1
|
Liu Y, Qi H. Cellulose nanocomposites with unique briar-like structure assembled with multiple modules in water. Int J Biol Macromol 2025; 307:142329. [PMID: 40120891 DOI: 10.1016/j.ijbiomac.2025.142329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
A new and green strategy for assembling cellulose nanocomposites with unique structure and properties using cellulose nano-modules in water is proposed. First, the acetoacetyl groups are modified on the surface of cellulose nanofibers (CNFs) to obtain acetoacetyl-CNFs (ACNFs). Then, ACNFs react with the reducing end of cellulose nanocrystals (CNCs) in water via the Biginelli three-component reaction to assemble the ACNF-CNC nanocomposites with unique briar-like structure. Compared with the tensile strength of CNF film (78.2 MPa), the tensile strength of ACNF-CNC film (149.3 MPa) is significantly improved, which is attributed to the increase of physical entanglement points between ACNF-CNC nanocomposites. Similarly, the tensile strength of the PVA/ACNF-CNC film (187.9 MPa) is significantly higher than that of the PVA/CNF film (131.8 MPa). The development of cellulose nanocomposites with unique structure and properties can promote the functionalization and high-value application of cellulose.
Collapse
Affiliation(s)
- Yu Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
Ouyang S, Wang F, Liu Y, Hu Z, Li M, Wu Y, Li Z, Qian J, Wang L, Ma S. Current status of research on polysaccharide-based functional gradient gel materials: A review. Carbohydr Polym 2024; 344:122520. [PMID: 39218545 DOI: 10.1016/j.carbpol.2024.122520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Functional gradient materials with material property anisotropy are one of the hotspots of current new material research. The gradient change of material properties comes from the change of the content of one or more components in the material, which is closely related to the preparation process of the material. Meanwhile, polysaccharide materials, as an environmentally friendly and green material, have attracted extensive attention from researchers. This paper focuses on the preparation process of functional gradient gel materials based on polysaccharides, analyzes the laws affecting the distribution of substances during the molding process from the basic principles of material molding, and clarifies the advantages and disadvantages of various methods, so as to promote the innovation of the theory of the preparation method of functional gradient gel materials. At the same time, the specific applications that can be realized by the gradient materials are introduced and compared with the traditional homogeneous materials to elucidate the enhancement of the usage properties brought by their unique gradient structure or properties, which will play a certain role as a reference for the direction of the application of the subsequent materials.
Collapse
Affiliation(s)
- Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Jia S, Yang B, Du J, Xie Y, Yu L, Zhang Y, Tao T, Tang W, Gong J. Uncovering the Recent Progress of CNC-Derived Chirality Nanomaterials: Structure and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401664. [PMID: 38651220 DOI: 10.1002/smll.202401664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingbing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
4
|
Wang F, Hu Z, Ouyang S, Wang S, Liu Y, Li M, Wu Y, Li Z, Qian J, Wu Z, Zhao Z, Wang L, Jia C, Ma S. Application progress of nanocellulose in food packaging: A review. Int J Biol Macromol 2024; 268:131936. [PMID: 38692533 DOI: 10.1016/j.ijbiomac.2024.131936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
With the increasing environmental and ecological problems caused by petroleum-based packaging materials, the focus has gradually shifted to natural resources for the preparation of functional food packaging materials. In addition to biodegradable properties, nanocellulose (NC) mechanical properties, and rich surface chemistry are also fascinating and desired to be one of the most probable green packaging materials. In this review, we firstly introduce the recent progress of novel applications of NC in food packaging, including intelligent packaging, nano(bio)sensors, and nano-paper; secondly, we focus on the modification techniques of NC to summarize the properties (antimicrobial, mechanical, hydrophobic, antioxidant, and so on) that are required for food packaging, to expand the new synthetic methods and application areas. After presenting all the latest advances related to material design and sustainable applications, an overview summarizing the safety of NC is presented to promote a continuous and healthy movement of NC toward the field of truly sustainable packaging.
Collapse
Affiliation(s)
- Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Suyang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhen Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhicheng Zhao
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Pragya A, Ghosh TK. Soft Functionally Gradient Materials and Structures - Natural and Manmade: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300912. [PMID: 37031358 DOI: 10.1002/adma.202300912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Functionally gradient materials (FGM) have gradual variations in their properties along one or more dimensions due to local compositional or structural distinctions by design. Traditionally, hard materials (e.g., metals, ceramics) are used to design and fabricate FGMs; however, there is increasing interest in polymer-based soft and compliant FGMs mainly because of their potential application in the human environment. Soft FGMs are ideally suitable to manage interfacial problems in dissimilar materials used in many emerging devices and systems for human interaction, such as soft robotics and electronic textiles and beyond. Soft systems are ubiquitous in everyday lives; they are resilient and can easily deform, absorb energy, and adapt to changing environments. Here, the basic design and functional principles of biological FGMs and their manmade counterparts are discussed using representative examples. The remarkable multifunctional properties of natural FGMs resulting from their sophisticated hierarchical structures, built from a relatively limited choice of materials, offer a rich source of new design paradigms and manufacturing strategies for manmade materials and systems for emerging technological needs. Finally, the challenges and potential pathways are highlighted to leverage soft materials' facile processability and unique properties toward functional FGMs.
