1
|
Mu D, Zhu X, Chen J. Facile synthesis of 1-silaacenaphthenes by transition metal-catalyzed intramolecular C(sp 3)-H silylation. Chem Commun (Camb) 2025; 61:7073-7076. [PMID: 40237073 DOI: 10.1039/d5cc00967g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
We report a general strategy for synthesizing novel fused aromatic 1-silaacenaphthenes by iridium or rhodium-catalyzed intramolecular C(sp3)-H silylation. Both methods showed similar activity and broad substrate scope, producing a variety of 1-silaacenaphthenes with high functional group tolerance. We found that C-H cleavage was not the rate-determining step and that the reaction was first-order with respect to the initial concentrations of substrate, catalyst and ligand. We also characterized the catalyst resting states using 31P NMR and HRMS. Moreover, we used the 1-silaacenaphthenes as synthons for versatile transformations, yielding highly functional molecules.
Collapse
Affiliation(s)
- Delong Mu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Xinrui Zhu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| |
Collapse
|
2
|
Ma Y, Mishra A, Jiao T, Chang W, Lou SJ, Nishiura M, Cong X, Hou Z. Heteroatom-Assisted Regio- and Stereoselective Hydrosilylation of Unsymmetric Internal Alkynes by Scandium Catalyst. Angew Chem Int Ed Engl 2025; 64:e202502665. [PMID: 39962935 DOI: 10.1002/anie.202502665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
The catalytic hydrosilylation of alkynes with hydrosilanes is the most straightforward and atom-efficient method for the synthesis of silylalkenes. However, the hydrosilylation of unsymmetrical internal alkynes often encounters regio- and stereoselectivity challenges. Herein, we report the regio- and syn-stereoselective hydrosilylation of unsymmetrical internal alkynes bearing heteroatom functional groups with hydrosilanes by half-sandwich scandium catalyst. This protocol offers an atom-efficient route for the synthesis of a new family of heteroatom (O, S or N)-functionalized multisubstituted silylalkenes from a variety of internal homopropargyl thioethers, ethers and tertiary amines and hydrosilanes, featuring 100 % atom-efficiency, broad substrate scope, and excellent regio- and syn-stereoselectivity (>19 : 1 r.r. and >19 : 1 syn/anti). The mechanistic details have been elucidated by control experiments and isolation and examination of some key reaction intermediates. It was revealed that an interaction between the heteroatom (O, S or N) in the internal alkynes and the Sc center was critical for achieving the unprecedented high selectivity.
Collapse
Affiliation(s)
- Yuanhong Ma
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, China
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tenggang Jiao
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Wendi Chang
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
3
|
Sloane SE, Sancheti SP, Hendy MS, Smith KM, Thorat RA, Senkum H, Clark JR. Regioselective Cu-Catalyzed Hydrosilylation of Internal Aryl Alkynes. Org Lett 2025; 27:1412-1416. [PMID: 39883535 PMCID: PMC11923852 DOI: 10.1021/acs.orglett.4c04722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Construction of vinylsilane building blocks is important for advancing the synthesis of complex small molecules and natural products. Herein, we report a highly regio- and stereoselective copper-catalyzed hydrosilylation of unsymmetrical internal aryl alkynes. The reaction is performed across a broad scope of internal aryl alkynes, providing exclusive access to α-vinylsilane alkenyl arene products, including several silylated small molecule drug analogs.
Collapse
Affiliation(s)
- Samantha E Sloane
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Shashank P Sancheti
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Moataz S Hendy
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Kathryn M Smith
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Raviraj Ananda Thorat
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Hathaithep Senkum
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Joseph R Clark
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Tan BB, Ge S. One-Pot Cobalt- or Copper-Catalyzed Asymmetric Ring-Opening Hydrosilylation/Hydroboration of Arylidenecyclopropanes. Angew Chem Int Ed Engl 2025; 64:e202419522. [PMID: 39561038 DOI: 10.1002/anie.202419522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
An operationally convenient cobalt-catalyzed one-pot one-step hydrosilylation/hydroboration reaction of arylidenecyclopropanes is developed to access racemic 1,4-borylsilylalkanes. In addition, the corresponding asymmetric reaction is developed with a chiral copper catalyst to prepare 1,4-borylsilylalkanes with high enantioselectivity by a one-pot two-step procedure. Mechanistic studies reveal that this difunctionalization process begins with metal-hydride-catalyzed ring-opening hydrosilylation of arylidenecyclopropanes to generate homoallylsilane intermediates, followed by regio- or enantioselective metal-hydride-catalyzed hydroboration of homoallylsilanes to produce skipped borylsilylalkanes. Selective transformations of C-B and Si-H bonds in skipped borylsilylalkane products are also demonstrated.
