1
|
Huang YQ, Zhu L, Mei TS. Cathodic oxygen reduction-enabled rhodium-catalyzed (5 + 1) C-H/O-H annulation inspired by fuel cells. Nat Commun 2025; 16:4073. [PMID: 40307225 PMCID: PMC12043932 DOI: 10.1038/s41467-025-59405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
Transition metal-catalyzed electrochemical C-H annulation with alkynes has emerged as a promising method for constructing heterocycles via formal cycloadditions. However, catalytic electrochemical C-H annulation with alkenes has been less explored. In this study, we report a cathodic oxygen reduction-enabled rhodium catalyzed (5 + 1) annulation reaction between readily available alkenylphenols and alkenes, yielding valuable 2-substituted 2H-chromenes. Unlike existing methods that involve direct oxidation of catalysts at the anode, our protocol uses a sacrificial anode to protect the substrate from overoxidation, while the cathode reduces oxygen, coupling with the RhI. to regenerate the rhodium catalyst. This efficient, atom-economical heterocyclization reaction demonstrates a broad scope and functional-group tolerance for diverse biologically relevant molecules, with a Faradaic efficiency greater than 100%.
Collapse
Affiliation(s)
- Yuan-Qiong Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Li Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|
2
|
Nipate DS, Dhyani V, Jangir T, Punniyamurthy T, Kumar A. Advances in Transition Metal-Catalyzed C(sp 2)-H Bond Functionalization Using Allyl Alcohols. Chem Asian J 2025:e202401930. [PMID: 40083200 DOI: 10.1002/asia.202401930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/16/2025]
Abstract
The transition metal-catalyzed directed site-selective C─H bond functionalization utilizing allyl alcohols as coupling partner has been an intriguing area of research and has made considerable advances during the past decade. Multifunctional coupling characteristics of the allyl alcohol in the regioselective C(sp2)-H functionalization using transition metal-catalysis produces alkyl, alkenyl, allyl, and annulated products. These reactions provide an effective synthetic tool to afford diverse functionalized scaffolds that are of interest in synthetic and medicinal sciences. This review covers the developments of directed site-selective C(sp2)-H functionalization with unactivated allyl alcohols as the coupling partner using the transition metal-catalysis till December, 2024.
Collapse
Affiliation(s)
- Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 33303, India
| | - Vani Dhyani
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 33303, India
| | - Tarun Jangir
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 33303, India
| | | | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 33303, India
| |
Collapse
|
3
|
Zhang Y, Huang Q, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Wang F. Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404431. [PMID: 39921286 PMCID: PMC11884534 DOI: 10.1002/advs.202404431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/11/2025] [Indexed: 02/10/2025]
Abstract
Bioorthogonal catalysis has revolutionized the field of chemical biology by enabling selective and controlled chemical transformations within living systems. Research has converged on the development of innovative catalyst scaffolds, seeking to broaden the scope of bioorthogonal reactions, boost their efficiency, and surpass the limitations of conventional catalysts. This review provides a comprehensive overview of the latest advancements in bioorthogonal catalyst research based on different scaffold materials. Through an in-depth analysis of fabrication strategies and applications of bioorthogonal catalysts, this review discusses the design principles, mechanisms of action, and applications of these novel catalysts in chemical biology. Current challenges and future directions in exploring the scaffold diversity are also highlighted. The integration of diverse catalyst scaffolds offers exciting prospects for precise manipulation of biomolecules and the development of innovative therapeutic strategies in chemical biology. In addition, the review fills in the gaps in previous reviews, such as in fully summarizing the presented scaffold materials applied in bioorthogonal catalysts, emphasizing the potential impact on advancing bioorthogonal chemistry, and offering prospects for future development in this field.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qizhen Huang
- School of Public HealthNantong UniversityNantong226019China
| | - Fang Lei
- School of Public HealthNantong UniversityNantong226019China
| | - Wanlong Qian
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Chengfeng Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qi Wang
- School of Public HealthNantong UniversityNantong226019China
| | - Chaoqun Liu
- School of PharmacyHenan UniversityKaifeng475004China
| | - Haiwei Ji
- School of Public HealthNantong UniversityNantong226019China
| | - Faming Wang
- School of Public HealthNantong UniversityNantong226019China
| |
Collapse
|
4
|
Nipate DS, Swami PN, Gadekar AB, Jangir T, Rangan K, Kumar A. Ruthenium(II)-Catalyzed C-H/C-H (4+2) Annulation of 2-Aryl-N-heterocycles with Vinylene Carbonate. Chem Asian J 2025; 20:e202401104. [PMID: 39581877 DOI: 10.1002/asia.202401104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
A ruthenium(II)-catalyzed direct C-H/C-H (4+2) annulation of 2-aryl-N-heterocycles such as 2-aryl-4H-pyrido[1,2-a]pyrimidin-4-ones, 2-arylimidazo[1,2-a]pyridines, 2-aryl-2H-indazoles and 2-arylquinolin-4(1H)-ones with vinylene carbonate has been described. This one-pot cascade strategy provided the diversely substituted fused-polyheterocycles such as 7H-benzo[h]pyrido[2,1-b]quinazolin-7-ones, naphtho[1',2':4,5]imidazo[1,2-a]pyridines, indazolo[2,3-a]quinolines and benzo[c]acridin-7(12H)-ones in moderate to excellent yields. The developed protocol exhibited a broad substrate scope with good functional group tolerance and acid/base-free conditions. Based on a preliminary mechanistic investigation, a tentative mechanism of Ru(II)-catalyzed (4+2) annulation reaction has been proposed.
