected F1-PSYCHE-EASY-ROESY, which produces significantly less t1-noise than the experiment used previously, as also demonstrated by employing the recently introduced SAN (signal-artefact-noise) plots. Applications include the quantification of distance restraints in a peptide organocatalyst and the extraction of a number of distance restraints in cyclosporine A, which were previously not available for analysis, because they were either located in overcrowded spectral regions or hidden under t1-noise. Distances extracted and exchange rates obtained are accurate. Also, the 2D gradient-selected F1-perfectBASH-EASY-ROESY with the additional gradient selection proposed herein, which is superior in terms of sensitivity, can be used to accurately quantify cross-relaxation.
Collapse
Affiliation(s)
- Julian Ilgen
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany
| | - Jens Nowag
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany
| | - Lukas Kaltschnee
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Volker Schmidts
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany.
| |
Collapse
|
18
|
Gyöngyösi T, Timári I, Sinnaeve D, Luy B, Kövér KE. Expedited Nuclear Magnetic Resonance Assignment of Small- to Medium-Sized Molecules with Improved HSQC-CLIP-COSY Experiments. Anal Chem 2021; 93:3096-3102. [PMID: 33534547 DOI: 10.1021/acs.analchem.0c04124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resonance assignment is a pivotal step for any nuclear magnetic resonance (NMR) analysis, such as structure elucidation or the investigation of protein-ligand interactions. Both 1H-13C heteronuclear single quantum correlation (HSQC) and 1H-1H correlation spectroscopy (COSY) two-dimensional (2D) experiments are invaluable for 1H NMR assignment, by extending the high signal dispersion of 13C chemical shifts onto 1H resonances and by providing a high amount of through-bond 1H-1H connectivity information, respectively. The recently introduced HSQC-CLIP(Clean In-Phase)-COSY method combines these two experiments, providing COSY correlations along the high-resolution 13C dimension with clean in-phase multiplets. However, two experiments need to be recorded to unambiguously identify COSY cross-peaks. Here, we propose novel variants of the HSQC-CLIP-COSY pulse sequence that edit cross-peak signs so that direct HSQC responses can be distinguished from COSY relay peaks, and/or the multiplicities of the 13C nuclei are reflected, allowing the assignment of all the peaks in a single experiment. The advanced HSQC-CLIP-COSY variants have the potential to accelerate and simplify the NMR structure-elucidation process of both synthetic and natural products and to become valuable tools for high-throughput computer-assisted structure determination.
Collapse
Affiliation(s)
- Tamás Gyöngyösi
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - István Timári
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Davy Sinnaeve
- Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167 - Labex DISTALZ - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille F-59000, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille F-59000, France
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| |
Collapse
|
19
|
Chen J, Torres AM, Zheng G, Price WS. Applications of WaterControl to TOCSY and COSY experiments. JOURNAL OF BIOMOLECULAR NMR 2020; 74:333-340. [PMID: 32415581 DOI: 10.1007/s10858-020-00319-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
WaterControl is a solvent suppression method based on WATERGATE and PGSTE and is very efficient in selectively reducing the solvent signal in 1D pulse-acquire and 2D NOESY of protein solutions. In this study, the WaterControl technique was appended to two common 2D NMR methods used in resonance assignment of proteins, namely TOCSY and CLIP-COSY. Similar to that observed in regular 1D pulse-acquire and 2D NOESY, the incorporation of WaterControl in these 2D methods led to excellent solvent suppression superior to that obtained using W3- or W5-based WATERGATE sequences. The water signal was essentially eliminated in the TOCSY and CLIP-COSY with WaterControl while useful cross peaks around the water resonance at ω2 were preserved. This is in contrast to the 2D spectra obtained from the corresponding WATERGATE containing sequences, where these cross peaks in the ω2 region are usually suppressed together with the water resonance. These new WaterControl sequences provide significantly improved water suppression thereby facilitating protein NMR studies.