Collapse
Affiliation(s)
- Boon Beng Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
5
|
Ye F, Huang Z, Li J, Wang Q, Wu L, Li X. Molybdenum-Catalyzed ( E)-Selective Anti-Markovnikov Hydrosilylation of Alkynes. Molecules 2024; 29:5952. [PMID: 39770041 PMCID: PMC11677069 DOI: 10.3390/molecules29245952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Herein, we report the first example of molybdenum-catalyzed (E)-Selective anti-Markovnikov hydrosilylation of alkynes. The reaction operates effectively with the utilization of minute amounts of the inexpensive, bench-stable pre-catalyst and ligand under mild conditions. Moreover, this molybdenum-catalyzed hydrosilylation process features the advantages of simple operation, excellent selectivity, and broad functional groups tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Lihuan Wu
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (F.Y.); (Z.H.); (J.L.); (Q.W.)
| | - Xiang Li
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (F.Y.); (Z.H.); (J.L.); (Q.W.)
| |
Collapse
|
6
|
Wang J, Lin J, Cui Z, Yao J, Karaghiosoff K, Li J. Nickel-catalyzed regiodivergent syn-hydrosilylation of disubstituted alkynes. Sci Bull (Beijing) 2024; 69:3334-3339. [PMID: 39244423 DOI: 10.1016/j.scib.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Jixin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Lin
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhili Cui
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jianlin Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Zhang Y, Wang T, Liu YY, Zhang ZB, Han P, Jing L. Organic Photoredox-Catalyzed Hydrosilylation of Vinylboronic Esters for the Synthesis of Geminal and Vicinal Borosilanes. J Org Chem 2024; 89:16463-16472. [PMID: 39446172 DOI: 10.1021/acs.joc.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Geminal and vicinal borosilanes have unique applications in functional materials and synthetic transformations. Herein, a convenient method for the synthesis of geminal and vicinal borosilanes is developed via photoredox metal-free hydrosilylation of vinylboronic esters. This strategy features the advantages of high atom economy, environmental friendliness, and excellent functional group compatibility. The mechanism studies reveal that the catalytic reaction goes through photoredox HAT catalysis and a radical addition pathway.
Collapse
Affiliation(s)
- Yue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yuan-Yuan Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Zheng-Bing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
8
|
Hassan S, Bilal M, Khalid S, Rasool N, Imran M, Shah AA. Cobalt-catalyzed reductive cross-coupling: a review. Mol Divers 2024:10.1007/s11030-024-11017-1. [PMID: 39466351 DOI: 10.1007/s11030-024-11017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Transition-metal-catalyzed reductive cross-coupling is highly efficient for forming C-C bonds. It earns its limelight from its application by coupling unreactive electrophilic substrates to synthesize a variety of carbon-carbon bonds with various hybridizations (sp, sp2, and sp3), late-stage functionalization, and bioactive molecules' synthesis. Reductive cross-coupling is challenging to bring selectivity but promising approach. Cobalt is comparatively more affordable than other highly efficient metals e.g., palladium and nickel but cobalt catalysis is still facing efficacy challenges. Researchers are trying to harness the maximum out of cobalt's catalytic properties. Shortly, with efficiency achieved combined with the affordability of cobalt, it will revolutionize industrial applications. This review gives insight into the core of cobalt-catalyzed reductive cross-coupling reactions with a variety of substrates forming a range of differently hybridized coupled products.
Collapse
Affiliation(s)
- Shamoon Hassan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), University Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
9
|
Zhang Y, Zang Z, Gao Y, Li W, Zhu T. Hydrosilylation of Arynes with Silanes and Silicon-Based Polymer. Chemistry 2024; 30:e202401440. [PMID: 38870472 DOI: 10.1002/chem.202401440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Benzyne derived from hexadehydrogenated Diels Alder (HDDA) reactions was found to be an efficient hydrosilylation acceptors. Various silanes can react smoothly with HDDA-derived benzyne to give the arylation products. Lewis acid such as boron trifluoride etherate can accelerate these hydrosilylation reactions. Polyhydromethylsiloxane (PHMS), a widely used organosilicon polymer, was also successfully modified using our method. About 5 % of Si-H bonds in the polymer were inserted by benzynes, giving a functional PHMS with much more solubility in methanol and with a blue-emitting fluorescence behavior. Mechanism research shows that the insertion of benzyne into the Si-H bond probably undergoes a synergistic pathway, which is quite different from the traditional radical-initiated hydrosilylation or transition-metal-catalyzed hydrosilylation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Zhenming Zang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Yuan Gao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Wenchang Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Tingshun Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Chen J, Wei WT, Li Z, Lu Z. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chem Soc Rev 2024; 53:7566-7589. [PMID: 38904176 DOI: 10.1039/d4cs00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal-catalyzed highly Markovnikov-type selective hydrofunctionalization of terminal alkynes provides a straightforward and atom-economical route to access 1,1-disubstituted alkenes, which have a wide range of applications in organic synthesis. However, the highly Markovnikov-type selective transformations are challenging due to the electronic and steric effects during the addition process. With the development of metal-catalyzed organic synthesis, different metal catalysts have been developed to solve this challenge, especially for platinum group metal catalysts. In this perspective, we review homogeneous metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes according to the classified element types as well as reaction mechanisms. Future avenues for investigation are also presented to help expand this exciting field.
Collapse
Affiliation(s)
- Jieping Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Zhuocheng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Xu MY, Jiang WT, Xia MZ, An ZL, Xie XY, Xiao B. Orthogonal sp 3-Ge/B Bimetallic Modules: Enantioselective Construction and Enantiospecific Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202317284. [PMID: 38342760 DOI: 10.1002/anie.202317284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In this study, a series of enantioenriched sp3-Ge/B bimetallic modules were successfully synthesized via an enantioselective copper-catalyzed hydroboration of carbagermatrane (Ge)-containing alkenes. Orthogonal cross-coupling selectivity under different Pd-catalyzed conditions was achieved in an enantiospecific manner. Notably, the chiral secondary Ge exhibited a remarkable transmetallation ability prior to primary or secondary Bpin. The effectiveness of this Ge/B bimetallic strategy was further demonstrated through the development of new functional small molecules with Aggregation-Induced Emission (AIE) and Circularly Polarized Luminescence (CPL) performance. This represents the first successful example of synthesis of enantioenriched alkylgermanium reagents that permit enantiospecific cross-coupling reactions.