Collapse
Affiliation(s)
- Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Prakash N Swami
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Amol B Gadekar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Tarun Jangir
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| |
Collapse
|
5
|
Mishra A, Hu J, Cong X, Zhuo Q, Nishiura M, Luo G, Hou Z. Enantioselective [3+2] Annulation of Aldimines with Alkynes by Scandium-Catalyzed C-H Activation. Angew Chem Int Ed Engl 2025; 64:e202419567. [PMID: 39746851 DOI: 10.1002/anie.202419567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
The enantioselective [3+2] annulation of readily accessible aldimines with alkynes via C-H activation is, in principle, a straightforward and atom-efficient route for synthesizing chiral 1-aminoindenes, which are important components in a wide array of natural products, bioactive molecules, and functional materials. However, such asymmetric transformation has remained undeveloped to date due to the lack of suitable chiral catalysts. Here, we report for the first time the enantioselective [3+2] annulation of aldimines with alkynes via C-H activation using chiral half-sandwich scandium catalysts. This protocol enabled the synthesis of diverse multi-substituted chiral 1-aminoindene derivatives with 100 % atom-efficiency, broad substrate scope, and high regio- and enantioselectivity. Density functional theory (DFT) analyses have revealed that a noncovalent C-H⋅⋅⋅π interaction between a tert-Bu substituent in the chiral cyclopentadienyl (Cp) ligand and the phenyl ring of an aromatic aldimine substrate played an important role in achieving a high level of enantioselectivity. This work not only offers an efficient and selective route for synthesizing a new family of chiral 1-aminoindene derivatives but also offers unprecedented insights into enantioselectivity control in chiral Cp-ligated metal catalysts.
Collapse
Affiliation(s)
- Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Jiameng Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuefeng Cong
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Qingde Zhuo
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
6
|
Basak S, Paul T, Nanjegowda MV, Punniyamurthy T. Integrating C-H activation/2-fold annulation: a modular access to heteroaryl-tethered oxazoloisoquinolinones. Chem Commun (Camb) 2025; 61:1693-1696. [PMID: 39749872 DOI: 10.1039/d4cc06123c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A cascade C-H activation/2-fold annulation of 2-aryloxazolines with pyridotriazoles has been achieved employing Rh-catalysis to afford heteroaryl-tethered oxazoloisoquinolinones. The synergistic annulations, functional group tolerance, and late-stage skeletal editing of the bioactive scaffolds are the salient practical features.
Collapse
Affiliation(s)
- Shubhajit Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tripti Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Maniya V Nanjegowda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
7
|
Huang H, Jiang Y, Yuan W, Lin YM. Modular Assembly of Acridines by Integrating Photo-Excitation of o-Alkyl Nitroarenes with Copper-Promoted Cascade Annulation. Angew Chem Int Ed Engl 2024; 63:e202409653. [PMID: 39039028 DOI: 10.1002/anie.202409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Acridine frameworks stand as pivotal architectural elements in pharmaceuticals and photocatalytic applications, owing to their chemical adaptability, biological activity, and unique excited-state dynamics. Conventional synthetic routes often entail specialized starting materials, anaerobic or moisture-free conditions, and elaborate multi-stage manipulations for incorporating diverse functionalities. Herein, we present a convergent approach integrating photo-excitation of readily available ortho-alkyl nitroarenes with copper-promoted cascade annulation. This innovative system enables an aerobic, one-pot reaction of o-alkyl nitroarenes with arylboronic acids, thereby streamlining the modular construction of a wide array of acridine derivatives with various functional groups. This encompasses symmetrical, unsymmetrical and polysubstituted varieties, some of which are otherwise exceptionally difficult to synthesize. Furthermore, it significantly improves the production of structurally varied acridinium salts, featuring enhanced photophysical properties, high excited state potentials (E*red=2.08-3.15 V), and exhibiting superior performance in intricate photoredox transformations.
Collapse
Affiliation(s)
- Haichao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Jiang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Chen C, Chen Y, Han Z, Huang Y, Wang Y, Tao X, Wang L, Chen X, Long R, Yang Y, Zhu W, Zhou B. Switchable Regioselective C-H Activation/Annulation of Acrylamides with Alkynes for the Synthesis of 2-Pyridones. CHEMSUSCHEM 2024; 17:e202400066. [PMID: 38656829 DOI: 10.1002/cssc.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
A catalyst-based switchable regioselective C-H activation/annulation of acrylamides with propargyl carbonates has been developed, delivering C5 or C6 alkenyl substituted 2-pyridones. This robust protocol proceeds with a broad substrate scope and good functional group tolerance under redox-neutral reaction conditions. More significantly, this reaction is highly effective with previously challenging unsymmetrical alkynes, including unbiased alkyl-alkyl substituted alkynes, with perfect and switchable regioselectivity. Additionally, mechanistic studies and DFT calculations were performed to shed light on the switchable regioselectivity.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Yanni Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Zijian Han
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yujie Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujiao Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiuyu Tao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Lan Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiangli Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruikai Long
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yaxi Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Bing Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
9
|
Yadav SK, Jeganmohan M. Ir(III)-Catalyzed Tandem Annulation of Aromatic Amides with 1,6-Diynes via Dual C-H Bond Activation. Org Lett 2024; 26:7809-7816. [PMID: 39255330 DOI: 10.1021/acs.orglett.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
An Ir(III)-catalyzed annulation of aryl amides with 1,6-diynes via ortho- as well as meta-dual C-H bond activation reaction is reported. The scope of the annulation reaction was examined with various substituted aryl amides, as well as 1,6-diynes. In this protocol, 1,6-diynes exhibit diverse reactivity compared with internal alkynes. It is important to note that the three C-C bond formation takes place consecutively via ortho followed by meta-dual C-H bond annulation by using a weak chelating group in one pot. A possible catalytic reaction mechanism was proposed to account for the annulation reaction.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
10
|
Huertas-Morales I, Cendón B, Costa D, Mascareñas JL, Gulías M. Assembly of 2-Substituted Tetrahydroquinolines from ortho-Methylbenzenesulfamides and Dienes, Using a C(sp 3)-H Activation/Annulation Sequence. Org Lett 2024; 26:7789-7794. [PMID: 39258816 DOI: 10.1021/acs.orglett.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
1,2,3,4-Tetrahydroquinolines (THQs) are essential structural cores in many natural products and pharmaceutical drugs. Especially relevant are those presenting substitutions at position 2, yet practical methods for their one-step assembly from acyclic precursors are very scarce. Herein, we present a straightforward approach to assembling these skeletons from ortho-methylanilines using a palladium-catalyzed C(sp3)-H activation/formal cycloaddition sequence. Key for the success of the approach is the use of dienes as partners, since they lead to stable π-allyl palladium intermediates that prevent β-hydride elimination processes and allow installation of versatile alkenyl handles at position 2. Moreover, installing a perfluorobenzenesulfonyl substituent at the amine not only facilitates the C-H activation but also allows for an easy recovery of the free amine.