Collapse
Affiliation(s)
- Johnny Chen
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Allan M Torres
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Penrith, NSW, 2751, Australia.
| | - Gang Zheng
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - William S Price
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
20
|
Sheberstov KF, Sistaré Guardiola E, Pupier M, Jeannerat D. SAN plot: A graphical representation of the signal, noise, and artifacts content of spectra. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:466-472. [PMID: 31058352 DOI: 10.1002/mrc.4882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The signal-to-noise ratio is an important property of NMR spectra. It allows to compare the sensitivity of experiments, the performance of hardware, etc. Its measurement is usually done in a rudimentary manner involving manual operation of selecting separately a region of the spectrum with signal and noise, respectively, applying some operation and returning the signal-to-noise ratio. We introduce here a simple method based on the analysis of the distribution of point intensities in one- and two-dimensional spectra. The signal/artifact/noise plots, (SAN plots) allows one to present in a graphical manner qualitative and quantitative information about spectra. It will be shown that besides measuring signal and noise levels, SAN plots are also quite useful to visualize and compare artifacts within a series of spectra. Some basic properties of the SAN plots are illustrated with simple application.
Collapse
Affiliation(s)
| | | | - Marion Pupier
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Damien Jeannerat
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Zeng Q, Chen J, Lin Y, Chen Z. Boosting resolution in NMR spectroscopy by chemical shift upscaling. Anal Chim Acta 2020; 1110:109-114. [PMID: 32278384 DOI: 10.1016/j.aca.2020.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
Resolution is an essential challenge in NMR spectroscopy. Narrow chemical shift range and extensive signal splittings due to scalar couplings often give rise to spectral congestion and even overlap in NMR spectra. Magnetic field strength is directly responsible for spectral resolution as higher magnetic field strength offers better signal dispersion. However, the process of further increasing magnetic field strength of NMR instruments is slow and expensive. Methodology aimed at resolution issue has long been developing. Here, we present a chemical shift upscaling method, in which chemical shifts are upscaled by a given factor while scalar couplings are unchanged. As a result, signal dispersion and hence the resolution are improved. Therefore, it is possible to separate multiplets which originally overlap with each other and to extract their integrals for quantitative analysis. Improved signal dispersion and the preservation of scalar couplings also facilitate multiplet analysis and signal assignment. Chemical shift upscaling offers a method for enhancing resolution limited by magnetic field strength.
Collapse
Affiliation(s)
- Qing Zeng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jinyong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Stachelska-Wierzchowska A, Wierzchowski J, Górka M, Bzowska A, Stolarski R, Wielgus-Kutrowska B. Tricyclic Nucleobase Analogs and Their Ribosides as Substrates and Inhibitors of Purine-Nucleoside Phosphorylases III. Aminopurine Derivatives. Molecules 2020; 25:E681. [PMID: 32033464 PMCID: PMC7037862 DOI: 10.3390/molecules25030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
Etheno-derivatives of 2-aminopurine, 2-aminopurine riboside, and 7-deazaadenosine (tubercidine) were prepared and purified using standard methods. 2-Aminopurine reacted with aqueous chloroacetaldehyde to give two products, both exhibiting substrate activity towards bacterial (E. coli) purine-nucleoside phosphorylase (PNP) in the reverse (synthetic) pathway. The major product of the chemical synthesis, identified as 1,N2-etheno-2-aminopurine, reacted slowly, while the second, minor, but highly fluorescent product, reacted rapidly. NMR analysis allowed identification of the minor product as N2,3-etheno-2-aminopurine, and its ribosylation product as N2,3-etheno-2-aminopurine-N2--D-riboside. Ribosylation of 1,N2-etheno-2-aminopurine led to analogous N2--d-riboside of this base. Both enzymatically produced ribosides were readily phosphorolysed by bacterial PNP to the respective bases. The reaction of 2-aminopurine-N9- -D-riboside with chloroacetaldehyde gave one major product, clearly distinct from that obtained from the enzymatic synthesis, which was not a substrate for PNP. A tri-cyclic 7-deazaadenosine (tubercidine) derivative was prepared in an analogous way and shown to be an effective inhibitor of the E. coli, but not of the mammalian enzyme. Fluorescent complexes of amino-purine analogs with E. coli PNP were observed.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Michał Górka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
- Biological and Chemical Research Centre, University of Warsaw, 101 Zwirki i Wigury St., 02-089 Warsaw, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| | - Ryszard Stolarski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| |
Collapse
|
23
|
Kenwright AM, Aguilar JA, Koley Seth B, Kuprov I. Coherence transfer delay optimisation in PSYCOSY experiments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:51-55. [PMID: 31291477 DOI: 10.1002/mrc.4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
PSYCOSY is an f1 broadband homonuclear decoupled version of the COSY nuclear magnetic resonance pulse sequence. Here, we investigate by a combination of experimental measurements, spatially distributed spin dynamics simulations, and analytical predictions the coherence evolution delay necessary in PSYCOSY experiments to ensure intensity discrimination in favour of the correlations typically arising from short range (n J, n ≤ 3) 1 H-1 H couplings and show that, in general, a coherence evolution delay of around 35 ms is optimum.