Collapse
Affiliation(s)
- Meng-Yu Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Wei-Tao Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Zhi Xia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Zi-Long An
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiu-Ying Xie
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Geng S, Pu Y, Wang S, Ji Y, Feng Z. Advances in disilylation reactions to access cis/ trans-1,2-disilylated and gem-disilylated alkenes. Chem Commun (Camb) 2024; 60:3484-3506. [PMID: 38469709 DOI: 10.1039/d4cc00288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organosilane compounds are widely used in both organic synthesis and materials science. Particularly, 1,2-disilylated and gem-disilylated alkenes, characterized by a carbon-carbon double bond and multiple silyl groups, exhibit significant potential for subsequently diverse transformations. The versatility of these compounds renders them highly promising for applications in materials, enabling them to be valuable and versatile building blocks in organic synthesis. This review provides a comprehensive summary of methods for the preparation of cis/trans-1,2-disilylated and gem-disilylated alkenes. Despite notable advancements in this field, certain limitations persist, including challenges related to regioselectivity in the incorporation and chemoselectivity in the transformation of two nearly identical silyl groups. The primary objective of this review is to outline synthetic methodologies for the generation of these alkenes through disilylation reactions, employing silicon reagents, specifically disilanes, hydrosilanes, and silylborane reagents. The review places particular emphasis on investigating the practical applications of the C-Si bond of disilylalkenes and delves into an in-depth discussion of reaction mechanisms, particularly those reactions involving the activation of Si-Si, Si-H, and Si-B bonds, as well as the C-Si bond formation.
Collapse
Affiliation(s)
- Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Siyu Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yanru Ji
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
13
|
Li J, Hong C, Niu Y, Wang B, Jiang H. Palladium-Catalyzed Cyclization/Alkenylation of Ynone Oximes with Vinylsilanes for the Assembly of Isoxazolyl Vinylsilanes. Chem Asian J 2024:e202301122. [PMID: 38224122 DOI: 10.1002/asia.202301122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
A palladium-catalyzed cascade cyclization/alkenylation for the assembly of synthetically valuable isoxazolyl vinylsilane derivative has been accomplished. Easily accessible ynone oximes, and available vinylsilane agents were used as the reaction starting materials This protocol features broad substrate scope, good functional group tolerance, and good step- and atom-economy. Remarkably, this approach provides a new approach for the construction of structurally diverse isoxazolyl-containing vinylsilanes with high molecular complexity, showing a promising application in synthetic and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, Shaoguan, P. R. China
| | - Chenjing Hong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| | - Yanan Niu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| | - Bowen Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| |
Collapse
|
14
|
Panda S, Nanda A, Saha R, Ghosh R, Bagh B. Cobalt-Catalyzed Chemodivergent Synthesis of Cyclic Amines and Lactams from Ketoacids and Anilines Using Hydrosilylation. J Org Chem 2023. [PMID: 38031391 DOI: 10.1021/acs.joc.3c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Here, commercially available Co2(CO)8 was utilized as an efficient catalyst for chemodivergent synthesis of pyrrolidines and pyrrolidones from levulinic acid and aromatic amines under slightly different hydrosilylation conditions. 1.5 and 3 equiv of phenylsilane selectively yielded pyrrolidone and pyrrolidine, respectively. Various ketoacids and amines were successfully tested. Plausible mechanism involves the condensation of levulinic acid and amine to form an imine, which cyclizes to 3-pyrrolidin-2-one followed by reduction to pyrrolidone. The final reduction of pyrrolidone gave pyrrolidine.
Collapse
Affiliation(s)
- Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Amareshwar Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
15
|
Wang X, Xue J, Rong ZQ. Divergent Access to Chiral C2- and C3-Alkylated Pyrrolidines by Catalyst-Tuned Regio- and Enantioselective C(sp 3)-C(sp 3) Coupling. J Am Chem Soc 2023. [PMID: 37307532 DOI: 10.1021/jacs.3c03900] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel-substituted pyrrolidine derivatives are widely used in drugs and bioactive molecules. The efficient synthesis of these valuable skeletons, especially enantiopure derivatives, is still recognized as a key bottleneck to overcome in chemical synthesis. Herein, we report a highly efficient catalyst-tuned regio- and enantioselective hydroalkylation reaction for the divergent synthesis of chiral C2- and C3-alkylated pyrrolidines through desymmetrization of the readily available 3-pyrrolines. The catalytic system consists of CoBr2 with a modified bisoxazoline (BOX) ligand, which can achieve the asymmetric C(sp3)-C(sp3) coupling via the distal stereocontrol, providing a series of C3-alkylated pyrrolidines in high efficiency. Moreover, the nickel catalytic system allows the enantioselective hydroalkylation to synthesize the C2-alkylated pyrrolidines through the tandem alkene isomerization/hydroalkylation reaction. This divergent method uses readily available catalysts, chiral BOX ligands, and reagents, delivering enantioenriched 2-/3-alkyl substituted pyrrolidines with excellent regio- and enantioselectivity (up to 97% ee). We also demonstrate the compatibility of this transformation with complex substrates derived from a series of drugs and bioactive molecules in good efficiency, which offers a distinct entry to more functionalized chiral N-heterocycles.
