1
|
Budinská A, Schmutz L, Schnurr M, Aregger N, Hilpert P, Wennemers H. Peptide Catalyzed Conjugate Additions to β-Nitroacrylates - Steric Bulk Increases the Reaction Rate. Chemistry 2024; 30:e202403178. [PMID: 39292602 DOI: 10.1002/chem.202403178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
The organocatalytic conjugate addition of aldehydes to β-nitroacrylates provides direct access to β-ester-γ-nitroaldehydes and, thereby, common structural motifs of many bioactive compounds. However, the deactivation of amine-based catalysts by alkylation with the highly electrophilic nitroacrylates hampers this reaction. Here, we show that the peptide H-Mep-dPro-dGlu-NH2, which is reluctant to undergo alkylation, catalyzes this reaction at low catalyst loading (0.5-1 mol %) within short reaction times (15-60 min) to yield a broad range of β-ester-γ-nitroaldehydes with high stereoselectivity. Kinetic studies revealed that increased steric bulk on the β-nitroacrylate enhances the reaction rate by hindering catalyst alkylation.
Collapse
Affiliation(s)
- Alena Budinská
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Luca Schmutz
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Martin Schnurr
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Nina Aregger
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Patrick Hilpert
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
2
|
Schnitzer T, Schnurr M, Zahrt AF, Sakhaee N, Denmark SE, Wennemers H. Machine Learning to Develop Peptide Catalysts-Successes, Limitations, and Opportunities. ACS CENTRAL SCIENCE 2024; 10:367-373. [PMID: 38435528 PMCID: PMC10906243 DOI: 10.1021/acscentsci.3c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 03/05/2024]
Abstract
Peptides have been established as modular catalysts for various transformations. Still, the vast number of potential amino acid building blocks renders the identification of peptides with desired catalytic activity challenging. Here, we develop a machine-learning workflow for the optimization of peptide catalysts. First-in a hypothetical competition-we challenged our workflow to identify peptide catalysts for the conjugate addition reaction of aldehydes to nitroolefins and compared the performance of the predicted structures with those optimized in our laboratory. On the basis of the positive results, we established a universal training set (UTS) containing 161 catalysts to sample an in silico library of ∼30,000 tripeptide members. Finally, we challenged our machine learning strategy to identify a member of the library as a stereoselective catalyst for an annulation reaction that has not been catalyzed by a peptide thus far. We conclude with a comparison of data-driven versus expert-knowledge-guided peptide catalyst optimization.
Collapse
Affiliation(s)
- Tobias Schnitzer
- Laboratory
of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Martin Schnurr
- Laboratory
of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Andrew F. Zahrt
- Roger
Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nader Sakhaee
- Roger
Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E. Denmark
- Roger
Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Helma Wennemers
- Laboratory
of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Vela-Gallego S, Lewandowski B, Möhler J, Puente A, Gil-Cantero D, Wennemers H, de la Escosura A. Modifying the Catalytic Activity of Lipopeptide Assemblies with Nucleobases. Chemistry 2024; 30:e202303395. [PMID: 37877614 DOI: 10.1002/chem.202303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Biohybrid catalysts that operate in aqueous media are intriguing for systems chemistry. In this paper, we investigate whether control over the self-assembly of biohybrid catalysts can tune their properties. As a model, we use the catalytic activity of functional hybrid molecules consisting of a catalytic H-dPro-Pro-Glu tripeptide, derivatized with fatty acid and nucleobase moieties. This combination of simple biological components merged the catalytic properties of the peptide with the self-assembly of the lipid, and the structural ordering of the nucleobases. The biomolecule hybrids self-assemble in aqueous media into fibrillar assemblies and catalyze the reaction between butanal and nitrostyrene. The interactions between the nucleobases enhanced the order of the supramolecular structures and affected their catalytic activity and stereoselectivity. The results point to the significant control and ordering that nucleobases can provide in the self-assembly of biologically inspired supramolecular catalysts.
Collapse
Affiliation(s)
- Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| | - Bartosz Lewandowski
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jasper Möhler
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Alonso Puente
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| | - David Gil-Cantero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología / CSIC, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
4
|
Dolcini L, Gandini T, Castiglioni R, Bossi A, Penconi M, Dal Corso A, Gennari C, Pignataro L. Visible Light-Promoted β-Functionalization of Carbonyl Compounds in the Presence of Organic Dyes. J Org Chem 2023; 88:14283-14291. [PMID: 37792665 PMCID: PMC10594657 DOI: 10.1021/acs.joc.3c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 10/06/2023]
Abstract
Herein, we investigate the use of organic photocatalysts in the visible light-promoted β-functionalization of carbonyl compounds. In particular, we studied the addition of aliphatic aldehydes to α,β-unsaturated compounds (β-Michael addition), and the reaction of cyclic ketones with either ketones (β-aldol condensation) or imines (β-Mannich reaction). Among the dyes tested, donor-acceptor cyanoarenes gave the best results, promoting the transformations of interest in moderate to good yields. The reaction scope was investigated on substrates with different steric and electronic properties. Fluorescence quenching analysis (Stern-Volmer experiments) led us to propose for these reactions a reductive quenching mechanism involving a transient 5πe- activation mode.
Collapse
Affiliation(s)
- Luigi Dolcini
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Tommaso Gandini
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Riccardo Castiglioni
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Alberto Bossi
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
del Consiglio Nazionale delle Ricerche (CNR), via Fantoli 16/15; SmartMatLab Center, via C. Golgi
19, Milano 20138, Italy
| | - Marta Penconi
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
del Consiglio Nazionale delle Ricerche (CNR), via Fantoli 16/15; SmartMatLab Center, via C. Golgi
19, Milano 20138, Italy
| | - Alberto Dal Corso
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Cesare Gennari
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Luca Pignataro
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| |
Collapse
|
5
|
Lewandowski B, Schäfer RJB, Cotter E, Harangozo D, Wennemers H. Catalytic templated length-controlled oligomerization. Faraday Discuss 2023; 244:119-133. [PMID: 37185626 DOI: 10.1039/d3fd00002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Templated synthesis is an intriguing strategy for the length-controlled synthesis of oligomers. Traditionally, such reactions require stoichiometric amounts of the template with respect to the product. Recently we reported catalytic macrocyclic templates that promote oligomerization of a small molecule substrate with a remarkable degree of length control. Herein we present our efforts toward creating linear templates for catalytic length-controlled oligomer synthesis.