Collapse
Affiliation(s)
- Akanksha Pragya
- Department of Textile Engineering Chemistry and Science, Fiber, and Polymer Science Program, Wilson College of Textiles, North Carolina State University, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27606, USA
| | - Tushar K Ghosh
- Department of Textile Engineering Chemistry and Science, Fiber, and Polymer Science Program, Wilson College of Textiles, North Carolina State University, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27606, USA
| |
Collapse
|
6
|
Xu B, Ye J, Fan BS, Wang X, Zhang JY, Song S, Song Y, Jiang WB, Wang X, Yu JK. Protein-spatiotemporal partition releasing gradient porous scaffolds and anti-inflammatory and antioxidant regulation remodel tissue engineered anisotropic meniscus. Bioact Mater 2023; 20:194-207. [PMID: 35702607 PMCID: PMC9160676 DOI: 10.1016/j.bioactmat.2022.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/02/2023] Open
Abstract
Meniscus is a wedge-shaped fibrocartilaginous tissue, playing important roles in maintaining joint stability and function. Meniscus injuries are difficult to heal and frequently progress into structural breakdown, which then leads to osteoarthritis. Regeneration of heterogeneous tissue engineering meniscus (TEM) continues to be a scientific and translational challenge. The morphology, tissue architecture, mechanical strength, and functional applications of the cultivated TEMs have not been able to meet clinical needs, which may due to the negligent attention on the importance of microenvironment in vitro and in vivo. Herein, we combined the 3D (three-dimensional)-printed gradient porous scaffolds, spatiotemporal partition release of growth factors, and anti-inflammatory and anti-oxidant microenvironment regulation of Ac2-26 peptide to prepare a versatile meniscus composite scaffold with heterogeneous bionic structures, excellent biomechanical properties and anti-inflammatory and anti-oxidant effects. By observing the results of cell activity and differentiation, and biomechanics under anti-inflammatory and anti-oxidant microenvironments in vitro, we explored the effects of anti-inflammatory and anti-oxidant microenvironments on construction of regional and functional heterogeneous TEM via the growth process regulation, with a view to cultivating a high-quality of TEM from bench to bedside. A polycaprolactone meniscus scaffold with the gradient porous architecture. Spatiotemporal partition release of two growth factors to promote heterogeneous phenotypes. Anti-inflammatory and antioxidant regulation by Ac2-26 peptide. Scaffold with biomimetic morphology, biomechanics, heterogeneity of native meniscus.
Collapse
|
7
|
Juan LT, Lin SH, Wong CW, Jeng US, Huang CF, Hsu SH. Functionalized Cellulose Nanofibers as Crosslinkers to Produce Chitosan Self-Healing Hydrogel and Shape Memory Cryogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36353-36365. [PMID: 35930741 DOI: 10.1021/acsami.2c07170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellulose nanofibers functionalized with multiple aldehyde group were synthesized as the crosslinker to produce composite self-healing hydrogel and shape memory cryogel from chitosan. The hydrogel possessed effective self-healing (∼100% efficiency) and shear-thinning properties. The cryogel had macroporous structure, large water absorption (>4300%), and high compressibility. Both hydrogel and cryogel were injectable. In particular, the cryogel (nanocellulose/chitosan 1:6) revealed thermally induced shape memory, the mechanism of which was elucidated by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) as changes in orientation of the induced crystalline structure during the shape memory program. The shape memory cryogel with a large size (15 mm × 10 mm × 1.1 mm) injected through a 16 G syringe needle was recoverable in 37 °C water. Moreover, the cryogel was cytocompatible and promoted cell growth. The nanocellulose-chitosan composite hydrogel and cryogel are injectable and degradable biomaterials with adjustable mechanical properties for potential medical applications.