Collapse
Affiliation(s)
- Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
16
|
Lin XT, Ishizaka Y, Maegawa Y, Takeuchi K, Inagaki S, Matsumoto K, Choi JC. 1,10-Phenanthroline-based periodic mesoporous organosilica: from its synthesis to its application in the cobalt-catalyzed alkyne hydrosilylation. RSC Adv 2023; 13:7828-7833. [PMID: 36909752 PMCID: PMC9996227 DOI: 10.1039/d2ra08272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
1,10-Phenanthroline (Phen) is a typical ligand for metal complexation and various metal/Phen complexes have been applied as a catalyst in several organic transformations. This study reports the synthesis of a Phen-based periodic mesoporous organosilica (Phen-PMO) with the Phen moieties being directly incorporated into the organosilica framework. The Phen-PMO precursor, 3,8-bis[(triisopropoxysilyl)methyl]-1,10-phenanthroline (1a), was prepared via the Kumada-Tamao-Corriu cross-coupling of 3,8-dibromo-1,10-phenanthroline and [(triisopropoxysilyl)methyl]magnesium chloride. The co-condensation of 1a and 1,2-bis(triethoxysilyl)ethane in the presence of P123 as the template surfactant afforded Phen-PMO 3 with an ordered 2-D hexagonal mesoporous structure as confirmed by nitrogen adsorption/desorption measurements, X-ray diffraction, and transition electron microscopy. Co(OAc)2 was immobilized on Phen-PMO 3, and the obtained complex showed good catalytic activity for the hydrosilylation reaction of phenylacetylene with phenylsilane.
Collapse
Affiliation(s)
- Xiao-Tao Lin
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Yusuke Ishizaka
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | | | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Shinji Inagaki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Toyota Central R&D Labs., Inc. Nagakute Aichi 480-1192 Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
17
|
Xu X, Gao A, Chen W, Xu X, Li J, Cui C. Lanthanum Ate Amide-Catalyzed Regio- and Stereoselective Hydrosilylation of Internal Alkynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Xiaoming Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Ailin Gao
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Wufeng Chen
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Xiufang Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
18
|
Bulky NHC–Cobalt Complex-Catalyzed Highly Markovnikov-Selective Hydrosilylation of Alkynes. Catalysts 2023. [DOI: 10.3390/catal13030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The hydrosilylation of alkynes is one of the most attractive and, at the same time, most challenging catalytic transformations, usually demanding the use of noble transition metals. We describe a catalytic system, based on cobalt(0) complex and bulky N-heterocyclic carbene (NHC) ligands, permitting the highly effective hydrosilylation of a broad scope of alkynes and silanes. The application of bulky NHC ligands allowed a decrease in the amount of cobalt necessary for an effective reaction run to 2.5 mol% and provided excellent selectivity towards challenging α-vinylsilanes. The developed method tolerates a number of substituted aryl, alkyl, and silyl acetylenes. Moreover, it is suitable for both tertiary and secondary silanes. Our findings confirm that steric hindrance around the metal center can effectively increase the activity of a catalyst and ensure better selectivity than those of analogous complexes bearing smaller ligands.
Collapse
|
19
|
Li H, Yang C, Wang D, Deng L. Cobalt-Catalyzed Regio- and Stereoselective Hydrosilylation of Alk-2-ynes with Tertiary Silanes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongfang Li
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengbo Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
20
|
Cheng Z, Li M, Zhang XY, Sun Y, Yu QL, Zhang XH, Lu Z. Cobalt-Catalyzed Regiodivergent Double Hydrosilylation of Arylacetylenes. Angew Chem Int Ed Engl 2023; 62:e202215029. [PMID: 36330602 DOI: 10.1002/anie.202215029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Double hydrosilylation of alkynes represents a straightforward method to synthesize bis(silane)s, yet it is challenging if α-substituted vinylsilanes act as the intermediates. Here, a cobalt-catalyzed regiodivergent double hydrosilylation of arylacetylenes is reported for the first time involving this challenge, accessing both vicinal and geminal bis(silane)s with exclusive regioselectivity. Various novel bis(silane)s containing Si-H bonds can be easily obtained. The gram-scale reactions could be performed smoothly. Preliminarily mechanistic studies demonstrated that the reactions were initiated by cobalt-catalyzed α-hydrosilylation of alkynes, followed by cobalt-catalyzed β-hydrosilylation of the α-vinylsilanes to deliver vicinal bis(silane)s, or hydride-catalyzed α-hydrosilylation to give geminal ones. Notably, these bis(silane)s can be used for the synthesis of high-refractive-index polymers (nd up to 1.83), demonstrating great potential utility in optical materials.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yang Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Lei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Hong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310058, China
| |
Collapse
|
21
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
22
|
Bajo S, Theulier CA, Campos J. Mechanistic Investigations on Hydrogenation, Isomerization and Hydrosilylation Reactions Mediated by a Germyl-Rhodium System. ChemCatChem 2022; 14:e202200157. [PMID: 36032040 PMCID: PMC9401076 DOI: 10.1002/cctc.202200157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/09/2022] [Indexed: 11/07/2022]
Abstract
We recently disclosed a dehydrogenative double C-H bond activation reaction in the unusual pincer-type rhodium-germyl complex [(ArMes)2ClGeRh] (ArMes=C6H3-2,6-(C6H2-2,4,6-Me3)2). Herein we investigate the catalytic applications of this Rh/Ge system in several transformations, namely trans-semihydrogenation of internal alkynes, trans-isomerization of olefins and hydrosilylation of alkynes. We have compared the activity and selectivity of this catalyst against other common rhodium precursors, as well as related sterically hindered rhodium complexes, being the one with the germyl fragment superior in terms of selectivity towards E-isomers. To increase this selectivity, a tandem catalytic protocol that incorporates the use of a heterogeneous catalyst for the trans-semihydrogenation of internal alkynes has been devised. Kinetic mechanistic investigations provide important information regarding the individual catalytic cycles that comprise the overall trans-semihydrogenation of internal alkynes.