Collapse
Affiliation(s)
- Bartosz Lewandowski
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Rebecca J B Schäfer
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Etienne Cotter
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Dora Harangozo
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
6
|
Yoshiwara Y, Kotani S, Nakajima M. Enantioselective and Chemoselective Phosphine Oxide-catalyzed Aldol Reactions of N-Unprotected Cyclic Carboxyimides. Chemistry 2023; 29:e202203506. [PMID: 36526949 DOI: 10.1002/chem.202203506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Asymmetric catalytic transformations of N-unprotected cyclic carboxyimides such as succinimides, hydantoins, oxazolidinediones, and glitazones, is a powerful way of directly accessing variety of biologically valuable chiral compounds. Herein, a bis(trichlorosilyl) nucleophilic intermediate formed from cyclic carboxyimides was reacted with aldehydes via (S)-SEGPHOS dioxide (SEGPHOSO), proceeding the aldol reaction in highly enantioselective fashion through a cyclic transition state. Furthermore, N-unprotected carboxyimides were chemoselectively activated, even in the presence of N-alkylated carboxyimides, to undergo stereoselective and chemoselective aldol reactions via in situ silicon tetrachloride activation. The functionalized cyclic carboxyimides is readily derived to the several synthetic units derivatization to various chiral building blocks without unnecessary protection/deprotection steps.
Collapse
Affiliation(s)
- Yusaku Yoshiwara
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shunsuke Kotani
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Makoto Nakajima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| |
Collapse
|
7
|
Budinská A, Wennemers H. Organocatalytic Synthesis of Triflones Bearing Two Non-Adjacent Stereogenic Centers. Angew Chem Int Ed Engl 2023; 62:e202300537. [PMID: 36847408 DOI: 10.1002/anie.202300537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Trifluoromethylsulfones (triflones) are useful compounds for synthesis and beyond. Yet, methods to access chiral triflones are scarce. Here, we present a mild and efficient organocatalytic method for the stereoselective synthesis of chiral triflones using α-aryl vinyl triflones, building blocks previously unexplored in asymmetric synthesis. The peptide-catalyzed reaction gives rise to a broad range of γ-triflylaldehydes with two non-adjacent stereogenic centers in high yields and stereoselectivities. A catalyst-controlled stereoselective protonation following a C-C bond formation is key to control over the absolute and relative configuration. Straightforward derivatization of the products into, e.g., disubstituted δ-sultones, γ-lactones, and pyrrolidine heterocycles highlights the synthetic versatility of the products.
Collapse
Affiliation(s)
- Alena Budinská
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
8
|
Recent Advances in Asymmetric Synthesis of Pyrrolidine-Based Organocatalysts and Their Application: A 15-Year Update. Molecules 2023; 28:molecules28052234. [PMID: 36903480 PMCID: PMC10005811 DOI: 10.3390/molecules28052234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
In 1971, chemists from Hoffmann-La Roche and Schering AG independently discovered a new asymmetric intramolecular aldol reaction catalyzed by the natural amino acid proline, a transformation now known as the Hajos-Parrish-Eder-Sauer-Wiechert reaction. These remarkable results remained forgotten until List and Barbas reported in 2000 that L-proline was also able to catalyze intermolecular aldol reactions with non-negligible enantioselectivities. In the same year, MacMillan reported on asymmetric Diels-Alder cycloadditions which were efficiently catalyzed by imidazolidinones deriving from natural amino acids. These two seminal reports marked the birth of modern asymmetric organocatalysis. A further important breakthrough in this field happened in 2005, when Jørgensen and Hayashi independently proposed the use of diarylprolinol silyl ethers for the asymmetric functionalization of aldehydes. During the last 20 years, asymmetric organocatalysis has emerged as a very powerful tool for the facile construction of complex molecular architectures. Along the way, a deeper knowledge of organocatalytic reaction mechanisms has been acquired, allowing for the fine-tuning of the structures of privileged catalysts or proposing completely new molecular entities that are able to efficiently catalyze these transformations. This review highlights the most recent advances in the asymmetric synthesis of organocatalysts deriving from or related to proline, starting from 2008.
Collapse
|
9
|
β-Amino Acid Organocatalysts in the Asymmetric Michael Addition of Isobutyraldehyde to N-Substituted Maleimides. Catalysts 2022. [DOI: 10.3390/catal12090992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Asymmetric Michael additions of carbonyl compounds to N-substituted maleimides are among the most convenient reactions to prepare optically pure succinimide building blocks. Although a few β-amino acids were found to be highly efficient organocatalysts in the addition of α-branched aldehydes, the effect of their structure on the results of these reactions has not yet been investigated. In the present study, we disclose several unexpected and interesting structural effects of aliphatic and cycloaliphatic β-amino acids obtained in the enantioselective conjugate addition of isobutyraldehyde to N-benzylmaleimide. The dependence of the sense of the enantioselectivity on the bulkiness of the substituent on the β-carbon atom, the beneficial spatial arrangements of the functional groups in cis isomers with cyclohexane scaffold and the inversion of the enantioselectivity depending on the absence of a base additive observed with some trans isomers are unprecedented findings. The minor influence of the nitrogen substituent of the maleimide ring on both the reaction rate and the enantioselectivity was also evidenced using alicyclic β-amino acid prepared from an easily available terpene derivative.