Collapse
Affiliation(s)
- Iván Huertas-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Borja Cendón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Domingo Costa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Gang YC, Dong L. The Construction of Novel Spirocyclic Frameworks with Cyclobutane through Rh(III)-Catalyzed [3 + 2]-Annulation between Quinoxalines and Alkynylcyclobutanols. J Org Chem 2024; 89:12912-12923. [PMID: 39225374 DOI: 10.1021/acs.joc.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An effective synthesis strategy for the preparation of 1'H-spiro[indene-1,2'-quinoxaline] has been developed. This involves a Rh(III)-catalyzed [3 + 2]-annulation of quinoxalines with alkynylcyclobutanols. The developed protocol offers a straightforward method for the preparation of versatile heterocyclic compounds with a four-membered ring and is compatible with a wide range of functional groups.
Collapse
Affiliation(s)
- Yi-Chi Gang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Jana D, Sontakke GS, Volla CMR. Ru(II)-Catalyzed Decarboxylative (4 + 2)-Annulation of Benzoic Acids and Benzamides with Propargyl Cyclic Carbonates. Org Lett 2024; 26:7590-7595. [PMID: 39226140 DOI: 10.1021/acs.orglett.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Propargyl cyclic carbonates have emerged as versatile precursors in synthetic chemistry. However, their reactivity has so far been limited to transition metal-catalyzed substitution and cyclization reactions. Herein, we illustrate the successful employment of propargyl cyclic carbonates as coupling partners in Ru(II)-catalyzed C-H annulation of benzoic acids and benzamides. This approach allowed us to access a broad range of biologically relevant isocoumarin and isoquinolinone derivatives in good to excellent yields, utilizing bench-stable and easily accessible precursors. Preliminary mechanistic studies indicated that the C-H metalation step is both reversible and rate-determining in the reaction pathway. Furthermore, the utility of the developed methodology has been illustrated by scale-up and postfunctionalization experiments.
Collapse
Affiliation(s)
- Debasish Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
13
|
Arribas A, Calvelo M, Rey A, Mascareñas JL, López F. Skeletal and Mechanistic Diversity in Ir-Catalyzed Cycloisomerizations of Allene-Tethered Pyrroles and Indoles. Angew Chem Int Ed Engl 2024; 63:e202408258. [PMID: 38837581 DOI: 10.1002/anie.202408258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Pyrroles and indoles bearing N-allenyl tethers participate in a variety of iridium-catalyzed cycloisomerization processes initiated by a C-H activation step, to deliver a diversity of synthetically relevant azaheterocyclic products. By appropriate selection of the ancillary ligand and the substitution pattern of the allene, the reactions can diverge from simple intramolecular hydrocarbonations to tandem processes involving intriguing mechanistic issues. Accordingly, a wide range of heterocyclic structures ranging from dihydro-indolizines and pyridoindoles to tetrahydroindolizines, as well as cyclopropane-fused tetrahydroindolizines can be obtained. Moreover, by using chiral ligands, these cascade processes can be carried out in an enantioselective manner. DFT studies provide insights into the underlying mechanisms and justify the observed chemo- regio- and stereoselectivities.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Rey
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Misión Biológica de Galicia (MBG), Consejo Superior de Investigaciones Científicas (CSIC), 36680, Pontevedra, Spain
| |
Collapse
|
14
|
Zheng Y, Chen C, Lu Y, Huang S. Recent advances in electrochemically enabled construction of indoles from non-indole-based substrates. Chem Commun (Camb) 2024; 60:8516-8525. [PMID: 39036971 DOI: 10.1039/d4cc03040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Indole motifs are important heterocycles found in natural products, pharmaceuticals, agricultural chemicals, and materials. Although there are well-established classical name reactions for indole synthesis, these transformations often require harsh reaction conditions, have a limited substrate scope, and exhibit poor regioselectivity. As a result, organic synthesis chemists have been exploring efficient and practical methods, leading to numerous strategies for synthesizing a variety of functionalized indoles. In recent years, electrochemistry has emerged as an environmentally friendly and sustainable synthetic tool, with widespread applications in organic synthesis. This technology allows for elegant synthetic routes to be developed for the construction of indoles under external oxidant-free conditions. This feature article specifically focuses on recent advancements in indole synthesis from non-indole-based substrates, as well as the mechanisms underlying these transformations.
Collapse
Affiliation(s)
- Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunxi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
15
|
Zhang J, Sun T, Wang K, Hu R, Zhou C, Ge H, Li B. Rh(iii)-catalyzed building up of used heterocyclic cations: facile access to white-light-emitting materials. Chem Sci 2024; 15:12270-12276. [PMID: 39118641 PMCID: PMC11304525 DOI: 10.1039/d4sc02188f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
The first example of rhodium-catalyzed nondirected C-H activation/annulation reactions for the construction of fused heterocyclic cations is reported herein with excellent regioselectivity. Deuterium-labeling experiments indicated that the C(sp3)-H bond cleavage of the N-methyl group might be the rate-limiting step during the reaction process. This protocol provides an opportunity to rapidly access highly π-conjugated fused heterocyclic cations, which opens up a new avenue for efficient screening of single-molecular white-light-emitting materials, pure red-light-emitting materials, and π-conjugated radical materials. Importantly, novel white-light-emitting materials exhibited distinct anti-Kasha dual-emission and could rapidly be fabricated into robust organic and low-cost white light-emitting diodes.