Collapse
Affiliation(s)
- Sonia Bajo
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla.Avenida Américo Vespucio 4941092SevillaSpain
| | - Cyril A. Theulier
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla.Avenida Américo Vespucio 4941092SevillaSpain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla.Avenida Américo Vespucio 4941092SevillaSpain
| |
Collapse
|
23
|
Skrodzki M, Ortega Garrido V, Csáky AG, Pawluć P. Searching for Highly Active Cobalt Catalysts Bearing Schiff Base Ligands for Markovnikov-Selective Hydrosilylation of Alkynes with Tertiary Silanes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Bai W, Sun J, Wang D, Bai S, Deng L. Low‐coordinate cobalt(0) N‐heterocyclic carbene complexes as catalysts for hydrosilylation of alkynes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenli Bai
- Institute of Applied Chemistry Shanxi University Taiyuan P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai P. R. China
| | - Jian Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai P. R. China
| | - Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai P. R. China
| | - Sheng‐Di Bai
- Institute of Applied Chemistry Shanxi University Taiyuan P. R. China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai P. R. China
| |
Collapse
|
25
|
Lu W, Zhao Y, Meng F. Cobalt-Catalyzed Sequential Site- and Stereoselective Hydrosilylation of 1,3- and 1,4-Enynes. J Am Chem Soc 2022; 144:5233-5240. [PMID: 35298144 DOI: 10.1021/jacs.2c00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Catalytic sequential hydrosilylation of 1,3-enynes and 1,4-enynes promoted by cobalt complexes derived from bisphosphines are presented. Site- and stereoselective Si-H addition of primary silanes to 1,3-enynes followed by sequential intramolecular diastereo- and enantioselective Si-H addition afforded enantioenriched cyclic alkenylsilanes with simultaneous construction of a carbon-stereogenic center and a silicon-stereogenic center. Reactions of 1,4-enynes proceeded through sequential isomerization of the alkene moiety followed by site- and stereoselective hydrosilylation. A wide range of alkenylsilanes were afforded in high efficiency and selectivity. Functionalization of the enantioenriched silanes containing a stereogenic center at silicon delivered a variety of chiral building blocks that are otherwise difficult to access.
Collapse
Affiliation(s)
- Wenxin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Yongmei Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China, 102249
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| |
Collapse
|
26
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
27
|
Abstract
This review highlights the hydroelementation reactions of conjugated and separated diynes, which depending on the process conditions, catalytic system, as well as the type of reagents, leads to the formation of various products: enynes, dienes, allenes, polymers, or cyclic compounds. The presence of two triple bonds in the diyne structure makes these compounds important reagents but selective product formation is often difficult owing to problems associated with maintaining appropriate reaction regio- and stereoselectivity. Herein we review this topic to gain knowledge on the reactivity of diynes and to systematise the range of information relating to their use in hydroelementation reactions. The review is divided according to the addition of the E-H (E = Mg, B, Al, Si, Ge, Sn, N, P, O, S, Se, Te) bond to the triple bond(s) in the diyne, as well as to the type of the reagent used, and the product formed. Not only are the hydroelementation reactions comprehensively discussed, but the synthetic potential of the obtained products is also presented. The majority of published research is included within this review, illustrating the potential as well as limitations of these processes, with the intent to showcase the power of these transformations and the obtained products in synthesis and materials chemistry.
Collapse
Affiliation(s)
- Jędrzej Walkowiak
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Jakub Szyling
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan. .,Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
28
|
Roemer M, Keaveney ST, Gonçales VR, Lian J, Downes JE, Gautam S, Gooding JJ, Messerle BA. Engineering regioselectivity in the hydrosilylation of alkynes using heterobimetallic dual-functional hybrid catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01804c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of carbon black supported rhodium and iridium heterobimetallic hybrid catalysts and their application in the hydrosilylation of alkynes is described.
Collapse
Affiliation(s)
- Max Roemer
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Sinead T. Keaveney
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia
| | - Vinicius R. Gonçales
- School of Chemistry and the Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiaxin Lian
- School of Chemistry and the Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - James E. Downes
- Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia
| | - Shreedhar Gautam
- School of Chemistry and the Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J. Justin Gooding
- School of Chemistry and the Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Barbara A. Messerle
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia
- School of Chemistry and the Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Geier SJ, Vogels CM, Melanson JA, Westcott SA. The transition metal-catalysed hydroboration reaction. Chem Soc Rev 2022; 51:8877-8922. [DOI: 10.1039/d2cs00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the development of the transition metal-catalysed hydroboration reaction, from its beginnings in the 1980s to more recent developments including earth-abundant catalysts and an ever-expanding array of substrates.