Collapse
|
10
|
Menke JM, Trapp O. Controlling the Enantioselectivity in an Adaptable Ligand by Biomimetic Intramolecular Interlocking. J Org Chem 2022; 87:11165-11171. [PMID: 35939525 DOI: 10.1021/acs.joc.2c01441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For the preparation of chiral drugs, both stereochemically stable and flexible catalysts in combination with chiral auxiliaries can be used. Here, chiral induction plays an important role in generating an enantiomerically pure catalyst. We demonstrate a successful approach to the spontaneous deracemization of tropos ligands for asymmetric catalysis. Three different constitutional isomers of a bisphosphinite ligand decorated with l-valine moieties (interaction units) linked to the flexible biphenyl system by a phenylene bridge for inducing a chiral switch were prepared. The substitution pattern's influence on the attached intermolecular recognition sites was systematically investigated. We can show that biomimetic intramolecular hydrogen bonding leads to a pronounced diastereoselective enrichment of one of the ligand stereoisomers. As a result, in the asymmetric Rh-catalyzed hydrogenation of prochiral olefins using these ligands, enantiomeric ratios of up to 95.8:4.2 (S) were obtained. Of particular note is the inversion of enantioselectivity relative to the previously reported BIBIPHOS-Rh catalyst due to the altered orientation of the biphenyl moiety from (Rax) to (Sax). The enantioselectivities achieved by appropriate intramolecular interlocking are remarkable for a tropos ligand/catalyst. The strategy presented here represents a powerful approach for the spontaneous alignment of tropos ligands, yielding high enantioselectivities in asymmetric catalysis.
Collapse
Affiliation(s)
- Jan-Michael Menke
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
11
|
Möhler JS, Beiersdörfer LK, Masina B, Wechsler P, Wennemers H. Tripeptide Organocatalysts for Stereoselective Conjugate Addition Reactions with N‐Heterocyclic Substituents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Hutchinson G, Alamillo-Ferrer C, Fernández-Pascual M, Burés J. Organocatalytic Enantioselective α-Bromination of Aldehydes with N-Bromosuccinimide. J Org Chem 2022; 87:7968-7974. [PMID: 35617931 PMCID: PMC9207931 DOI: 10.1021/acs.joc.2c00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Despite the wealth
of existing organocatalytic, enantioselective
transformations, the α-bromination of aldehydes remains a challenging
reaction. The four examples reported to date require expensive, inconvenient
brominating agents to achieve the desired products in excellent yields
and enantioselectivities. The preferred brominating agent, N-bromosuccinimide (NBS), has been repeatedly discarded
for these reactions because it results in low yields and relatively
poor enantioselectivities. We describe a methodology that uses NBS
and performs excellently with low catalyst loadings, short reaction
times, and mild temperatures.
Collapse
Affiliation(s)
- George Hutchinson
- The University of Manchester, Department of Chemistry, Oxford Road, M13 9PL Manchester, U.K
| | - Carla Alamillo-Ferrer
- The University of Manchester, Department of Chemistry, Oxford Road, M13 9PL Manchester, U.K
| | | | - Jordi Burés
- The University of Manchester, Department of Chemistry, Oxford Road, M13 9PL Manchester, U.K
| |
Collapse
|
13
|
Cmelova P, Sramel P, Zahradnikova B, Modrocka V, Szabados H, Meciarova M, Sebesta R. Pro‐Pro Dipeptide‐Thiourea Organocatalyst in the Mannich Reaction Between α‐Imino Esters and Pyruvates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patricia Cmelova
- Comenius University in Bratislava Faculty of Natural Sciences: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta Organic chemistry SLOVAKIA
| | - Peter Sramel
- Comenius University in Bratislava Faculty of Natural Sciences: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta Organic chemistry SLOVAKIA
| | - Barbora Zahradnikova
- Comenius University in Bratislava Faculty of Natural Sciences: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta Organic chemistry SLOVAKIA
| | - Viktoria Modrocka
- Comenius University in Bratislava Faculty of Natural Sciences: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta Organic chemistry SLOVAKIA
| | - Henrich Szabados
- Comenius University in Bratislava Faculty of Natural Sciences: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta Organic chemistry SLOVAKIA
| | - Maria Meciarova
- Comenius University in Bratislava Faculty of Natural Sciences: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta Organic chemistry SLOVAKIA
| | - Radovan Sebesta
- Comenius University FNS: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta Organic chemistry Mlynska dolina, Ilkovicova 6 84215 Bratislava SLOVAKIA
| |
Collapse
|
14
|
Vastakaite G, Grünenfelder CE, Wennemers H. Peptide-Catalyzed Stereoselective Conjugate Addition Reaction of Aldehydes to C-Substituted Maleimides. Chemistry 2022; 28:e202200215. [PMID: 35089626 PMCID: PMC9306895 DOI: 10.1002/chem.202200215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Catalytic stereoselective additions with maleimides are useful one-step reactions to yield chiral succinimides, molecules that are widespread among therapeutically active compounds but challenging to prepare when the maleimide is C-substituted. We present the tripeptide H-Pro-Pro-Asp-NHC12 H25 as a catalyst for conjugate addition reactions between aldehydes and C-substituted maleimides to form succinimides with three contiguous stereogenic centers in high yields and stereoselectivities. The peptidic catalyst is so chemoselective that no protecting group is needed at the imide nitrogen of the maleimides. Derivatization of the succinimides was straightforward and provided access to chiral pyrrolidines, lactones, and lactams. Kinetic studies, including a Hammett plot, provided detailed insight into the reaction mechanism.