Collapse
Affiliation(s)
- Li-Ting Juan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Shih-Ho Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chui-Wei Wong
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| |
Collapse
|
8
|
Ghimire A, Chen PY. Seed protection strategies of the brainy Elaeocarpus ganitrus endocarp: Gradient motif yields fracture tolerance. Acta Biomater 2022; 138:430-442. [PMID: 34728425 DOI: 10.1016/j.actbio.2021.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Be it animals or plants, most of the organism's offspring come into existence after their embryos develop inside a protective shell. In plants, these hard protective shells are called endocarps. They serve the function of nourishing and protecting the seeds from external mechanical damage. Through evolution, endocarps of plants have developed various structural strategies to protect the enclosed seeds from external threats, and these strategies can vary according to the habitat or lifestyle of a particular plant. One such intriguing hard plant shell is the endocarp of the Elaeocarpus ganitrus fruit. It mostly grows in South Asia's mountainous forests, and its endocarps are known in the local communities as unbreakable and everlasting prayer beads. We report an in-depth investigation on microstructure, tomography, and mechanical properties to cast light on its performance and the underlying structure-property relation. The 3D structural quantifications by micro-CT demonstrate that the endocarp has gradient microarchitecture. In addition, the endocarp also exhibits gradient hardness and stiffness. The toughening mechanisms arising from the layered cellular structure enable the endocarps to withstand higher loads up to 5000 N before they fracture. Our findings provide experimental evidence of outstanding fracture tolerance and seed protection strategies developed by Elaeocarpus ganitrus endocarp that encourage the design of synthetic fracture tolerant structures. STATEMENT OF SIGNIFICANCE: Endocarps are low-density plant shells that exhibit remarkable fracture resistance and energy absorption when they encounter impact by falling from high trees and prolonged compression and abrasion by the predators. Such outstanding mechanical performance originates through structural design strategies developed to protect their seeds. Here we demonstrate previously undiscovered structural features and mechanical properties of Elaeocarpus ganitrus endocarp. We scrutinize the microstructure using high-resolution x-ray tomography scans and the 3D structural quantifications reveal a gradient microstructure which is in agreement with the gradient hardness and stiffness. The multiscale hierarchical structures combined with the gradient motif yield impressive fracture tolerance in Elaeocarpus ganitrus endocarp. These findings advance the knowledge of the structure-property relation in hard plant shells, and the procured structural design strategies can be utilized to design fracture-resistant structures.
Collapse
|
9
|
Zhang Z, Jiang W, Xie X, Liang H, Chen H, Chen K, Zhang Y, Xu W, Chen M. Recent Developments of Nanomaterials in Hydrogels: Characteristics, Influences, and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zongzheng Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenqing Jiang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Xinmin Xie
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Haiqing Liang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Hao Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Kun Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Ying Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Mengjun Chen
- School of Qilu Transportation Shandong University Jinan 250002 China
| |
Collapse
|
10
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
11
|
|
12
|
Jiao D, Lossada F, Guo J, Skarsetz O, Hoenders D, Liu J, Walther A. Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nat Commun 2021; 12:1312. [PMID: 33637751 PMCID: PMC7910463 DOI: 10.1038/s41467-021-21599-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Nature fascinates with living organisms showing mechanically adaptive behavior. In contrast to gels or elastomers, it is profoundly challenging to switch mechanical properties in stiff bioinspired nanocomposites as they contain high fractions of immobile reinforcements. Here, we introduce facile electrical switching to the field of bioinspired nanocomposites, and show how the mechanical properties adapt to low direct current (DC). This is realized for renewable cellulose nanofibrils/polymer nanopapers with tailor-made interactions by deposition of thin single-walled carbon nanotube electrode layers for Joule heating. Application of DC at specific voltages translates into significant electrothermal softening via dynamization and breakage of the thermo-reversible supramolecular bonds. The altered mechanical properties are reversibly switchable in power on/power off cycles. Furthermore, we showcase electricity-adaptive patterns and reconfiguration of deformation patterns using electrode patterning techniques. The simple and generic approach opens avenues for bioinspired nanocomposites for facile application in adaptive damping and structural materials, and soft robotics.
Collapse
Affiliation(s)
- Dejin Jiao
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Francisco Lossada
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Jiaqi Guo
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Oliver Skarsetz
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Daniel Hoenders
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Jin Liu
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany.
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Peng N, Huang D, Gong C, Wang Y, Zhou J, Chang C. Controlled Arrangement of Nanocellulose in Polymeric Matrix: From Reinforcement to Functionality. ACS NANO 2020; 14:16169-16179. [PMID: 33314921 DOI: 10.1021/acsnano.0c08906] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nanocellulose, the most abundant crystalline polysaccharide nanomaterial on Earth, has been widely used for the reinforcement of polymeric materials owing to its high elastic modulus, low density, high aspect ratio, biocompatibility, and biodegradability. In this Perspective, we offer a brief overview of recent progress in the controllable arrangement of nanocellulose in polymeric matrices, including highly oriented structure, helical structure, and gradient structure. We then discuss the current nanotechnologies that enable the arrangement of nanocellulose in nanocomposite materials. Finally, we describe future opportunities, challenges, and research directions in this active research area.