Collapse
Affiliation(s)
| | - Juan A Aguilar
- Department of Chemistry, University of Durham, Durham, UK
| | | | - Ilya Kuprov
- Department of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
24
|
Zhan C, Zeng Q, Chen J, Lin Y, Chen Z. PE-SERF: A sensitivity-improved experiment to measure J HH in crowded spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106590. [PMID: 31513964 DOI: 10.1016/j.jmr.2019.106590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Aiming at facilitating the analysis of molecular structure, the gradient-encoded selective refocusing methods (G-SERF) and a great number of its variants for measuring proton-proton coupling constants have been proposed. However, the sensitivity is an issue in the 2D gradient-encoded experiments, because the signal intensity is determined by the slice thickness of the sample that depends on encoding gradient and the bandwidth of selective pulses which is limited by the smallest chemical shift difference of any two coupled protons. Here, we present a method dubbed PE-SERF (perfect echo selective refocusing) which can determine all JHH values involving a selected proton with improved sensitivity compared to original G-SERF experiment. The modules of perfect echo involving selective pulses and gradient-encoded selective refocusing are combined in the method, so that the unwanted J couplings arising from coupled spin pairs in the same sample slice would be nullified. In this way, instead of single proton, a pair of coupled protons is allowed to share a sample slice, and thus the slice thickness can be increased and the spectral sensitivity can be improved. The performance of the method is demonstrated by experiments on quinine and strychnine.
Collapse
Affiliation(s)
- Chaoqun Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Qing Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jinyong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
25
|
Claridge TDW, Mayzel M, Kupče Ē. Triplet NOAH supersequences optimised for small molecule structure characterisation. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:946-952. [PMID: 31066946 DOI: 10.1002/mrc.4887] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 05/22/2023]
Abstract
A series of NMR supersequences are presented for the time-efficient structure characterisation of small molecules in the solution state. These triplet sequences provide HMBC, HSQC, and one homonuclear correlation experiment of choice according to the NMR by Ordered Acquisition using 1 H detection principle. The experiments are demonstrated to be compatible with non-uniform sampling schemes and may be acquired and processed under full automation.
Collapse
Affiliation(s)
- Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Maksim Mayzel
- Application Science CH, MRS Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Ēriks Kupče
- Advanced Applications Development, Bruker UK Ltd., Coventry, UK
| |
Collapse
|
26
|
Brinson RG, Marino JP. 2D J-correlated proton NMR experiments for structural fingerprinting of biotherapeutics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106581. [PMID: 31499472 PMCID: PMC7313657 DOI: 10.1016/j.jmr.2019.106581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 05/07/2023]
Abstract
The higher order structure (HOS) of protein therapeutics is essential for drug safety and efficacy and can be evaluated by two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy at atomic resolution. 1Hn-15N amide correlated and 1H-13C methyl correlated NMR spectroscopies at natural isotopic abundance have been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies and show great promise for use in establishing drug substance structural consistency across manufacturing changes and in comparing a biosimilar to an originator reference product. Spectral fingerprints from 1Hn-1Hα correlations acquired using 2D homonuclear proton-proton J-correlated NMR experiments provide a complementary approach for high-resolution assessment of the HOS of lower molecular weight (<25 kDa) protein therapeutics. Here, we evaluate different pulse sequences (COSY, TOCSY and TACSY) used to generate proton-proton J-correlated NMR spectral fingerprints and appraise the performance of each method for application to protein therapeutic HOS assessment and comparability.