Collapse
Affiliation(s)
- Greta Vastakaite
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 38093ZürichSwitzerland
| | | | - Helma Wennemers
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 38093ZürichSwitzerland
| |
Collapse
|
15
|
Kozma V, Szőllősi G. Conjugate addition of 1,3-dicarbonyl compounds to maleimides using bifunctional primary amine‒(thio)phosphoramide organocatalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
16
|
Kozma V, Szőllősi G. Enantioselective Michael addition of aldehydes to maleimides catalysed by surface-adsorbed natural amino acids. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00545j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral hybrid materials obtained by adsorption of primary α-amino acids on the surface of inorganic oxides are economic, recyclable, highly enantioselective heterogeneous catalysts for the Michael addition of aldehydes to N-substituted maleimides.
Collapse
Affiliation(s)
- Viktória Kozma
- Department of Organic Chemistry, University of Szeged, 6720 Szeged, Dóm tér 8, Hungary
| | - György Szőllősi
- SZTE-ELKH Stereochemistry Research Group, University of Szeged, 6720 Szeged, Eötvös utca 6, Hungary
| |
Collapse
|
17
|
Nicholls LDM, Wennemers H. Synergistic Peptide and Gold Catalysis: Enantioselective Addition of Branched Aldehydes to Allenamides. Chemistry 2021; 27:17559-17564. [PMID: 34496089 PMCID: PMC9293318 DOI: 10.1002/chem.202103197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 01/11/2023]
Abstract
The combination of a peptide catalyst and a gold catalyst is presented for enantioselective addition reactions between branched aldehydes and allenamides. The two catalysts act in concert to provide γ,δ-enamide aldehydes bearing a fully substituted, benzylic stereogenic center - a structural motif common in many natural products and therapeutically active compounds - with good yields and enantioselectivities. The reaction tolerates a variety of alkyl and alkoxy substituted aldehydes and the products can be elaborated into several chiral building blocks bearing either 1,4- or 1,5- functional group relationships. Mechanistic studies showed that the conformational features of the peptide are important for both the catalytic efficiency and stereochemistry, while a balance of acid/base additives is key for ensuring formation of the desired product over undesired side reactions.
Collapse
Affiliation(s)
- Leo D. M. Nicholls
- Laboratory of Organic Chemistry ETH ZürichVladimir-Prelog-Weg 38093ZürichSwitzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry ETH ZürichVladimir-Prelog-Weg 38093ZürichSwitzerland
| |
Collapse
|
18
|
Sinibaldi A, Della Penna F, Ponzetti M, Fini F, Marchesan S, Baschieri A, Pesciaioli F, Carlone A. Asymmetric Organocatalysis Accelerated via Self‐Assembled Minimal Structures. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arianna Sinibaldi
- Department of Physical and Chemical Sciences Università degli Studi dell'Aquila Via Vetoio 67100 L'Aquila Italy
| | - Francesca Della Penna
- Department of Physical and Chemical Sciences Università degli Studi dell'Aquila Via Vetoio 67100 L'Aquila Italy
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences Università degli Studi dell'Aquila Via Vetoio 67100 L'Aquila Italy
| | - Francesco Fini
- Department of Life Sciences Università degli Studi di Modena e Reggio Emilia Via G. Campi 103 41125 Modena Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences Università degli Studi di Trieste Via Giorgieri 1 34127 Trieste Italy
- Unit of Trieste National Interuniversity Consortium of Materials Science and Technology (INSTM) Via Giorgieri 1 34127 Trieste Italy
| | - Andrea Baschieri
- Department of Physical and Chemical Sciences Università degli Studi dell'Aquila Via Vetoio 67100 L'Aquila Italy
- Istituto per la Sintesi Organica e la Fotoreattività Consiglio Nazionale delle Ricerche Via P. Gobetti 101 40129 Bologna Italy
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences Università degli Studi dell'Aquila Via Vetoio 67100 L'Aquila Italy
| | - Armando Carlone
- Department of Physical and Chemical Sciences Università degli Studi dell'Aquila Via Vetoio 67100 L'Aquila Italy
| |
Collapse
|
19
|
Valapil DG, Kadagathur M, Shankaraiah N. Stereoselective Aldol and Conjugate Addition Reactions Mediated by Proline‐Based Catalysts and Its Analogues: A Concise Review. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Manasa Kadagathur
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
20
|
Landeros JM, Cruz‐Hernández C, Juaristi E. α‐Amino Acids and α,β‐Dipeptides Intercalated into Hydrotalcite: Efficient Catalysts in the Asymmetric Michael Addition Reaction of Aldehydes to
N
‐Substituted Maleimides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- José M. Landeros
- Departamento de Química, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Avenida IPN #2508 07360 Ciudad de México Mexico
| | - Carlos Cruz‐Hernández
- Departamento de Química, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Avenida IPN #2508 07360 Ciudad de México Mexico
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Avenida IPN #2508 07360 Ciudad de México Mexico
- El Colegio Nacional Luis González Obregón 23, Centro Histórico 06020 Ciudad de México Mexico
| |
Collapse
|
21
|
Sadiq A, Mahnashi MH, Alyami BA, Alqahtani YS, Alqarni AO, Rashid U. Tailoring the substitution pattern of Pyrrolidine-2,5-dione for discovery of new structural template for dual COX/LOX inhibition. Bioorg Chem 2021; 112:104969. [PMID: 34023639 DOI: 10.1016/j.bioorg.2021.104969] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Dual inhibition of the enzymatic pathways of cyclooxygenases (COX-1/COX-2) and lipoxygenase (LOX) is a rational approach for developing more efficient and safe anti-inflammatory agents. Herein, dual inhibitors of COX and LOX for the management of inflammation are reported. The structural modifications of starting pyrrolidine-2,5-dione aldehyde derivatives resulted in two structurally diverse families (Family A & B). Synthesized derivatives from both Families displayed preferential COX-2 affinity in submicromolar to nanomolar ranges. Disubstitution pattern of the most active series of compounds having N-(benzyl(4-methoxyphenyl)amino moiety presents a new template that is mimic to the diaryl pattern of traditional COX-2 inhibitors. Compound 78 with IC50 value of 0.051 ± 0.001 μM emerged as the most active compound. Highly potent COX-2/5-LOX inhibitors have also demonstrated appreciable in-vivo anti-inflammatory activity through carrageenan induced paw edema test. Moreover, the involvement of histamine, bradykinin, prostaglandin, and leukotriene mediators to adjust the inflammatory response were also studied. Apart from COX inhibition, sulfonamide is considered an important template for carbonic anhydrase inhibition. Hence, we also evaluated six sulfonamide derivatives for off-target in-vitro bovine carbonic anhydrase-II inhibition. Biological results were finally rationalized by docking simulations. Typically, most active COX-2 inhibitors interact with the amino acid residues responsible for the COX-2 selectivity.