Collapse
Affiliation(s)
- Jingxian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Tao Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Ruike Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Chunlin Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061 USA
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
16
|
Cattani S, Pandit NK, Buccio M, Balestri D, Ackermann L, Cera G. Iron-Catalyzed C-H Alkylation/Ring Opening with Vinylbenzofurans Enabled by Triazoles. Angew Chem Int Ed Engl 2024; 63:e202404319. [PMID: 38785101 DOI: 10.1002/anie.202404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
We report an unprecedented iron-catalyzed C-H annulation using readily available 2-vinylbenzofurans as the reaction pattern. The redox-neutral strategy, based on cheap, non-toxic, and earth-abundant iron catalysts, exploits triazole assistance to promote a cascade C-H alkylation, benzofuran ring-opening and insertion into a Fe-N bond, to form highly functionalized isoquinolones. Detailed mechanistic studies supported by DFT calculations fully disclosed the manifold of the iron catalysis.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Neeraj Kumar Pandit
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Michele Buccio
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Davide Balestri
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| |
Collapse
|
17
|
Wei F, Zhang Y. Ligand-Enabled Palladium-Catalyzed [3 + 2] Annulation of Aryl Iodides with Maleimides via C(sp 3)-H Activation. Org Lett 2024; 26:6209-6213. [PMID: 38994868 DOI: 10.1021/acs.orglett.4c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Palladium-catalyzed intermolecular [3 + 2] annulation reactions via C-H activation represent a powerful and charming tool for assembling cyclopentanes. Herein, we have developed a strategy for the palladium-catalyzed intermolecular alkene-relayed annulation reaction of aryl iodides and maleimides via C(sp3)-H activation for the construction of polycyclic structures. In contrast to directed-group-enabled intermolecular maleimide-relayed [3 + 2] annulation reactions, this protocol stands out for its utilization of aryl iodides as substrates. Notably, monoprotected amino acids played a crucial role as ligands in this reaction, which is rarely observed in C-H activation reactions initiated with organohalides.
Collapse
Affiliation(s)
- Feng Wei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Parmar D, Kumar R, Sharma U. Chiral amino acids: evolution in atroposelective C-H activation. Org Biomol Chem 2024; 22:5032-5051. [PMID: 38837336 DOI: 10.1039/d4ob00739e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This review covers the journey of chiral amino acids as ligands in atroposelective C-H bond activation/functionalization via transition metal catalysis. Herein, we intend to demonstrate how these chiral amino acids have evolved and flourished in this stimulating field. Unprotected amino acids, mono-N-protected amino acids, and di-N-protected amino acids have been devised for atroposelective C-H activation. In each section, we have briefly discuss the key successes of amino acids in the atroposelective synthesis of biaryls, heterobiaryls, and non-biaryl atropisomers and their advantages in atroposelective C-H activation.
Collapse
Affiliation(s)
- Diksha Parmar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
19
|
Zhang J, Liu C, Wu J, Tan X, Wu W, Jiang H. Palladium-Catalyzed Annulation of Tertiary Anilines with 3-Butenoic Acid via Dual C-H Bond Activation. Org Lett 2024; 26:4422-4426. [PMID: 38767940 DOI: 10.1021/acs.orglett.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Catalytic cyclization via dual C-H bond activation has evolved as a powerful strategy for building bi- and polycyclic molecules. Herein, a palladium-catalyzed annulation of tertiary anilines with 3-butenoic acid via N-α-C(sp3)-H and ortho-C(sp2)-H activation is described. The remarkable characteristics of this reaction include excellent diastereoselectivity, broad substrate scope, and good tolerance for some highly sensitive groups. In addition, the KIE experiment suggested that the C-H bond abscission is not the turnover-limiting step.
Collapse
Affiliation(s)
- Jinhui Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiahao Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangwen Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
20
|
Fu Y, Liang H, Lu Y, Huang S. Photoredox-Enabled Deconstructive [5 + 1] Annulation Approach to Isoquinolones from Indanones in Water. Org Lett 2024; 26:3043-3047. [PMID: 38578846 DOI: 10.1021/acs.orglett.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
We disclose a deconstructive [5 + 1] annulation protocol for the synthesis of isoquinolones through a nitrogen insertion into abundant indanones. This method exploits photoredox-catalyzed ring-opening of oxime esters. The reaction proceeds smoothly with water as the reaction medium and tolerates a range of functional groups on diverse thiophenols, amines, or indanones. Moreover, the representative isoquinolones exhibit promising antifungal activities.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hui Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
21
|
Cong X, Hao N, Mishra A, Zhuo Q, An K, Nishiura M, Hou Z. Regio- and Diastereoselective Annulation of α,β-Unsaturated Aldimines with Alkenes via Allylic C(sp 3)-H Activation by Rare-Earth Catalysts. J Am Chem Soc 2024; 146:10187-10198. [PMID: 38545960 DOI: 10.1021/jacs.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The [3 + 2] or [4 + 2] annulation of α,β-unsaturated aldimines with alkenes via β'- or γ-allylic C(sp3)-H activation is, in principle, an atom-efficient route for the synthesis of five- or six-membered-ring cycloalkylamines, which are important structural motifs in numerous natural products, bioactive molecules, and pharmaceuticals. However, such a transformation has remained undeveloped to date probably due to the lack of suitable catalysts. We report herein for the first time the regio- and diastereoselective [3 + 2] and [4 + 2] annulations of α,β-unsaturated imines with alkenes via allylic C(sp3)-H activation by half-sandwich rare-earth catalysts having different metal ion sizes. The reaction of α-methyl-substituted α,β-unsaturated aldimines with alkenes by a C5Me4SiMe3-ligated scandium catalyst took place in a trans-diastereoselective [3 + 2] annulation fashion via C(sp3)-H activation at the α-methyl group (β'-position), exclusively affording alkylidene-functionalized cyclopentylamines with excellent trans-diastereoselectivity. In contrast, the reaction of β-methyl-substituted α,β-unsaturated aldimines with alkenes by a C5Me5-ligated cerium catalyst proceeded in a cis-diastereoselective [4 + 2] annulation fashion via γ-allylic C(sp3)-H activation, selectively yielding multisubstituted 2-cyclohexenylamines with excellent cis-diastereoselectivity. The mechanistic details of these transformations have been elucidated by deuterium-labeling experiments, kinetic isotope effect studies, and the isolation and transformations of key reaction intermediates. This work offers an efficient and selective protocol for the synthesis of a new family of cycloalkylamine derivatives, featuring 100% atom efficiency, high regio- and diastereoselectivity, broad substrate scope, and an unprecedented reaction mechanism.