Collapse
Affiliation(s)
- Na Peng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Da Huang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| | - Chen Gong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
14
|
Yan G, Chen B, Zeng X, Sun Y, Tang X, Lin L. Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohydr Polym 2020; 244:116492. [DOI: 10.1016/j.carbpol.2020.116492] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
15
|
Xu X, Zhou H, Zhou G, Hsieh YL. Photonic Thin Films Assembled from Amphiphilic Cellulose Nanofibrils Displaying Iridescent Full-Colors. ACS APPLIED BIO MATERIALS 2020; 3:4522-4530. [PMID: 35025451 DOI: 10.1021/acsabm.0c00463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembly of nanoparticles (NPs) to form structural colors offers promising opportunities for developing electronic, optoelectronic, and magnetic devices. In this regard, we reported co-assembly of cellulose nanofibrils (CNFs) and graphene to produce colored thin films. We demonstrated that biomimetic iridescent "peacock feather"-like full-color thin films can be generated by simple evaporation of aqueous suspensions on a surface tension confined, optically symmetric indium tin oxide-coated polyethylene terephthalate substrate. Amphiphilic CNFs serve dual functions to attract hydrophobic graphene via van der Waals interactions and to disperse hydrophilically and anionically CNF-tethered graphene while regulating surface tension to induce capillary and Marangoni flows in the force fields and construct thickness variation during dewetting. These CNF-graphene thin films exhibit full-color patterns and function as tunable light and moisture actuators. This approach has high potential to be applied to assemble other metal or metal oxide NPs for fast, simple, and robust fabrication without involving any complex lithography and external fields.
Collapse
Affiliation(s)
- Xuezhu Xu
- Biological and Agricultural Engineering, University of California, Davis, California 95616, United States.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - He Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - You-Lo Hsieh
- Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
16
|
Chemin M, Beaumal B, Cathala B, Villares A. pH-Responsive Properties of Asymmetric Nanopapers of Nanofibrillated Cellulose. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1380. [PMID: 32679783 PMCID: PMC7408521 DOI: 10.3390/nano10071380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Inspired by plant movements driven by the arrangement of cellulose, we have fabricated nanopapers of nanofibrillated cellulose (NFC) showing actuation under pH changes. Bending was achieved by a concentration gradient of charged groups along the film thickness. Hence, the resulting nanopapers contained higher concentration of charged groups on one side of the film than on the opposite side, so that pH changes resulted in charge-dependent asymmetric deprotonation of the two layers. Electrostatic repulsions separate the nanofibers in the nanopaper, thus facilitating an asymmetric swelling and the subsequent expanding that results in bending. Nanofibrillated cellulose was modified by 2,2,6,6-tetramethylpiperidin-1-yl)oxyl radical (TEMPO) oxidation at two reaction times to get different surface concentrations of carboxylic acid groups. TEMPO-oxidized NFC was further chemically transformed into amine-modified NFC by amidation. The formation of graded nanopapers was accomplished by successive filtration of NFC dispersions with varying charge nature and/or concentration. The extent of bending was controlled by the charge concentration and the nanopaper thickness. The direction of bending was tuned by the layer composition (carboxylic acid or amine groups). In all cases, a steady-state was achieved within less than 25 s. This work opens new routes for the use of cellulosic materials as actuators.
Collapse
Affiliation(s)
| | | | | | - Ana Villares
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR Biopolymer, Interactions, Assemblies (BIA), F-44316 Nantes, France; (M.C.); (B.B.); (B.C.)
| |
Collapse
|
17
|
Yao J, Fang W, Guo J, Jiao D, Chen S, Ifuku S, Wang H, Walther A. Highly Mineralized Biomimetic Polysaccharide Nanofiber Materials Using Enzymatic Mineralization. Biomacromolecules 2020; 21:2176-2186. [PMID: 32286801 DOI: 10.1021/acs.biomac.0c00160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many biological high-performance composites, such as bone, antler, and crustacean cuticles, are composed of densely mineralized and ordered nanofiber materials. The mimicry of even simplistic bioinspired structures, i.e., of densely and homogeneously mineralized nanofibrillar materials with controllable mechanical performance, continues to be a grand challenge. Here, using alkaline phosphatase as an enzymatic catalyst, we demonstrate the dense, homogeneous, and spatially controlled mineralization of calcium phosphate nanostructures within networks of anionically charged cellulose nanofibrils (CNFs) and cationically charged chitin nanofibrils (ChNFs)-both emerging biobased nanoscale building blocks for sustainable high-performance materials design. Our study reveals that anionic CNFs lead to a more homogeneous nanoscale mineralization with very high mineral contents up to ca. 70 wt % with a transition from amorphous to crystalline deposits, while cationic ChNFs yield rod-like crystalline morphologies. The bone-inspired CNF bulk films exhibit a significantly increased stiffness, maintain good flexibility and translucency, and have a significant gain in wet state mechanical properties. The mechanical properties can be tuned both by the enzyme concentration and the mineralization time. Moreover, we also show a spatial control of the mineralization using kinetically controlled substrate uptake in a dialysis reactor, and by spatially selectively incorporating the enzyme into 2D printed filament patterns. The strategy highlights possibilities for spatial encoding of enzymes in tailored structures and patterns and programmed mineralization processes, promoting the potential application of mineralized CNF biomaterials with complex gradients for bone substitutes and tissue regeneration in general.