Collapse
Affiliation(s)
- Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| |
Collapse
|
22
|
Čmelová P, Vargová D, Šebesta R. Hybrid Peptide-Thiourea Catalyst for Asymmetric Michael Additions of Aldehydes to Heterocyclic Nitroalkenes. J Org Chem 2021; 86:581-592. [PMID: 33258590 DOI: 10.1021/acs.joc.0c02251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bifunctional organocatalysis combining covalent and noncovalent activation is presented. The hybrid peptide-thiourea catalyst features a N-terminal proline moiety for aldehyde activation and a thiourea unit for electrophile activation. This catalyst effectively promotes asymmetric Michael additions of aldehydes to challenging but biologically relevant heterocycle-containing nitroalkenes. The catalyst can be used under solvent-free conditions. Spectroscopic and density functional theory studies elucidate the catalyst structure and mode of action.
Collapse
Affiliation(s)
- Patrícia Čmelová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Denisa Vargová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
23
|
Schnitzer T, Ganzoni RL, Wennemers H. Impact of the β-turn hydrogen bond on the trans/cis ratio and the performance of the peptide catalyst H-dPro-Pro-Glu-NH2. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
25
|
Du ZH, Qin WJ, Tao BX, Yuan M, Da CS. N-Primary-amine tetrapeptide-catalyzed highly asymmetric Michael addition of aliphatic aldehydes to maleimides. Org Biomol Chem 2020; 18:6899-6904. [PMID: 32856662 DOI: 10.1039/d0ob01457e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The highly asymmetric Michael addition reaction between maleimides and aliphatic aldehydes catalyzed by low-loading β-turn tetrapeptides with excellent yields and enantioselectivities at room temperature was reported. α-Branched and α-unbranched aldehydes both are suitable nucleophiles. N-Aryl, alkyl and hydrogen maleimides all are well tolerated and led to high yields and enantioselectivities. The transformation can be enlarged to the gram scale without decrease in the yield and enantioselectivity. Furthermore, the succinimides were converted into γ-lactams and γ-lactones, showing good practicality of this work. Some reaction intermediates in the proposed reaction mechanism can be captured with the HR-MS method.
Collapse
Affiliation(s)
- Zhi-Hong Du
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | |
Collapse
|
26
|
Mikolajczak DJ, Berger AA, Koksch B. Catalytically Active Peptide-Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes. Angew Chem Int Ed Engl 2020; 59:8776-8785. [PMID: 31905254 PMCID: PMC7318681 DOI: 10.1002/anie.201908625] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/27/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of peptides onto the surface of gold nanoparticles has emerged as a promising strategy towards the creation of artificial enzymes. The resulting high local peptide density surrounding the nanoparticle leads to cooperative and synergistic effects, which result in rate accelerations and distinct catalytic properties compared to the unconjugated peptide. This Minireview summarizes contributions to and progress made in the field of catalytically active peptide-gold nanoparticle conjugates. The origin of distinct properties, as well as potential applications, are also discussed.
Collapse
Affiliation(s)
- Dorian J. Mikolajczak
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Allison A. Berger
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Beate Koksch
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
27
|
Recent advances in reactions promoted by amino acids and oligopeptides. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
During the last 20 years, Organocatalysis has become one of the major fields of Catalysis. Herein, we provide a recent overview on reactions where the use of amino acids and peptides as the organocatalysts was employed. All aspects regarding aldol reactions, Michael reactions, epoxidation, Henry reactions and many others that are crucial for the reaction conditions and reaction mechanisms are discussed.
Collapse
|
28
|
Du ZH, Tao BX, Yuan M, Qin WJ, Xu YL, Wang P, Da CS. Peptide-Catalyzed Highly Asymmetric Cross-Aldol Reaction of Aldehydes to Biomimetically Synthesize 1,4-Dicarbonyls. Org Lett 2020; 22:4444-4450. [PMID: 32463241 DOI: 10.1021/acs.orglett.0c01407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Turn tetrapeptides were demonstrated to catalyze asymmetric aldol reaction of α-branched aldehydes and α-carbonyl aldehydes, i.e. glyoxylates and α-ketoaldehydes, to biomimetically synthesize acyclic all-carbon quaternary center-bearing 1,4-dicarbonyls in high yield and excellent enantioselectivity under mild conditions. The spatially restricted environment of the tetrapeptide warrants high enantioselectivity and yield with broad substrates. Using this protocol, (R)-pantolactone, the key intermediate of vitamin B5, was readily accessed in a practical, efficient, and environmentally benign process from inexpensive starting materials.