Collapse
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Cong X, Zhuo Q, Hao N, Mishra A, Nishiura M, Hou Z. Divergent Synthesis of Multi-Substituted Aminotetralins via [4+2] Annulation of Aldimines with Alkenes by Rare-Earth-Catalyzed Benzylic C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2024; 63:e202318203. [PMID: 38226440 DOI: 10.1002/anie.202318203] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The search for efficient and selective methods for the divergent synthesis of multi-substituted aminotetralins is of much interest and importance. We report herein for the first time the diastereoselective [4+2] annulation of 2-methyl aromatic aldimines with alkenes via benzylic C(sp3 )-H activation by half-sandwich rare-earth catalysts, which constitutes an efficient route for the divergent synthesis of both trans and cis diastereoisomers of multi-substituted 1-aminotetralin derivatives from readily accessible aldimines and alkenes. The use of a scandium catalyst bearing a sterically demanding cyclopentadienyl ligand such as C5 Me4 SiMe3 or C5 Me5 exclusively afforded the trans-selective annulation products in the reaction of aldimines with styrenes and aliphatic alkenes. In contrast, the analogous yttrium catalyst, whose metal ion size is larger than that of scandium, yielded the cis-selective annulation products. This protocol features 100 % atom-efficiency, excellent diastereoselectivity, broad substrate scope, and good functional group compatibility. The reaction mechanisms have been elucidated by kinetic isotope effect (KIE) experiments and the isolation and transformations of some key reaction intermediates.
Collapse
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Kumari S, Sharma D, Sharma C, Negi L, Joshi RK. Ru-Catalyzed and Selenium-Directed Selective Formation of ortho- and Dialkenylated Selanes, Mixed Organoselenoethers, and Isoselenochromenes. Org Lett 2024; 26:1758-1763. [PMID: 38386277 DOI: 10.1021/acs.orglett.3c04028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Herein, the Ru-catalyzed chemo- and regioselective formation of four novel organoselenium compounds is established. Mono- and dialkenylated selanes were formed by the Se-directed o-C-H activation of benzyl(phenyl)selanes with alkynes. Unprecedented debenzylative/dearylative hydroselenations of alkynes were performed by slightly varying the amount of catalyst and temperature. Catalyst-driven direct formation of novel isoselenochromenes is also recorded. Altogether, 45 new organoseleno compounds were synthesized in good amounts with varieties of alkynes and selanes. This is the first report of its kind to deal with the synthesis of novel, challenging, and unusual organoseleno compounds in one reaction.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Deepak Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Charu Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Lalit Negi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Raj K Joshi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| |
Collapse
|
24
|
Wang Y, Deng J, Ressler AJ, Lin S. Electroreductive Radical Addition-Polar Cyclization Cascade to Access Cycloalkanes. Org Lett 2024; 26:116-121. [PMID: 38157449 PMCID: PMC11192528 DOI: 10.1021/acs.orglett.3c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Compared with flat aromatic scaffolds, three-dimensional aliphatic ring systems feature high structural complexity and topological diversity and, thus, have received increasing attention in drug discovery. Herein, we describe a mild and general electrochemical method for the modular synthesis of structurally distinct cyclic compounds, including monocyclic alkanes, benzo-fused ring systems, and spirocycles, from readily available alkenes and alkyl halides via a radical-polar crossover mechanism.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, New York 14853, United States
| | - Jiachen Deng
- Department of Chemistry and Chemical Biology, Cornell University, New York 14853, United States
| | - Andrew J. Ressler
- Department of Chemistry and Chemical Biology, Cornell University, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, New York 14853, United States
| |
Collapse
|
25
|
Naveen J, Satyanarayana G. Palladium-Catalyzed [3 + 2] Annulation of ortho-Substituted Iodoarenes with Maleimides via a Consecutive Double Heck-type Strategy. J Org Chem 2023; 88:16229-16247. [PMID: 37965816 DOI: 10.1021/acs.joc.3c01703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report an efficient [3 + 2] annulation of ortho-substituted iodoarenes with maleimides via a palladium-catalyzed consecutive double Heck-type strategy, leading to fused tricyclic frameworks of pharmaceutical relevance. The protocol ensued through consecutive inter- and intramolecular Heck couplings effectively. This approach was compatible with a large variety of substrates and functional groups, and it was remarkably tolerated with unprotected maleimide.
Collapse
Affiliation(s)
- Jakkula Naveen
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad ,Kandi,Sangareddy ,Telangana 502 284, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad ,Kandi,Sangareddy ,Telangana 502 284, India
| |
Collapse
|
26
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Losada P, Goicoechea L, Mascareñas JL, Gulías M. Axially Chiral 2-Hydroxybiaryls by Palladium-Catalyzed Enantioselective C-H Activation. ACS Catal 2023; 13:13994-13999. [PMID: 37942264 PMCID: PMC10629138 DOI: 10.1021/acscatal.3c03867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Indexed: 11/10/2023]
Abstract
This article describes the discovery and development of a palladium-catalyzed asymmetric C-H olefination of 2-hydroxybiaryls. The strategy allows a direct assembly of optically active, axially chiral 2-substituted-2'-hydroxybiaryls from readily available precursors and demonstrates that the native hydroxy unit of the substrates can work as an efficient directing group for the C-H activation. This represents a substantial advantage over other approaches that require the preinstallation of metal coordinating units. The simplicity of the approach and versatility of the products allow a practical and efficient synthesis of a broad variety of optically active binaphthyl derivatives.