Collapse
Affiliation(s)
- Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jennifer A. Melanson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
30
|
Recent advances in ruthenium-catalyzed hydrosilylation of unsaturated compounds: Applications and mechanistic studies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Liu Y, Zhan M, Li P. Regio‐ and diasteroselective C‐silylation of enolate enabled by a β‐boronyl group. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Liu
- National Drug Clinical Trial Institution GCP Office, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| | - Miao Zhan
- Institute of Medical Research, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road Xi'an 710054 China
| |
Collapse
|
32
|
Park JW. Cobalt-catalyzed alkyne hydrosilylation as a new frontier to selectively access silyl-hydrocarbons. Chem Commun (Camb) 2021; 58:491-504. [PMID: 34889931 DOI: 10.1039/d1cc06214j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hydrosilylation of alkynes is a chief chemical method for accessing a range of alkenylsilanes, which can be derivatized to obtain value-added hydrocarbons and utilized in diverse applications. While noble metal-based catalytic procedures have shown great success in accessing vinylsilanes within the context of both academia and industry, replacing the noble metals with cheaper and more abundant base metals has recently drawn significant interest due to their catalytic sustainability and competencies including unprecedented reactivity that could expand chemical tools for accessing other types of silicon-containing hydrocarbons. During the past few years, a number of well-defined, robust cobalt-catalyst platforms that broadly operate either the Chalk-Harrod or a modified Chalk-Harrod mechanism have emerged as a new frontier in the field of selective alkyne hydrosilylation. This review describes the main features of cobalt catalyst systems recently documented for the hydrosilylation of alkynes with a strong emphasis on ligand design and reaction pathways involving Co-H and/or Co-silyl species-mediated elementary transformations to achieve Markovnikov/anti-Markovnikov hydrosilylations as well as new migratory transformations.
Collapse
Affiliation(s)
- Jung-Woo Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
33
|
Panyam PKR, Atwi B, Ziegler F, Frey W, Nowakowski M, Bauer M, Buchmeiser MR. Rh(I)/(III)-N-Heterocyclic Carbene Complexes: Effect of Steric Confinement Upon Immobilization on Regio- and Stereoselectivity in the Hydrosilylation of Alkynes. Chemistry 2021; 27:17220-17229. [PMID: 34672398 PMCID: PMC9299010 DOI: 10.1002/chem.202103099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Rh(I) NHC and Rh(III) Cp* NHC complexes (Cp*=pentamethylcyclopentadienyl, NHC=N-heterocyclic carbene=pyrid-2-ylimidazol-2-ylidene (Py-Im), thiophen-2-ylimidazol-2-ylidene) are presented. Selected catalysts were selectively immobilized inside the mesopores of SBA-15 with average pore diameters of 5.0 and 6.2 nm. Together with their homogenous progenitors, the immobilized catalysts were used in the hydrosilylation of terminal alkynes. For aromatic alkynes, both the neutral and cationic Rh(I) complexes showed excellent reactivity with exclusive formation of the β(E)-isomer. For aliphatic alkynes, however, selectivity of the Rh(I) complexes was low. By contrast, the neutral and cationic Rh(III) Cp* NHC complexes proved to be highly regio- and stereoselective catalysts, allowing for the formation of the thermodynamically less stable β-(Z)-vinylsilane isomers at room temperature. Notably, the SBA-15 immobilized Rh(I) catalysts, in which the pore walls provide an additional confinement, showed excellent β-(Z)-selectivity in the hydrosilylation of aliphatic alkynes, too. Also, in the case of 4-aminophenylacetylene, selective formation of the β(Z)-isomer was observed with a neutral SBA-15 supported Rh(III) Cp* NHC complex but not with its homogenous counterpart. These are the first examples of high β(Z)-selectivity in the hydrosilylation of alkynes by confinement generated upon immobilization inside mesoporous silica.
Collapse
Affiliation(s)
- Pradeep K. R. Panyam
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Boshra Atwi
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Felix Ziegler
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Wolfgang Frey
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Michal Nowakowski
- Chemistry DepartmentPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Matthias Bauer
- Chemistry DepartmentPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Michael R. Buchmeiser
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
- German Institutes of Textile and Fiber ResearchKörschtalstr. 2673770DenkendorfGermany
| |
Collapse
|
34
|
Sahoo MK, Kim D, Chang S, Park JW. Regioselective Access to α-Vinylsilanes and α-Vinylgermanes by Cobalt-Catalyzed Migratory Hydrofunctionalization of 2-Alkynes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manoj Kumar Sahoo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jung-Woo Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
35
|
Regio‐controllable Cobalt‐Catalyzed Sequential Hydrosilylation/Hydroboration of Arylacetylenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Karataş MO, Alıcı B, Passarelli V, Özdemir I, Pérez-Torrente JJ, Castarlenas R. Iridium(i) complexes bearing hemilabile coumarin-functionalised N-heterocyclic carbene ligands with application as alkyne hydrosilylation catalysts. Dalton Trans 2021; 50:11206-11215. [PMID: 34338264 DOI: 10.1039/d1dt01946e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of iridium(i) complexes of formula IrCl(κC,η2-IRCouR')(cod) or IrCl(κC, η2-BzIRCouR')(cod) (cod = 1,5-cyclooctadiene; Cou = coumarin; I = imidazolin-2-carbene; BzI = benzimidazolin-2-carbene) have beeen prepared from the corresponding azolium salt and [Ir(μ-OMe)(cod)]2 in THF at room temperature. The crystalline structures of 4b and 5b show a distorted trigonal bipyramidal configuration in the solid state with a coordinated coumarin moiety. In contrast, an equilibrium between this pentacoordinated structure and the related square planar isomer is observed in solution as a consequence of the hemilability of the pyrone ring. Characterization of both species by NMR was achieved at the low and high temperature limits, respectively. In addition, the thermodynamic parameters of the equilibrium, ΔHR and ΔSR, were obtained by VT 1H NMR spectroscopy and fall in the range 22-33 kJ mol-1 and 72-113 J mol-1 K-1, respectively. Carbonylation of IrCl(κC,η2-BzITolCou7,8-Me2)(cod) resulted in the formation of a bis-CO derivative showing no hemilabile behaviour. The newly synthesised complexes efficiently catalyze the hydrosilylation of alkynes at room temperature with a preference for the β-(Z) vinylsilane isomer.