Collapse
Affiliation(s)
- Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, United States
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| |
Collapse
|
27
|
Martin-Pastor M, Ferreira AS, Moppert X, Nunes C, Coimbra MA, Reis RL, Guezennec J, Novoa-Carballal R. Structure, rheology, and copper-complexation of a hyaluronan-like exopolysaccharide from Vibrio. Carbohydr Polym 2019; 222:114999. [DOI: 10.1016/j.carbpol.2019.114999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022]
|
28
|
Sakas J, Bell NGA. Reduced dimensionality hyphenated NMR experiments for the structure determination of compounds in mixtures. Faraday Discuss 2019; 218:191-201. [PMID: 31155629 DOI: 10.1039/c9fd00008a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the structure determination of molecules in mixtures using NMR spectroscopy, the dispersion of 13C chemical shifts provides much needed separation of resonances in the indirectly detected dimension of 2D heterocorrelated NMR experiments. This separation is crucial for establishing networks of coupled spins by hyphenated techniques that combine hetero- and homonuclear polarisation transfers. However, as the sample complexity increases, 13C chemical shifts stop being unique, hindering spectral interpretation. The resulting ambiguities can be removed by adding another dimension to these experiments. However, the spectra obtained from complex samples are riddled with overlapped signals, meaning that another dimension will only reduce the spectral resolution and prevent structure determination. A promising solution is to stay in two dimensions and use the combined 13C and 1H chemical shifts to separate signals. We have developed a suite of (3,2)D reduced dimensionality hyphenated NMR experiments that preserve the information content of 3D spectra but offer all of the advantages of 2D spectra - high resolution and ease of manipulation with only a mild sensitivity penalty. The proposed experiments complement the existing (3,2)D HSQC-TOCSY and include a (3,2)D HSQC-NOESY/ROESY, (3,2)D HSQC-CLIP-COSY and (3,2)D HSQC-HSQMBC. The new experiments represent a set of NMR techniques typically employed in the structure determination of complex compounds and have been adopted here for use on mixtures. The resolving power of these experiments is illustrated on the analysis of hot water extracts of green tea.
Collapse
Affiliation(s)
- Justinas Sakas
- EaStCHEM School of Chemistry, University of Edinburgh, King's Buildings, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | | |
Collapse
|
29
|
Götz A, Mylonas N, Högel P, Silber M, Heinel H, Menig S, Vogel A, Feyrer H, Huster D, Luy B, Langosch D, Scharnagl C, Muhle-Goll C, Kamp F, Steiner H. Modulating Hinge Flexibility in the APP Transmembrane Domain Alters γ-Secretase Cleavage. Biophys J 2019; 116:2103-2120. [PMID: 31130234 PMCID: PMC6554489 DOI: 10.1016/j.bpj.2019.04.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
Intramembrane cleavage of the β-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. Both mutants impaired γ-secretase cleavage and also altered its cleavage specificity. Circular dichroism, NMR, and backbone amide hydrogen/deuterium exchange measurements as well as molecular dynamics simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the substrate TMD. Although helix destabilization and/or unfolding was not observed at the initial ε-cleavage sites of C99, subtle changes in hinge flexibility were identified that substantially affected helix bending and twisting motions in the entire TMD. These resulted in altered orientation of the distal cleavage domain relative to the N-terminal TMD part. Our data suggest that both enhancing and reducing local helix flexibility of the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can thus be conducive for productive substrate-enzyme interactions.
Collapse
Affiliation(s)
- Alexander Götz
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany
| | - Nadine Mylonas
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Philipp Högel
- Center for Integrated Protein Science Munich at the Lehrstuhl Chemie der Biopolymere, Technical University Munich, Freising, Germany
| | - Mara Silber
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hannes Heinel
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Simon Menig
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Hannes Feyrer
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dieter Langosch
- Center for Integrated Protein Science Munich at the Lehrstuhl Chemie der Biopolymere, Technical University Munich, Freising, Germany
| | - Christina Scharnagl
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany.
| | - Claudia Muhle-Goll
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
30
|
Nolis P, Parella T. Practical aspects of the simultaneous collection of COSY and TOCSY spectra. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:S85-S94. [PMID: 30676668 DOI: 10.1002/mrc.4835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The practical aspects of some NMR experiments designed for the simultaneous acquisition of 2D COSY and 2D TOCSY spectra are presented and discussed. Several techniques involving afterglow-based, coherence transfer pathway (CTP)-based, and NMR by Ordered Acquisition using 1 H-detection (NOAH)-based strategies for the collection of different free-induction signal decays (FIDs) within the same scan are evaluated and compared. These methods offer a faster recording of these spectra in small-molecule NMR when sensitivity is not a limiting factor, with a reduction in spectrometer time about 45-60% when compared with the conventional sequential acquisition of the parent experiments. It is also shown how the optimized design of an extended three-FID approach yields one COSY and two TOCSY spectra simultaneously by combining CTP and NOAH principles in the same experiment, affording substantial sensitivity enhancements per time unit.