Collapse
Affiliation(s)
- Zhi-Hong Du
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bao-Xiu Tao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Yuan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wen-Juan Qin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan-Li Xu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pei Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Chao-Shan Da
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, and Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Mikolajczak DJ, Berger AA, Koksch B. Catalytically Active Peptide–Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201908625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dorian J. Mikolajczak
- Department of Biology, Chemistry and Pharmacy Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Allison A. Berger
- Department of Biology, Chemistry and Pharmacy Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Beate Koksch
- Department of Biology, Chemistry and Pharmacy Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
30
|
Organocatalysed conjugate addition reactions of aldehydes to nitroolefins with anti selectivity. Nat Catal 2020. [DOI: 10.1038/s41929-019-0406-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Maguire OR, Taylor B, Higgins EM, Rees M, Cobb SL, Simpkins NS, Hayes CJ, O'Donoghue AC. Unusually high α-proton acidity of prolyl residues in cyclic peptides. Chem Sci 2020; 11:7722-7729. [PMID: 34094148 PMCID: PMC8159430 DOI: 10.1039/d0sc02508a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acidity of the α-proton in peptides has an essential role in numerous biochemical reactions and underpins their stereochemical integrity, which is critical to their biological function. We report a detailed kinetic and computational study of the acidity of the α-proton in two cyclic peptide systems: diketopiperazine (DKP) and triketopiperazine (TKP). The kinetic acidity (protofugality) of the α-protons were determined though hydrogen deuterium exchange studies in aqueous solutions. The acidities of the α-proton in prolyl residues were increased by 3–89 fold relative to other amino acid residues (prolyl > glycyl ≫ alanyl > tyrosyl). Experimental and computational evidence for the stereoelectronic origins of this enhanced prolyl reactivity is presented. TKPs were 106-fold more reactive than their DKP analogues towards deprotonation, which we attribute to the advanced development of aromaticity in the earlier transition state for proton transfer in these cases. A Brønsted linear free energy analysis of the reaction data was conducted to provide estimates of α-proton pKas. Kinetic and computational studies reveal that prolyl residues in cyclic peptides are substantially more acidic than other residues due to a stereoelectronic effect.![]()
Collapse
Affiliation(s)
| | - Bethany Taylor
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | | - Matthew Rees
- School of Chemistry
- University of Birmingham
- Birmingham
- UK
| | - Steven L. Cobb
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | | | | | |
Collapse
|
32
|
Ray B, Mukherjee S. Catalytic enantioselective Michael addition of deconjugated butyrolactams to maleimides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Schnitzer T, Wennemers H. Effect of
β
3
‐Amino Acids on the Performance of the Peptidic Catalyst H‐
d
Pro‐Pro‐Glu‐NH
2. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tobias Schnitzer
- ETH ZurichLaboratorium für Organische Chemie, D-CHAB Vladimir-Prelog-Weg 3 CH-8093 Zurich Switzerland
| | - Helma Wennemers
- ETH ZurichLaboratorium für Organische Chemie, D-CHAB Vladimir-Prelog-Weg 3 CH-8093 Zurich Switzerland
| |
Collapse
|
34
|
Dendrimeric α,β-dipeptidic conjugates as organocatalysts in the asymmetric Michael addition reaction of isobutyraldehyde to N-phenylmaleimides. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2338-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Rigling C, Kisunzu JK, Duschmalé J, Häussinger D, Wiesner M, Ebert MO, Wennemers H. Conformational Properties of a Peptidic Catalyst: Insights from NMR Spectroscopic Studies. J Am Chem Soc 2018; 140:10829-10838. [PMID: 30106584 DOI: 10.1021/jacs.8b05459] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptides have become valuable as catalysts for a variety of different reactions, but little is known about the conformational properties of peptidic catalysts. We investigated the conformation of the peptide H-dPro-Pro-Glu-NH2, a highly reactive and stereoselective catalyst for conjugate addition reactions, and the corresponding enamine intermediate in solution by NMR spectroscopy and computational methods. The combination of nuclear Overhauser effects (NOEs), residual dipolar couplings (RDCs), J-couplings, and temperature coefficients revealed that the tripeptide adopts a single predominant conformation in its ground state. The structure is a type I β-turn, which gains stabilization from three hydrogen bonds that are cooperatively formed between all functional groups (secondary amine, carboxylic acid, amides) within the tripeptide. In contrast, the conformation of the enamine intermediate is significantly more flexible. The conformational ensemble of the enamine is still dominated by the β-turn, but the backbone and the side chain of the glutamic acid residue are more dynamic. The key to the switch between rigidity and flexibility of the peptidic catalyst is the CO2H group in the side chain of the glutamic acid residue, which acts as a lid that can open and close. As a result, the peptidic catalyst is able to adapt to the structural requirements of the intermediates and transition states of the catalytic cycle. These insights might explain the robustness and high reactivity of the peptidic catalyst, which exceeds that of other secondary amine-based organocatalysts. The data suggest that a balance between rigidity and flexibility, which is reminiscent of the dynamic nature of enzymes, is beneficial for peptidic catalysts and other synthetic catalysts.
Collapse
Affiliation(s)
- Carla Rigling
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jessica K Kisunzu
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jörg Duschmalé
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland.,Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Daniel Häussinger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Markus Wiesner
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| |
Collapse
|
36
|
Szőllősi G, Kozma V. Design of Heterogeneous Organocatalyst for the Asymmetric Michael Addition of Aldehydes to Maleimides. ChemCatChem 2018. [DOI: 10.1002/cctc.201800919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- György Szőllősi
- MTA-SZTE Stereochemistry Research Group Dóm tér 8 Szeged 6720 Hungary
| | - Viktória Kozma
- Department of Organic ChemistryUniversity of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
37
|
Boekhoven J, Didier D. Vereinigung von Kunst und Wissenschaft: Die 53. Bürgenstock-Konferenz. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Job Boekhoven
- Fakultät für Chemie und Institute for Advanced Study; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Dorian Didier
- Fakultät für Chemie und Pharmazie; Ludwig-Maximilians-Universität; Butenandtstraße 5-13 81377 München Deutschland
| |
Collapse
|
38
|
Boekhoven J, Didier D. Merging Art and Science-The 53rd Bürgenstock Conference. Angew Chem Int Ed Engl 2018; 57:10011-10014. [PMID: 30003659 DOI: 10.1002/anie.201806142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For the 53rd time, the Bürgenstock Conference gathered some of the most gifted scientists and rising stars in organic, physical, and bioorganic chemistry. Orchestrated by Ilan Marek (President) and his successor, Véronique Gouverneur, the synergy between art and science took place in Brunnen, Switzerland, with a beatiful view over Lake Lucerne.