Collapse
Affiliation(s)
- Jingjing Yao
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wenwen Fang
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Jiaqi Guo
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Dejin Jiao
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, 101-4 Koyama-cho Minami, Tottori 680-8502, Japan
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Andreas Walther
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
18
|
Zhang X, Morits M, Jonkergouw C, Ora A, Valle-Delgado JJ, Farooq M, Ajdary R, Huan S, Linder M, Rojas O, Sipponen MH, Österberg M. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules 2020. [PMID: 31992046 DOI: 10.1021/acs.biomac.1879b01745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Three-dimensional (3D) printing has been an emerging technique to fabricate precise scaffolds for biomedical applications. Cellulose nanofibril (CNF) hydrogels have attracted considerable attention as a material for 3D printing because of their shear-thinning properties. Combining cellulose nanofibril hydrogels with alginate is an effective method to enable cross-linking of the printed scaffolds in the presence of Ca2+ ions. In this work, spherical colloidal lignin particles (CLPs, also known as spherical lignin nanoparticles) were used to prepare CNF-alginate-CLP nanocomposite scaffolds. High-resolution images obtained by atomic force microscopy (AFM) showed that CLPs were homogeneously mixed with the CNF hydrogel. CLPs brought antioxidant properties to the CNF-alginate-CLP scaffolds in a concentration-dependent manner and increased the viscosity of the hydrogels at a low shear rate, which correspondingly provide better shape fidelity and printing resolution to the scaffolds. Interestingly, the CLPs did not affect the viscosity at high shear rates, showing that the shear thinning behavior typical for CNF hydrogels was retained, enabling easy printing. The CNF-alginate-CLP scaffolds demonstrated shape stability after printing, cross-linking, and storage in Dulbecco's phosphate buffer solution (DPBS +) containing Ca2+ and Mg2+ ions, up to 7 days. The 3D-printed scaffolds showed relative rehydration ratio values above 80% after freeze-drying, demonstrating a high water-retaining capability. Cell viability tests using hepatocellular carcinoma cell line HepG2 showed no negative effect of CLPs on cell proliferation. Fluorescence microscopy indicated that HepG2 cells grew not only on the surfaces but also inside the porous scaffolds. Overall, our results demonstrate that nanocomposite CNF-alginate-CLP scaffolds have high potential in soft-tissue engineering and regenerative-medicine applications.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Ari Ora
- Department of Applied Physics, School of Science, Aalto University, FIN-02150 Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Siqi Huan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Mika Henrikki Sipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
19
|
Zhang X, Morits M, Jonkergouw C, Ora A, Valle-Delgado JJ, Farooq M, Ajdary R, Huan S, Linder M, Rojas O, Sipponen MH, Österberg M. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules 2020; 21:1875-1885. [PMID: 31992046 PMCID: PMC7218745 DOI: 10.1021/acs.biomac.9b01745] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Indexed: 01/09/2023]
Abstract
Three-dimensional (3D) printing has been an emerging technique to fabricate precise scaffolds for biomedical applications. Cellulose nanofibril (CNF) hydrogels have attracted considerable attention as a material for 3D printing because of their shear-thinning properties. Combining cellulose nanofibril hydrogels with alginate is an effective method to enable cross-linking of the printed scaffolds in the presence of Ca2+ ions. In this work, spherical colloidal lignin particles (CLPs, also known as spherical lignin nanoparticles) were used to prepare CNF-alginate-CLP nanocomposite scaffolds. High-resolution images obtained by atomic force microscopy (AFM) showed that CLPs were homogeneously mixed with the CNF hydrogel. CLPs brought antioxidant properties to the CNF-alginate-CLP scaffolds in a concentration-dependent manner and increased the viscosity of the hydrogels at a low shear rate, which correspondingly provide better shape fidelity and printing resolution to the scaffolds. Interestingly, the CLPs did not affect the viscosity at high shear rates, showing that the shear thinning behavior typical for CNF hydrogels was retained, enabling easy printing. The CNF-alginate-CLP scaffolds demonstrated shape stability after printing, cross-linking, and storage in Dulbecco's phosphate buffer solution (DPBS +) containing Ca2+ and Mg2+ ions, up to 7 days. The 3D-printed scaffolds showed relative rehydration ratio values above 80% after freeze-drying, demonstrating a high water-retaining capability. Cell viability tests using hepatocellular carcinoma cell line HepG2 showed no negative effect of CLPs on cell proliferation. Fluorescence microscopy indicated that HepG2 cells grew not only on the surfaces but also inside the porous scaffolds. Overall, our results demonstrate that nanocomposite CNF-alginate-CLP scaffolds have high potential in soft-tissue engineering and regenerative-medicine applications.