Collapse
Affiliation(s)
- Pau Nolis
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
31
|
Parella T. Towards perfect NMR: Spin-echo versus perfect-echo building blocks. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:13-29. [PMID: 29927497 DOI: 10.1002/mrc.4776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
The development of new tools to improve the quality of nuclear magnetic resonance (NMR) spectra is a challenging task. The concept of "perfect NMR" includes the design of robust pulse sequences that allow an investigator to obtain undistorted pure in-phase signals, with pure absorption lineshapes that are free of phase anomalies derived from undesired J modulations. Here, alternative NMR building blocks to the spin-echo that are based on a general double SE module, known as a perfect-echo, are reviewed. Several implementations to minimize/remove unwanted dispersive contributions in homonuclear and heteronuclear NMR experiments are described and illustrated with some examples of broad interest for small molecules.
Collapse
Affiliation(s)
- Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
32
|
Dumez JN. Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:101-134. [PMID: 30527133 DOI: 10.1016/j.pnmrs.2018.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 06/09/2023]
Abstract
A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.
Collapse
Affiliation(s)
- Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
33
|
Ilgen J, Kaltschnee L, Thiele CM. perfectBASH: Band-selective homonuclear decoupling in peptides and peptidomimetics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:918-933. [PMID: 29885093 DOI: 10.1002/mrc.4757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Band selective techniques offer the highest sensitivity of all pure shift approaches and thus are the best choice for decoupling well-separated 1 H-frequency regions, such as the amide- or the α-proton region of α-peptides. They are inept to fully decouple the amide- and the α-proton region simultaneously, though. Herein, we present a new homonuclear decoupling technique, which extends the capabilities of band selective decoupling using the perfect echo principle. This modification allows a complete backbone decoupling (amide- and α-protons) in peptides and opens band selective homonuclear decoupling to substances with two mutually coupled protons in the spectral range of interest.
Collapse
Affiliation(s)
- Julian Ilgen
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Lukas Kaltschnee
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
34
|
Kakita VMR, Bharatam J. Real-time homonuclear broadband decoupled pure shift COSY. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:963-968. [PMID: 29230883 DOI: 10.1002/mrc.4693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
The present manuscript reports development and applications of real-time homonuclear broadband decoupled pure shift version of in-phase zero-quantum filtered COSY (PS-IPZF-COSY) and clean in-phase COSY (PS-CLIP-COSY) pulse schemes. In contrast to the conventional COSY schemes, these pure shift versions provide enhanced spectral resolution and simplify the chemical shift correlation analysis of scalar coupled spins in complex organic molecules, which are exemplified for erythromycin A, estradiol, and a mixture of estradiol and testosterone.
Collapse
Affiliation(s)
- Veera Mohana Rao Kakita
- Centre for NMR and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500 007, India
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santa Cruz, Mumbai, 400 098, India
| | - Jagadeesh Bharatam
- Centre for NMR and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500 007, India
| |
Collapse
|
35
|
Tsuji N, Kennemur JL, Buyck T, Lee S, Prévost S, Kaib PSJ, Bykov D, Farès C, List B. Activation of olefins via asymmetric Brønsted acid catalysis. Science 2018; 359:1501-1505. [PMID: 29599238 DOI: 10.1126/science.aaq0445] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Accepted: 02/02/2018] [Indexed: 01/07/2023]
Abstract
The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Brønsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Brønsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Brønsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. The methodology gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (-)-Boivinianin A.