Collapse
Affiliation(s)
- Pablo Losada
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Laura Goicoechea
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
28
|
Das A, Ajarul S, Debnath S, Hota P, Maiti DK. Bro̷nsted Acid-Catalyzed [5+1] and [4+1] Annulation of Cyclic Anhydrides with o-Alkynylanilines to Construct Fused-N-Heterocycles. J Org Chem 2023; 88:15073-15084. [PMID: 37876131 DOI: 10.1021/acs.joc.3c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
An unprecedented p-TsOH and MsOH-catalyzed construction of valuable isoindolo/pyrido/pyrrolo-quinolinediones and isoindolo-indolones is demonstrated through annulation reactions of cyclic anhydrides or o-formylbenzoates with o-alkynylanilines. The metal-free Bro̷nsted acid-mediated new [5+1] and [4+1] fused-cyclization is an operationally simple, highly regioselective, atom economical, high yielding, sustainable, and catalytically efficient approach.
Collapse
Affiliation(s)
- Aranya Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sk Ajarul
- Government General Degree College at Salboni, Bhimpur, Paschim Medinipur 721516, India
| | - Sudipto Debnath
- Central Ayurveda Research Institute, CCRAS, Ministry of Ayush, Govt. of India, 4-CN Block, Bidhannagar, Sector-V, Kolkata 700091, India
| | - Poulami Hota
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
29
|
Mondal S, Giri CK, Baidya M. Enaminone-directed ruthenium(II)-catalyzed C-H activation and annulation of arenes with diazonaphthoquinones for polycyclic benzocoumarins. Chem Commun (Camb) 2023; 59:13187-13190. [PMID: 37850468 DOI: 10.1039/d3cc03999d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The weakly coordinating enaminone functionality has been leveraged for a C-H bond activation strategy under ruthenium catalysis and employed in the regioselective annulative coupling of arenes with diazonaphthoquinones, offering polycyclic benzocoumarins in very high yields. The enaminone motif plays a dual role and the protocol operates through a Ru(II)/Ru(IV) catalytic pathway which is amenable to the diversification of various pharmacophore-coupled substrates.
Collapse
Affiliation(s)
- Sudeshna Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
30
|
Dethe DH, Kumar V, Shukla M. A palladium catalyzed asymmetric desymmetrization approach to enantioenriched 1,3-disubstituted isoindolines. Chem Sci 2023; 14:11267-11272. [PMID: 37860662 PMCID: PMC10583692 DOI: 10.1039/d3sc03496h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Herein, we report the first palladium/MPAA catalyzed enantioselective C-H activation/[4 + 1] annulation of diarylmethyltriflamide and olefins to construct chiral cis-1,3-disubstituted isoindoline derivatives. The use of a readily accessible mono-N-protected amino acid as a chiral ligand improves the efficiency and enantioselectivity of the catalytic transformation. The developed method provides access to both enantiomers of a product using either d or l-phenylalanine derivative as a chiral ligand facilitating the synthesis of both optically active 1,3-disubstituted isoindoline derivatives.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| | - Manmohan Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| |
Collapse
|
31
|
Zhang LY, Wang NX, Lucan D, Cheung W, Xing Y. Recent Advances in Aerobic Oxidative of C-H Bond by Molecular Oxygen Focus on Heterocycles. Chemistry 2023; 29:e202301700. [PMID: 37390122 DOI: 10.1002/chem.202301700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry &, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry &, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dumitra Lucan
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - William Cheung
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| | - Yalan Xing
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| |
Collapse
|
32
|
Panigrahi P, Ghosh S, Khandelia T, Mandal R, Patel BK. Isoxazole as a nitrile synthon: en routes to the ortho-alkenylated isoxazole and benzonitrile with allyl sulfone catalyzed by Ru(II). Chem Commun (Camb) 2023; 59:10536-10539. [PMID: 37565340 DOI: 10.1039/d3cc02996d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A Ru(II) catalyzed regioselective Heck-type C-H olefination of isoxazole with unactivated allyl phenyl sulfone is revealed. The solvent DCM offers dual sp2-sp2 C-H activation via an N-directed strategy, leading to ortho-olefinated isoxazoles with exclusive E-selectivity. On the other hand, in DCE solvent, isoxazole serves as the nitrile synthon and leads to o-olefinated benzonitrile. At a higher temperature (110 °C) in DCE, after the ortho-olefination Ru(II) mediated cleavage of isoxazoles delivered the nitrile functionality.
Collapse
Affiliation(s)
- Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
33
|
Yang D, Xu H, Zhang X, Hu Y, Huang D, Zhao H. Ru-catalyzed C-H activation/cyclization of oximes with sulfoxonium ylides to access isoquinolines. Org Biomol Chem 2023; 21:6750-6756. [PMID: 37554009 DOI: 10.1039/d3ob00805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An external oxidant free Ru(II)-catalyzed C-H activation followed by an intermolecular annulation between oximes and sulfoxonium ylides has been developed. This transformation proceeds smoothly with a broad range of substrates, affording a series of isoquinoline derivatives in moderate to good yields. This protocol was successfully applied to the synthesis of moxaverine.
Collapse
Affiliation(s)
- Darun Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Hongyan Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Xuejun Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Yuntao Hu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Decai Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Huaiqing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| |
Collapse
|
34
|
Naskar G, Jeganmohan M. Palladium-Catalyzed [3 + 2] Annulation of Aromatic Amides with Maleimides through Dual C-H Activation. Org Lett 2023; 25:2190-2195. [PMID: 36966393 DOI: 10.1021/acs.orglett.3c00251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
A palladium-catalyzed [3 + 2] annulation of substituted aromatic amides with maleimides providing tricyclic heterocyclic molecules in good to moderate yields through weak carbonyl chelation is reported. The reaction proceeds via a dual C-H bond activation where the first C-H activation takes place selectively at the benzylic position followed by a second C-H bond activation at the meta position to afford a five-membered cyclic ring. An external ligand Ac-Gly-OH has been used to succeed in this protocol. A plausible reaction mechanism has been proposed for the [3 + 2] annulation reaction.