Collapse
Affiliation(s)
- Xue Zhang
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Ari Ora
- Department
of Applied Physics, School of Science, Aalto
University, FIN-02150 Espoo, Finland
| | - Juan José Valle-Delgado
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Muhammad Farooq
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Rubina Ajdary
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Siqi Huan
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Mika Henrikki Sipponen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
20
|
Zhu Q, Liu S, Sun J, Liu J, Kirubaharan CJ, Chen H, Xu W, Wang Q. Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr Polym 2020; 235:115933. [DOI: 10.1016/j.carbpol.2020.115933] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 11/24/2022]
|
21
|
Miao X, Lin J, Bian F. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
22
|
Wang Y, Wang Y, Wang J, Zhao F, Xu Z, Yuan Z, Niu X, Li L, Bai S, Shi Y, Guo X. Mineralized Supramolecular Hydrogels Bearing Tunable Thermo-Responsiveness. Macromol Rapid Commun 2019; 40:e1900516. [PMID: 31692166 DOI: 10.1002/marc.201900516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/08/2019] [Indexed: 12/29/2022]
Abstract
Although a variety of biomimetic mineralized materials have been created in the lab, the vast majority of these manmade examples lack response to external stimuli. Here, mineralized supramolecular hydrogels with on-demand thermo-responsiveness that are formed by a simple, physical crosslinking between amorphous CaCO3 (ACC) nanoparticles and poly(acrylic acid) (PAA) are reported. Upon the addition of Na2 CO3 solution into a mixture composed of PAA and CaCl2 , amorphous ACC nanoparticles are formed in situ and simultaneously crosslinked by PAA chains, giving rise to the mineralized hydrogels. Interestingly, upon tuning the content of the formed ACC, hydrogels with different types of thermo-responsiveness can be easily obtained, and the transparencies of the resulting hydrogels are dramatically changed during the temperature-driven phase transitions. As an application, these thermo-responsive mineralized hydrogels are used to control the exposure of UV light, which is successfully applied to switch fluorescent signals in response to temperature.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Fang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Zhenyu Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Xiaofeng Niu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Yulin Shi
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, North Fourth Road 221, 832000, Shihezi, P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China.,Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, North Fourth Road 221, 832000, Shihezi, P. R. China
| |
Collapse
|
23
|
Zhang Y, Edelbrock AN, Rowan, SJ. Effect of processing conditions on the mechanical properties of bio-inspired mechanical gradient nanocomposites. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Du H, Liu W, Zhang M, Si C, Zhang X, Li B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 2019; 209:130-144. [PMID: 30732792 DOI: 10.1016/j.carbpol.2019.01.020] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future.
Collapse
Affiliation(s)
- Haishun Du
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA; CAS Key Laboratory of Biofuels, CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Miaomiao Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Bin Li
- CAS Key Laboratory of Biofuels, CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
25
|
Riehle F, Hoenders D, Guo J, Eckert A, Ifuku S, Walther A. Sustainable Chitin Nanofibrils Provide Outstanding Flame-Retardant Nanopapers. Biomacromolecules 2019; 20:1098-1108. [DOI: 10.1021/acs.biomac.8b01766] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Felix Riehle
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, 79110 Freiburg, Germany
| | - Daniel Hoenders
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, 79110 Freiburg, Germany
| | - Jiaqi Guo
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, 79110 Freiburg, Germany
| | - Alexander Eckert
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, 101-4 Koyama-cho Minami, Tottori, 680-8502, Japan
| | - Andreas Walther
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Preparation of Compositional Gradient Polymeric Films Based on Gradient Mesh Template. Polymers (Basel) 2018; 10:polym10060677. [PMID: 30966711 PMCID: PMC6404138 DOI: 10.3390/polym10060677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 11/17/2022] Open
Abstract
In this paper, a template-filling method was found to prepare composition gradient gelatin films by incorporating α-[3-(2,3-epoxypropoxy) propyl]-ω-butyl-polydimethylsiloxane (PDMS⁻E) grafted gelatin (PGG) into a gradient gelatin mesh template. The method can be used to prepare other composition gradient biopolymer films. Gradient mesh template prepared by the methacrylic anhydride cross-linked gelatin under temperature gradient field. The porosity of the template decreased from 89 to 35% which was accompanied by decrease in average pore size from 160 to 50 µm. Colloidal particles about 0.9~10 µm were formed from PGG after adding them to a mixed solvent system of 9:1 (v/v) of ethanol/water, which were filled in the mesh template under vacuum (0.06 MPa). A gradient film was obtained after drying at room temperature for 48 h. The results of scanning electron microscope-energy dispersive X-ray combined with freezing microtome and Fourier transform infrared spectroscopy suggested that the distribution of the Si element along the thickness showed a typical gradient pattern, which led to hydrophilic/hydrophobic continuous changing along the thickness of film. The water vapor permeability, thermal gravimetric analysis, differential scanning calorimetry and dynamic mechanical tensile results show that the gradient films had excellent water vapor permeability and flexibility, and hence could be used as biomimetic materials and leather finishing agents.