Collapse
Affiliation(s)
- Nobuya Tsuji
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Jennifer L Kennemur
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Buyck
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Sunggi Lee
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Sébastien Prévost
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Philip S J Kaib
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dmytro Bykov
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
36
|
Fräbel S, Wagner B, Krischke M, Schmidts V, Thiele CM, Staniek A, Warzecha H. Engineering of new-to-nature halogenated indigo precursors in plants. Metab Eng 2018; 46:20-27. [PMID: 29466700 DOI: 10.1016/j.ymben.2018.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/16/2022]
Abstract
Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-D-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ± 0.089 mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study puts forward a viable alternative production platform for halogenated fine chemicals, eschewing reliance on fossil fuel resources and toxic chemicals. We further contend that in planta generation of halogenated indigoid precursors previously unknown to nature offers an extended view on and, indeed, pushes forward the established frontiers of biosynthetic capacity of plants.
Collapse
Affiliation(s)
- Sabine Fräbel
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287 Darmstadt, Germany
| | - Bastian Wagner
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287 Darmstadt, Germany
| | - Markus Krischke
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut der Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Volker Schmidts
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Agata Staniek
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287 Darmstadt, Germany
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
37
|
Gyöngyösi T, Timári I, Haller J, Koos MRM, Luy B, Kövér KE. Boosting the NMR Assignment of Carbohydrates with Clean In-Phase Correlation Experiments. Chempluschem 2018; 83:53-60. [PMID: 31957316 DOI: 10.1002/cplu.201700452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Novel CLIP-COSY based homo- and heteronuclear correlation experiments are reported for the rapid, semi-automated NMR assignment of small to medium-sized molecules. The homonuclear CLIP-COSY and corresponding relayed experiments employ the perfect-echo based mixing sequence for in-phase coherence transfer between directly and/or indirectly coupled proton spins. The combined analysis of the resulting CLIP-COSY and relayed spectra made it possible to easily track down, layer by layer, the proton-proton connectivity network. In larger molecules the narrow chemical shift range of protons may, however, compromise the efficacy of the homonuclear correlation based assignment strategy. To overcome this limitation, an HSQC variant of the CLIP-COSY experiment has now been devised. Combined treatment of HSQC-CLIP-COSY (relayed) and standard HSQC spectra facilitates simultaneous and semi-automatic assignment of 1 H and 13 C resonances of medium-sized molecules, such as pentasaccharides. The recently introduced PSYCHE broadband homonuclear decoupling scheme has been also implemented into the devised homo- and heteronuclear CLIP-COSY based experiments, resulting in fully decoupled high-resolution pure-shift correlation spectra.
Collapse
Affiliation(s)
- Tamás Gyöngyösi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - István Timári
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.,Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Jens Haller
- Institute of Organic Chemistry, and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Martin R M Koos
- Institute of Organic Chemistry, and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry, and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| |
Collapse
|
38
|
Ilgen J, Kaltschnee L, Thiele CM. A pure shift experiment with increased sensitivity and superior performance for strongly coupled systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:18-29. [PMID: 29172170 DOI: 10.1016/j.jmr.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
Motivated by the persisting need for enhanced resolution in solution state NMR spectra, pure shift techniques such as Zangger-Sterk decoupling have recently attracted widespread interest. These techniques for homonuclear decoupling offer enhanced resolution in one- and multidimensional proton detected experiments by simplifying multiplet structures. In this work, a modification to the popular Zangger-Sterk technique PEPSIE (Perfect Echo Pure Shift Improved Experiment) is presented, which decouples pairs of spins even if they share the same volume element. This in turn can drastically improve the sensitivity, as compared to classical Zangger-Sterk decoupling, as larger volume elements can be used to collect the detected signal. Most interestingly, even in the presence of moderate strong coupling, the PEPSIE experiment produces clean and widely artifact free spectra. In order to better understand this - to us initially - surprising behaviour we performed analyses using numerical simulations and derived an (approximate) analytical solution from density matrix formalism. We show that this experiment is particularly suitable to study samples with strong signal clustering, a situation which can render classic Zangger-Sterk decoupling inefficient.
Collapse
Affiliation(s)
- Julian Ilgen
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany
| | - Lukas Kaltschnee
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany.
| |
Collapse
|
39
|
Sama S, Jerz G, Schmieder P, Woith E, Melzig MF, Weng A. Sapofectosid – Ensuring non-toxic and effective DNA and RNA delivery. Int J Pharm 2017; 534:195-205. [DOI: 10.1016/j.ijpharm.2017.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
|
40
|
|