Collapse
Affiliation(s)
- Gouranga Naskar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
35
|
Hu Y, Jia Y, Tuo Z, Zhou W. Rhodium(III)-Catalyzed Intramolecular Annulation and Aromatization for the Synthesis of Pyrrolo[1,2- a]quinolines. Org Lett 2023; 25:1845-1849. [PMID: 36897039 DOI: 10.1021/acs.orglett.3c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A rhodium(III)-catalyzed protocol for the synthesis of pyrrolo[1,2-a]quinolines through intramolecular annulation of o-alkynyl amino aromatic ketones and subsequent aromatization is reported. This transformation builds the pyrrole and quinoline moieties of the pyrrolo[1,2-a]quinoline in one pot and achieves a flexible introduction of different substituent groups at 4- and 5-positions on products that were difficult to prepare by other means. The reaction proceeds smoothly on a gram scale, and the products are amenable to downstream synthetic manipulations.
Collapse
Affiliation(s)
- Yongchun Hu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Education of China, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yuanyuan Jia
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zekun Tuo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Education of China, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Wang Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Education of China, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
36
|
Bera S, Biswas A, Pal J, Roy L, Mondal S, Samanta R. Pd(II)-Catalyzed Oxidative Naphthylation of 2-Pyridone through N-H/C-H Activation Using Diarylacetylene as an Uncommon Arylating Agent. Org Lett 2023; 25:1952-1957. [PMID: 36896989 DOI: 10.1021/acs.orglett.3c00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A Pd(II)-catalyzed straightforward oxidative naphthylation of unmasked 2-pyridone derivatives is described using a twofold internal alkyne as a coupling partner. The reaction proceeds through N-H/C-H activation to provide polyarylated N-naphthyl 2-pyridones. An unusual oxidative annulation at the arene C-H bond of the diarylalkyne leads to the formation of polyarylated N-naphthyl 2-pyridones, where the 2-pyridone-attached phenyl ring of the naphthyl ring is polyaryl-substituted. Mechanistic studies and DFT calculations suggest a plausible mechanism based on N-H/C-H activation. The N-naphthyl 2-pyridone derivatives were studied to explore encouraging photophysical properties.
Collapse
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aniruddha Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Juthi Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Odisha 751013, India
| | - Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
37
|
Liu L, Liu Y, Li S, Gao J, Li J, Wei J. Rh(III)-Catalyzed [4 + 1] Annulation of Sulfoximines with Maleimides: Access to Benzoisothiazole Spiropyrrolidinediones. J Org Chem 2023; 88:3626-3635. [PMID: 36843288 DOI: 10.1021/acs.joc.2c02811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Rh(III)-catalyzed synthesis of benzoisothiazole spiropyrrolidinediones using sulfoximine as a directing group under a C-H activation and [4 + 1] annulation strategy with maleimides as a coupling partner is reported. The cyclization reaction was compatible with various substituted sulfoximine and maleimides. The deuterium-labeling studies were performed to investigate the mechanism of the reaction.
Collapse
Affiliation(s)
- Liansheng Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yiying Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shan Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jin Gao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Junfa Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
38
|
Tang X, Ding S, Song L, Van der Eycken EV. Transition Metal-Catalyzed C-H Activation/Annulation Approaches to Isoindolo[2,1-b]isoquinolin-5(7H)-ones. CHEM REC 2023; 23:e202200255. [PMID: 36646518 DOI: 10.1002/tcr.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Indexed: 01/18/2023]
Abstract
The isoindolo[2,1-b]isoquinolin-5(7H)-one scaffold is widely present in lots of bioactive natural products. Diverse types of strategies have been developed to construct this scaffold. Recently, transition metal-catalyzed C-H activation/annulation is emerging as a powerful and straightforward method to construct diverse polyheterocycles with high atom- and step-economy. It also has been employed for the synthesis of the isoindolo[2,1-b]isoquinolin-5(7H)-one scaffold. This review provides an introduction to recent advances for the preparation of isoindolo[2,1-b]isoquinolin-5(7H)-ones by using transition metal-catalyzed C-H activation/annulation. It will help researchers to find hidden opportunities and accelerate the discovery of novel transformations based on C-H activation/annulation.
Collapse
Affiliation(s)
- Xiao Tang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Songtao Ding
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198, Moscow, Russia
| |
Collapse
|
39
|
Tanaka R, Ochiai S, Sakai A, Usuki Y, Kang B, Shinada T, Satoh T. Ligand-Dependant Selective Synthesis of Mono- and Dialkenylcarbazoles through Rhodium(III)-Catalyzed C-H Alkenylation. Chem Asian J 2023; 18:e202201210. [PMID: 36600559 DOI: 10.1002/asia.202201210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The C-H alkenylation of N-acetylcarbazoles proceeds smoothly at the C1-position in the presence of a cationic Cp*Rh(III) catalyst to produce 1-alkenylcarbazoles. The use of a cationic CpE Rh(III) catalyst enables further alkenylation to give 1,8-dialkenylcarbazoles. The direct alkenylation procedure in combination with the ready removal of the acetyl directing group provides a straightforward synthetic pathway to 1- and/or 8-alkenyl-N-H-carbazole derivatives. One of 1-alkenyl-N-H-carbazoles obtained by the present C-H alkenylation/deacetylation exhibits solvatochromism.