Collapse
Affiliation(s)
- Mert Olgun Karataş
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, CP. 50009, Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Jin S, Liu K, Wang S, Song Q. Enantioselective Cobalt-Catalyzed Cascade Hydrosilylation and Hydroboration of Alkynes to Access Enantioenriched 1,1-Silylboryl Alkanes. J Am Chem Soc 2021; 143:13124-13134. [PMID: 34382392 DOI: 10.1021/jacs.1c04248] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enantioenriched 1,1-silylboryl alkanes possess silyl and boryl groups that are both connected to the same stereogenic carbon center at well-defined orientations. As these chiral multifunctionalized compounds potentially offer two synthetic handles, they are highly valued building blocks in asymmetric synthesis as well as medicinal chemistry. Despite the potential usefulness, efficient synthetic approaches for their preparation are scarce. Seeking to address this deficiency, an enantioselective cobalt-catalyzed hydrosilylation/hydroboration cascade of terminal alkynes has been realized. This protocol constitutes an impressive case of chemo-, regio-, and stereoselectivity wherein the two different hydrofunctionalization events are exquisitely controlled by a single set of metal catalyst and ligand, an operation which would usually require two separate catalytic systems. Downstream transformations of enantioenriched 1,1-silyboryl alkanes led to various valuable chiral compounds. Mechanistic studies suggest that the present reaction undergoes highly regioselective and stereocontrolled sequential hydrosilylation and hydroboration processes.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Kang Liu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Shuai Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
38
|
Zhu SF, He P, Hu MY, Zhang XY. Transition-Metal-Catalyzed Stereo- and Regioselective Hydrosilylation of Unsymmetrical Alkynes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1605-9572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAlkyne hydrosilylation is one of the most efficient methods for the synthesis of alkenyl silicon derivatives and has been a hot topic of research for decades. This short review summarizes the progress in transition-metal-catalyzed stereo- and regioselective hydrosilylation of unsymmetrical alkynes. Topics are discussed based on different types of alkynes and the selectivities.1 Introduction2 Terminal Alkyne Hydrosilylation2.1 β-E Selectivity2.2 β-Z Selectivity2.3 α-selectivity3 Internal Alkyne Hydrosilylation3.1 Aryl–Alkyl Acetylenes3.2 Alkyl–Alkyl Acetylenes3.3 Internal Alkynes with Polarized Substituents4 Summary and Outlook
Collapse
|
39
|
Wang D, Lai Y, Wang P, Leng X, Xiao J, Deng L. Markovnikov Hydrosilylation of Alkynes with Tertiary Silanes Catalyzed by Dinuclear Cobalt Carbonyl Complexes with NHC Ligation. J Am Chem Soc 2021; 143:12847-12856. [PMID: 34347477 DOI: 10.1021/jacs.1c06583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal-catalyzed hydrosilylation of alkynes is an ideal atom-economic method to prepare vinylsilanes that are useful reagents in the organic synthesis and silicone industry. Although great success has been made in the preparation of β-vinylsilanes by metal-catalyzed hydrosilylation reactions of alkynes, reported metal-catalyzed reactions for the synthesis of α-vinylsilanes suffer from narrow substrate scope and/or poor selectivity. Herein, we present selective Markovnikov hydrosilylation reactions of terminal alkynes with tertiary silanes using a dicobalt carbonyl N-heterocyclic carbene (NHC) complex [(IPr)2Co2(CO)6] (IPr = 1,3-di(2,6-diisopropylphenyl)imidazol-2-ylidene) as catalyst. This cobalt catalyst effects the hydrosilylation of both alkyl- and aryl-substituted terminal alkynes with a variety of tertiary silanes with good functional group compatibility, furnishing α-vinylsilanes with high yields and high α/β selectivity. Mechanistic study revealed that the stoichiometric reactions of [(IPr)2Co2(CO)6] with PhC≡CH and HSiEt3 can furnish the dinuclear cobalt alkyne and mononuclear cobalt silyl complexes [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)3], [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)2(IPr)], and [(IPr)Co(CO)3(SiEt3)], respectively. Both dicobalt bridging alkyne complexes can react with HSiEt3 to yield α-triethylsilyl styrene and effect the catalytic Markovnikov hydrosilylation reaction. However, the mono(NHC) dicobalt complex [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)3] exhibits higher catalytic activity over the di(NHC)-dicobalt complexes. The cobalt silyl complex [(IPr)Co(CO)3(SiEt3)] is ineffective in catalyzing the hydrosilylation reaction. Deuterium labeling experiments with PhC≡CD and DSiEt3 indicates the syn-addition nature of the hydrosilylation reaction. The absence of deuterium scrambling in the hydrosilylation products formed from the catalytic reaction of PhC≡CH with a mixture of DSiEt3 and HSi(OEt)3 hints that mononuclear cobalt species are less likely the in-cycle species. These observations, in addition to the evident of nonsymmetric Co2C2-butterfly core in the structure of [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)3], point out that mono(IPr)-dicobalt species are the genuine catalysts for the cobalt-catalyzed hydrosilylation reaction and that the high α selectivity of the catalytic system originates from the joint play of the dicobalt carbonyl species to coordinate alkynes in the Co(μ-η2:η2-HCCR')Co mode and the steric demanding nature of IPr ligand.