Collapse
Affiliation(s)
- Job Boekhoven
- Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Dorian Didier
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
39
|
Ahire MM, Mhaske SB. Isa‒NHC‒catalyzed intermolecular Stetter reaction of aromatic aldehydes with maleimides: An efficient access to 3‒aroylsuccinimides. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Poláčková V, Čmelová P, Górová R, Šebesta R. Peptide-catalyzed stereoselective Michael addition of aldehydes and ketones to heterocyclic nitroalkenes. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2126-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Schnitzer T, Wennemers H. Influence of the Trans/Cis Conformer Ratio on the Stereoselectivity of Peptidic Catalysts. J Am Chem Soc 2017; 139:15356-15362. [DOI: 10.1021/jacs.7b06194] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tobias Schnitzer
- Eidgenossische Technische Hochschule Zurich, Laboratory of Organic Chemistry, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Helma Wennemers
- Eidgenossische Technische Hochschule Zurich, Laboratory of Organic Chemistry, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| |
Collapse
|
42
|
Akagawa K, Kudo K. Development of Selective Peptide Catalysts with Secondary Structural Frameworks. Acc Chem Res 2017; 50:2429-2439. [PMID: 28872296 DOI: 10.1021/acs.accounts.7b00211] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enzymes are biogenic catalysts that enable the vital activity of organisms. Enzymes promote reactions in a selective manner with a high level of substrate recognition ability. The development of such a sophisticated catalyst has been one of the goals for chemists. A synthetic peptide is the prime candidate to realize an enzyme-like catalyst. Considering that the catalytic function of enzymes derives from their molecular structures, the key for the creation of a peptide catalyst might be the introduction of a specific three-dimensional structure. Our motivation was to find a peptide catalyst with a versatile secondary structural framework and apply the peptide to a variety of selective reactions. Although helical-peptide-catalyzed asymmetric epoxidation of enones is popular, no other highly enantioselective reaction with a helical peptide has been reported. It was found that resin-supported α-helical polyleucine promoted asymmetric conjugate addition of a carbon nucleophile to enones via the formation of an iminium intermediate at the N-terminal amino group. By changing the helical chain to a repetitive Leu-Leu-Aib (Aib = α-aminoisobutyric acid) sequence and introducing a few amino acids to the N-terminus, a highly enantioselective peptide catalyst was obtained. The helical peptide catalyst was applicable for a tandem enamine/iminium-mediated reaction and asymmetric epoxidation of enones. Although the extension of the helical peptide to conjugate addition of a nucleophile to an enal was not successful simply by attaching proline to the N-terminus of the helix, the incorporation of a β-turn motif was effective to improve the catalytic performance. In the sequence of such a turn-helix-type peptide, the helical part was seemingly distant from the N-terminal amino group; however, the hydrophobicity, structure, and chirality of the helix largely affected the reaction. The turn-helix-type peptide promoted a wide range of asymmetric reactions: conjugated additions of hydride and carbon nucleophiles to enals via the iminium activation and α-oxyamination of aldehydes via the enamine activation. The peptides with turn-helix and helix frameworks were also employed for several reactions that were difficult to achieve with low-molecular-weight catalysts: enzyme-cocatalyzed asymmetric oxidation in water, diastereo- and enantioselective cyclopropanation, regioselective reduction of dienals, kinetic resolution of planar-chiral compounds, and desymmetrization to induce planar chirality. To explore other types of peptide catalysts, a combinatorial library screening was performed. On the way, it was revealed that a histidyl residue assisted to accelerate a reaction via reversible addition to an iminium intermediate. Through the screening of random peptide libraries, novel peptide sequences for efficient and enantioselective conjugate addition were discovered. Although we have no information about the molecular structure of the newly found peptides, they can be an entry point for establishing a versatile framework of peptide catalysts.