Collapse
Affiliation(s)
- Rikuto Tanaka
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Shiho Ochiai
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Asumi Sakai
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshinosuke Usuki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Bubwoong Kang
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tetsuro Shinada
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Tetsuya Satoh
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
40
|
Singh A, Kumar S, Volla CMR. α-Carbonyl sulfoxonium ylides in transition metal-catalyzed C-H activation: a safe carbene precursor and a weak directing group. Org Biomol Chem 2023; 21:879-909. [PMID: 36562262 DOI: 10.1039/d2ob01835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal-catalyzed cross-coupling of sp2 C-H bonds with diazo compounds via carbene migratory insertion represents an efficient strategy for the construction of C-C and C-heteroatom bonds in organic synthesis. Despite the popularity of diazo compounds as coupling partners in C-H activation, they pose serious safety and stability issues due to potential exothermic reactions linked with the release of N2 gas. However, compared with diazo compounds, sulfoxonium ylides are generally crystalline solids, more stable, widely used in industrial scales, and easier/safer to prepare. Therefore, recent years have witnessed an upsurge in employing α-carbonyl sulfoxonium ylides as an alternative carbene surrogate in transition metal-catalyzed C-H activation. Unlike diazo compounds, α-carbonyl sulfoxonium ylides contain inherent potential to serve as a coupling partner as well as a weak directing group. This review will summarize the progress made in both categories of reactions.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
41
|
Suárez-Lustres A, Martínez-Yáñez N, Velasco-Rubio Á, Varela JA, Saá C. Palladium-Catalyzed [5 + 2] Rollover Annulation of 1-Benzylpyrazoles with Alkynes: A Direct Entry to Tricyclic 2-Benzazepines. Org Lett 2023; 25:794-799. [PMID: 36720009 PMCID: PMC9926515 DOI: 10.1021/acs.orglett.2c04300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The first Pd-catalyzed [5 + 2] rollover annulation of 1-benzylpyrazoles with alkynes to assemble 10H-benzo[e]pyrazolo[1,5-a]azepines (tricyclic 2-benzazepines) has been developed. The rollover annulation implies a twofold C-H activation of aryl and heteroaryl Csp2-H bonds (C-H/C-H) of 1-benzylpyrazoles (five-atom partners) and alkynes to give the [5 + 2] annulated compounds.
Collapse
|
42
|
Marcos-Atanes D, Vidal C, Navo CD, Peccati F, Jiménez-Osés G, Mascareñas JL. Iridium-Catalyzed ortho-Selective Borylation of Aromatic Amides Enabled by 5-Trifluoromethylated Bipyridine Ligands. Angew Chem Int Ed Engl 2023; 62:e202214510. [PMID: 36602092 DOI: 10.1002/anie.202214510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Iridium-catalyzed borylations of aromatic C-H bonds are highly attractive transformations because of the diversification possibilities offered by the resulting boronates. These transformations are best carried out using bidentate bipyridine or phenanthroline ligands, and tend to be governed by steric factors, therefore resulting in the competitive functionalization of meta and/or para positions. We have now discovered that a subtle change in the bipyridine ligand, namely, the introduction of a CF3 substituent at position 5, enables a complete change of regioselectivity in the borylation of aromatic amides, allowing the synthesis of a wide variety of ortho-borylated derivatives. Importantly, thorough computational studies suggest that the exquisite regio- and chemoselectivity stems from unusual outer-sphere interactions between the amide group of the substrate and the CF3 -substituted aryl ring of the bipyridine ligand.
Collapse
Affiliation(s)
- Daniel Marcos-Atanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - Claudio D Navo
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162, Derio, Spain
| | - Francesca Peccati
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162, Derio, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162, Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
43
|
Ni-catalyzed benzylic β-C(sp 3)-H bond activation of formamides. Nat Commun 2022; 13:7892. [PMID: 36550165 PMCID: PMC9780214 DOI: 10.1038/s41467-022-35541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The development of transition metal-catalyzed β-C-H bond activation via highly-strained 4-membered metallacycles has been a formidable task. So far, only scarce examples have been reported to undergo β-C-H bond activation via 4-membered metallacycles, and all of them rely on precious metals. In contrast, earth-abundant and inexpensive 3d transition metal-catalyzed β-C-H bond activation via 4-membered metallacycles still remains an elusive challenge. Herein, we report a phosphine oxide-ligated Ni-Al bimetallic catalyst to activate secondary benzylic C(sp3)-H bonds of formamides via 4-membered nickelacycles, providing a series of α,β-unsaturated γ-lactams in up to 97% yield.
Collapse
|
44
|
Cui Y, Wang R, Yang C, Wang A, Jing Y, Zhang S. Annulation of m-Substituted Aromatic Ketones with Diphenylacetylene Catalyzed by Ruthenium: A Reliable Route to Substituted Naphthalene Derivatives. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s107036322212043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
45
|
Phukon J, Jyoti Borah A, Gogoi S. Transition‐Metal‐Catalyzed Synthesis of Spiro Compounds through Activation and Cleavage of C−H Bonds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Arun Jyoti Borah
- Department of Chemistry Gauhati University Guwahati 781014 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
46
|
González JM, Vidal X, Ortuño MA, Mascareñas JL, Gulías M. Chiral Ligands Based on Binaphthyl Scaffolds for Pd-Catalyzed Enantioselective C–H Activation/Cycloaddition Reactions. J Am Chem Soc 2022; 144:21437-21442. [DOI: 10.1021/jacs.2c09479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- José Manuel González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xandro Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Angel Ortuño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
47
|
Bera S, Sarkar S, Pal J, Samanta R. Rh(III)-Catalyzed Weakly Coordinating 2-Pyridone-Directed Oxidative Annulation Using Internal Alkynes: A Reversal in Selectivity. Org Lett 2022; 24:8470-8475. [DOI: 10.1021/acs.orglett.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanhita Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Juthi Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
48
|
Qian PF, Zhou T, Li JY, Zhou YB, Shi BF. Ru(II)/Chiral Carboxylic Acid-Catalyzed Asymmetric [4 + 3] Annulation of Sulfoximines with α,β-Unsaturated Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi-Bo Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
49
|
Wang Y, Zhang F, Chen H, Li Y, Li J, Ye M. Enantioselective Nickel‐Catalyzed C(sp
3
)−H Activation of Formamides. Angew Chem Int Ed Engl 2022; 61:e202209625. [DOI: 10.1002/anie.202209625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yin‐Xia Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
- Luoyang Institute of Science and Technology Luoyang, Henan Province 471023 China
| | - Feng‐Ping Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Hao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Jiang‐Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| |
Collapse
|
50
|
Wang YX, Zhang FP, Chen H, Li Y, Li JF, Ye M. Enantioselective Nickel‐Catalyzed C(sp3)−H Activation of Formamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yin-Xia Wang
- Luoyang Institute of Science and Technology chemistry CHINA
| | | | - Hao Chen
- Nankai University chemistry CHINA
| | - Yue Li
- Nankai University chemistry CHINA
| | | | - Mengchun Ye
- nankai university chemistry 94 Weijin Rd, Lihua Bldg 310 300071 Tianjin CHINA
| |
Collapse
|