Collapse
|
27
|
Chakrabarty A, Teramoto Y. Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them. Polymers (Basel) 2018; 10:E517. [PMID: 30966551 PMCID: PMC6415375 DOI: 10.3390/polym10050517] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, the research on nanocellulose composites with polymers has made significant contributions to the development of functional and sustainable materials. This review outlines the chemistry of the interaction between the nanocellulose and the polymer matrix, along with the extent of the reinforcement in their nanocomposites. In order to fabricate well-defined nanocomposites, the type of nanomaterial and the selection of the polymer matrix are always crucial from the viewpoint of polymer⁻filler compatibility for the desired reinforcement and specific application. In this review, recent articles on polymer/nanocellulose composites were taken into account to provide a clear understanding on how to use the surface functionalities of nanocellulose and to choose the polymer matrix in order to produce the nanocomposite. Here, we considered cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) as the nanocellulosic materials. A brief discussion on their synthesis and properties was also incorporated. This review, overall, is a guide to help in designing polymer/nanocellulose composites through the utilization of nanocellulose properties and the selection of functional polymers, paving the way to specific polymer⁻filler interaction.
Collapse
Affiliation(s)
- Arindam Chakrabarty
- Department of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Yoshikuni Teramoto
- Department of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
28
|
Kokkinis D, Bouville F, Studart AR. 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705808. [PMID: 29337394 DOI: 10.1002/adma.201705808] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D-printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect-rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect-tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics.
Collapse
Affiliation(s)
- Dimitri Kokkinis
- Complex Materials, Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| | - Florian Bouville
- Complex Materials, Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
29
|
Thrasher CJ, Schwartz JJ, Boydston AJ. Modular Elastomer Photoresins for Digital Light Processing Additive Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39708-39716. [PMID: 29039648 DOI: 10.1021/acsami.7b13909] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A series of photoresins suitable for the production of elastomeric objects via digital light processing additive manufacturing are reported. Notably, the printing procedure is readily accessible using only entry-level equipment under ambient conditions using visible light projection. The photoresin formulations were found to be modular in nature, and straightforward adjustments to the resin components enabled access to a range of compositions and mechanical properties. Collectively, the series includes silicones, hydrogels, and hybrids thereof. Printed test specimens displayed maximum elongations of up to 472% under tensile load, a tunable swelling behavior in water, and Shore A hardness values from 13.7 to 33.3. A combination of the resins was used to print a functional multimaterial three-armed pneumatic gripper. These photoresins could be transformative to advanced prototyping applications such as simulated human tissues, stimuli-responsive materials, wearable devices, and soft robotics.
Collapse
Affiliation(s)
- Carl J Thrasher
- Department of Chemistry, University of Washington , P.O. Box 351700, Seattle, Washington 98195, United States
| | - Johanna J Schwartz
- Department of Chemistry, University of Washington , P.O. Box 351700, Seattle, Washington 98195, United States
| | - Andrew J Boydston
- Department of Chemistry, University of Washington , P.O. Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
30
|
Neal JA, Oldenhuis NJ, Novitsky AL, Samson EM, Thrift WJ, Ragan R, Guan Z. Large Continuous Mechanical Gradient Formation via Metal–Ligand Interactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- James A. Neal
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 Irvine CA 92697 USA
| | - Nathan J. Oldenhuis
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 Irvine CA 92697 USA
| | | | - Emil M. Samson
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 Irvine CA 92697 USA
| | - William J. Thrift
- Department of Chemical Engineering and Materials Science University of California, Irvine Irvine CA 92697 USA
| | - Regina Ragan
- Department of Chemical Engineering and Materials Science University of California, Irvine Irvine CA 92697 USA
| | - Zhibin Guan
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 Irvine CA 92697 USA
| |
Collapse
|
31
|
Neal JA, Oldenhuis NJ, Novitsky AL, Samson EM, Thrift WJ, Ragan R, Guan Z. Large Continuous Mechanical Gradient Formation via Metal–Ligand Interactions. Angew Chem Int Ed Engl 2017; 56:15575-15579. [DOI: 10.1002/anie.201707587] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 01/24/2023]
Affiliation(s)
- James A. Neal
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 Irvine CA 92697 USA
| | - Nathan J. Oldenhuis
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 Irvine CA 92697 USA
| | | | - Emil M. Samson
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 Irvine CA 92697 USA
| | - William J. Thrift
- Department of Chemical Engineering and Materials Science University of California, Irvine Irvine CA 92697 USA
| | - Regina Ragan
- Department of Chemical Engineering and Materials Science University of California, Irvine Irvine CA 92697 USA
| | - Zhibin Guan
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 Irvine CA 92697 USA
| |
Collapse
|
32
|
Pekkanen AM, Mondschein RJ, Williams CB, Long TE. 3D Printing Polymers with Supramolecular Functionality for Biological Applications. Biomacromolecules 2017; 18:2669-2687. [PMID: 28762718 DOI: 10.1021/acs.biomac.7b00671] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.