Collapse
Affiliation(s)
- Kengo Akagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kazuaki Kudo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
43
|
Husch T, Seebach D, Beck AK, Reiher M. Rigorous Conformational Analysis of Pyrrolidine Enamines with Relevance to Organocatalysis. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tamara Husch
- Laboratorium für Physikalische Chemie ETH Zürich Vladimir‐Prelog‐Weg 3 8093 Zürich Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie ETH Zürich Vladimir‐Prelog‐Weg 2 8093 Zürich Switzerland
| | - Albert K. Beck
- Laboratorium für Organische Chemie ETH Zürich Vladimir‐Prelog‐Weg 2 8093 Zürich Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Vladimir‐Prelog‐Weg 3 8093 Zürich Switzerland
| |
Collapse
|
44
|
Albuquerque HMT, Santos CMM, Balanay MP, Cavaleiro JAS, Silva AMS. 1,6-Conjugate Additions of Carbon Nucleophiles to 2-[(1 E,3 E)-4-Arylbuta-1,3-dien-1-yl]-4 H-chromen-4-ones. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hélio M. T. Albuquerque
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Clementina M. M. Santos
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
- School of Agriculture; Polytechnic Institute of Bragança; Campus de Santa Apolónia 5300-253 Bragança Portugal
| | - Mannix P. Balanay
- Department of Chemistry; Nazarbayev University; 53 Kabanbay Batyr Ave, Block 7 010000 Astana Kazakhstan
| | - José A. S. Cavaleiro
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
45
|
Nugent TC, Hussein HAED, Ahmed S, Najafian FT, Hussain I, Georgiev T, Aljoumhawy MK. Carboxylate Salt Bridge-Mediated Enamine Catalysis: Expanded Michael Reaction Substrate Scope and Facile Access to Antidepressant (R)-Pristiq. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Thomas C. Nugent
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Germany
| | | | - Shahzad Ahmed
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Germany
| | - Foad Tehrani Najafian
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Germany
| | - Ishtiaq Hussain
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Germany
| | - Tony Georgiev
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Germany
| | - Mahmoud Khalaf Aljoumhawy
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Germany
| |
Collapse
|
46
|
Shtenberg Y, Goldfeder M, Schroeder A, Bianco-Peled H. Alginate modified with maleimide-terminated PEG as drug carriers with enhanced mucoadhesion. Carbohydr Polym 2017; 175:337-346. [PMID: 28917874 DOI: 10.1016/j.carbpol.2017.07.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022]
Abstract
The goal of this study was to generate a new mucoadhesive carbohydrate-based delivery system composed of alginate (Alg) backbone covalently attached to polyethylene glycol (PEG) modified with a unique functional end-group (maleimide). The immobilization of PEG-maleimide chains significantly improved the mucoadhesion properties attributed to thioether bonds creation via Michael-type addition and hydrogen bonding with the mucus glycoproteins. Mucoadhesion studies using tensile and rotating cylinder assays revealed a 3.6-fold enhanced detachment force and a 2.8-fold enhanced retention time compared to the unmodified polymer, respectively. Additional indirect studies confirmed the presence of polymer-mucus glycoproteins interactions. Drug release experiments were used to evaluate the release profiles from Alg-PEG-maleimide tablets in comparison to Alg and Alg-SH tablets. Viability studies of normal human dermal fibroblasts cells depicted the non-toxic nature of Alg-PEG-maleimide. Overall, our studies disclose that PEG-maleimide substitutions on other biocompatible polymers can lead to the development of useful biomaterials for diverse biomedical applications.
Collapse
Affiliation(s)
- Yarden Shtenberg
- The Inter-Departmental Program of Biotechnology, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Mor Goldfeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel; The Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
47
|
Yang Y, Ren HX, Chen F, Zhang ZB, Zou Y, Chen C, Song XJ, Tian F, Peng L, Wang LX. Organocatalytic Asymmetric Annulation between Hydroxymaleimides and Nitrosoarenes: Stereoselective Preparation of Chiral Quaternary N-Hydroxyindolines. Org Lett 2017; 19:2805-2808. [DOI: 10.1021/acs.orglett.7b00893] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Yang
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xia Ren
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Chen
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Bing Zhang
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zou
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Jia Song
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Tian
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lin Peng
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Li-Xin Wang
- Key Laboratory of
Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
48
|
Cortes-Clerget M, Jover J, Dussart J, Kolodziej E, Monteil M, Migianu-Griffoni E, Gager O, Deschamp J, Lecouvey M. Bifunctional Tripeptide with a Phosphonic Acid as a Brønsted Acid for Michael Addition: Mechanistic Insights. Chemistry 2017; 23:6654-6662. [DOI: 10.1002/chem.201700604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Margery Cortes-Clerget
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Jesús Jover
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Avgda. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Inorgànica i Orgànica; Secció de Química Inorgànica; Universitat de Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Jade Dussart
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Emilie Kolodziej
- Université Paris Sud, ICMMO, UMR 8182; 15 Rue Georges Clemenceau 91405 Orsay Cedex France
| | - Maelle Monteil
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Evelyne Migianu-Griffoni
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Olivier Gager
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Julia Deschamp
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Marc Lecouvey
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| |
Collapse
|
49
|
Grünenfelder CE, Kisunzu JK, Trapp N, Kastl R, Wennemers H. Crystal structures of peptidic catalysts of the H-d
Pro-Pro-Xaa type. Biopolymers 2017; 108. [DOI: 10.1002/bip.22912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 07/04/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Claudio E. Grünenfelder
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Jessica K. Kisunzu
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Nils Trapp
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Robert Kastl
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| |
Collapse
|
50
|
Metrano A, Abascal NC, Mercado BQ, Paulson EK, Hurtley AE, Miller SJ. Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences. J Am Chem Soc 2017; 139:492-516. [PMID: 28029251 PMCID: PMC5312972 DOI: 10.1021/jacs.6b11348] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 11/30/2022]
Abstract
X-ray crystallography has been applied to the structural analysis of a series of tetrapeptides that were previously assessed for catalytic activity in an atroposelective bromination reaction. Common to the series is a central Pro-Xaa sequence, where Pro is either l- or d-proline, which was chosen to favor nucleation of canonical β-turn secondary structures. Crystallographic analysis of 35 different peptide sequences revealed a range of conformational states. The observed differences appear not only in cases where the Pro-Xaa loop-region is altered, but also when seemingly subtle alterations to the flanking residues are introduced. In many instances, distinct conformers of the same sequence were observed, either as symmetry-independent molecules within the same unit cell or as polymorphs. Computational studies using DFT provided additional insight into the analysis of solid-state structural features. Select X-ray crystal structures were compared to the corresponding solution structures derived from measured proton chemical shifts, 3J-values, and 1H-1H-NOESY contacts. These findings imply that the conformational space available to simple peptide-based catalysts is more diverse than precedent might suggest. The direct observation of multiple ground state conformations for peptides of this family, as well as the dynamic processes associated with conformational equilibria, underscore not only the challenge of designing peptide-based catalysts, but also the difficulty in predicting their accessible transition states. These findings implicate the advantages of low-barrier interconversions between conformations of peptide-based catalysts for multistep, enantioselective reactions.
Collapse
Affiliation(s)
- Anthony
J. Metrano
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Nadia C. Abascal
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Eric K. Paulson
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Anna E. Hurtley
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|