Collapse
Affiliation(s)
- Allison M Pekkanen
- School of Biomedical Engineering and Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States.,Macromolecules Innovation Institute (MII), Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Ryan J Mondschein
- Macromolecules Innovation Institute (MII), Virginia Tech , Blacksburg, Virginia 24061, United States.,Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Christopher B Williams
- Macromolecules Innovation Institute (MII), Virginia Tech , Blacksburg, Virginia 24061, United States.,Department of Mechanical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Timothy E Long
- Macromolecules Innovation Institute (MII), Virginia Tech , Blacksburg, Virginia 24061, United States.,Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| |
Collapse
|
33
|
Benítez AJ, Walther A. Counterion Size and Nature Control Structural and Mechanical Response in Cellulose Nanofibril Nanopapers. Biomacromolecules 2017; 18:1642-1653. [DOI: 10.1021/acs.biomac.7b00263] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandro J. Benítez
- Institute for Macromolecular
Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials
Research Center, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center
for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- Institute for Macromolecular
Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials
Research Center, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center
for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
34
|
Benítez AJ, Lossada F, Zhu B, Rudolph T, Walther A. Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites. Biomacromolecules 2016; 17:2417-26. [DOI: 10.1021/acs.biomac.6b00533] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alejandro J. Benítez
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Francisco Lossada
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Baolei Zhu
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Tobias Rudolph
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Andreas Walther
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| |
Collapse
|
35
|
Zhu B, Merindol R, Benitez AJ, Wang B, Walther A. Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11031-40. [PMID: 27067311 DOI: 10.1021/acsami.6b00410] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Natural composites are hierarchically structured by combination of ordered colloidal and molecular length scales. They inspire future, biomimetic, and lightweight nanocomposites, in which extraordinary mechanical properties are in reach by understanding and mastering hierarchical structure formation as tools to engineer multiscale deformation mechanisms. Here we describe a hierarchically self-assembled, cholesteric nanocomposite with well-defined colloid-based helical structure and supramolecular hydrogen bonds engineered on the molecular level in the polymer matrix. We use reversible addition-fragmentation transfer polymerization to synthesize well-defined hydrophilic, nonionic polymers with a varying functionalization density of 4-fold hydrogen-bonding ureidopyrimidinone (UPy) motifs. We show that these copolymers can be coassembled with cellulose nanocrystals (CNC), a sustainable, stiff, rod-like reinforcement, to give ordered cholesteric phases with characteristic photonic stop bands. The dimensions of the helical pitch are controlled by the ratio of polymer/CNC, confirming a smooth integration into the colloidal structure. With respect to the effect of the supramolecular motifs, we demonstrate that those regulate the swelling when exposing the biomimetic hybrids to water, and they allow engineering the photonic response. Moreover, the amount of hydrogen bonds and the polymer fraction are decisive in defining the mechanical properties. An Ashby plot comparing previous ordered CNC-based nanocomposites with our new hierarchical ones reveals that molecular engineering allows us to span an unprecedented mechanical property range from highest inelastic deformation (strain up to ∼13%) to highest stiffness (E ∼ 15 GPa) and combinations of both. We envisage that further rational design of the molecular interactions will provide efficient tools for enhancing the multifunctional property profiles of such bioinspired nanocomposites.
Collapse
Affiliation(s)
- Baolei Zhu
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Remi Merindol
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Alejandro J Benitez
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Baochun Wang
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Andreas Walther
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| |
Collapse
|
36
|
Li X, Jiang F, Chen L, Wu M, Lu S, Pang J, Zhou K, Chen X, Hong M. Two microporous metal–organic frameworks constructed from trinuclear cobalt(ii) and cadmium(ii) cluster subunits. CrystEngComm 2016. [DOI: 10.1039/c6ce00141f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This work presents two novel microporous metal–organic frameworks which are constructed from a tetracarboxylate ligand and trinuclear cobalt(ii) and cadmium(ii) cluster subunits.
Collapse
Affiliation(s)
- Xingjun Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
| | - Feilong Jiang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
| | - Lian Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
| | - Mingyan Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
| | - Shan Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
| | - Jiandong Pang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
| | - Kang Zhou
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
| | - Xueyuan Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
| | - Maochun Hong
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
| |
Collapse
|