Collapse
Affiliation(s)
- Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuhang Lai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jie Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
40
|
You Y, Ge S. Cobalt‐Catalyzed One‐Pot Asymmetric Difunctionalization of Alkynes to Access Chiral
gem
‐(Borylsilyl)alkanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang'en You
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Shaozhong Ge
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
41
|
Qi WY, Zhen JS, Xu XH, Du X, Li YH, Yuan H, Guan YS, Wei X, Wang ZY, Liang G, Luo Y. Base-Mediated Borylsilylation/Silylation of Ammonium Salts with Silylborane. Org Lett 2021; 23:5988-5992. [PMID: 34240873 DOI: 10.1021/acs.orglett.1c02066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This work describes a base-mediated borylsilylation of benzylic ammonium salts to synthesize geminal silylboronates bearing benzylic proton under mild reaction conditions. Deaminative silylation of aryl ammonium salts was also achieved in the presence of LiOtBu. This strategy which is featured with high efficiency, mild reaction conditions, and good functional group tolerance provides efficient routes for late-stage functionalization of amines.
Collapse
Affiliation(s)
- Wan-Ying Qi
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jing-Song Zhen
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Hong Xu
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xian Du
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Hui Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Han Yuan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yun-Shi Guan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xun Wei
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zi-Ying Wang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Guohai Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yong Luo
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
42
|
Cheng Z, Guo J, Sun Y, Zheng Y, Zhou Z, Lu Z. Regio-controllable Cobalt-Catalyzed Sequential Hydrosilylation/Hydroboration of Arylacetylenes. Angew Chem Int Ed Engl 2021; 60:22454-22460. [PMID: 34347353 DOI: 10.1002/anie.202109089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Regiodivergent addition reactions provide straightforward and atom-economic approaches to access different regioisomers. However, the regio-chemistry control to access all the possible results is still challenging especially for the reaction involving multiple addition steps. Herein, we reported regio-controllable cobalt-catalyzed sequential hydrosilylation/hydroboration of arylacetylenes, delivering all the possible regio-outcomes with high regioselectivities (up to >20/1 rr for all the cases). Each regioisomer of value-added silylboronates could be efficiently and regioselectively obtained from the same materials. The adjustment of the ligands of cobalt catalysts combined with dual catalysis relay strategy is the key to achieve regio-chemistry control. This regio-controllable research might inspire the exploration of the diversity-oriented synthesis that involves multiple additions and provide full sets of regioisomers of other synthetic useful molecules.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yufeng Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yushan Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhehong Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
43
|
Gao W, Ding H, Yu T, Wang Z, Ding S. Iridium-catalyzed regioselective hydrosilylation of internal alkynes facilitated by directing and steric effects. Org Biomol Chem 2021; 19:6216-6220. [PMID: 34195740 DOI: 10.1039/d1ob00910a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we reported the iridium-catalyzed hydrosilylation of internal alkynes under simple and mild conditions. The intrinsic functional groups of alkyne substrates were disclosed to be crucial in facilitating both the hydrosilylation process and related regioselectivity owing to their coordination capability towards the iridium catalyst. Utilization of the steric trimethylsilyl-protected trihydroxysilane proved to be another critical factor in ensuring the efficient proceeding of this process.
Collapse
Affiliation(s)
- Weiwei Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Huan Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tian Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhen Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
44
|
You Y, Ge S. Cobalt-Catalyzed One-Pot Asymmetric Difunctionalization of Alkynes to Access Chiral gem-(Borylsilyl)alkanes. Angew Chem Int Ed Engl 2021; 60:20684-20688. [PMID: 34223687 DOI: 10.1002/anie.202107405] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Indexed: 11/10/2022]
Abstract
Enantioselective cobalt-catalyzed one-pot hydrosilylation and hydroboration of terminal alkynes has been developed employing a cobalt catalyst generated from Co(acac)2 and (R,R)-Me-Ferrocelane. A variety of terminal alkynes undergo this asymmetric transformation, affording the corresponding gem-(borylsilyl)alkane products with high enantioselectivity (up to 98 % ee). This one-pot reaction combines (E)-selective hydrosilylation of alkynes and consecutive enantioselective hydroboration of (E)-vinylsilanes with one chiral cobalt catalyst. This protocol represents the most straightforward approach to access versatile chiral gem-(borylsilyl)alkanes from readily available alkynes with commercially available cobalt salt and chiral ligand.
Collapse
Affiliation(s)
- Yang'en You
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
45
|
Kong D, Hu B, Yang M, Xia H, Chen D. Cobalt-Catalyzed (E)-Selective Hydrosilylation of 1,3-Enynes for the Synthesis of 1,3-Dienylsilanes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Degong Kong
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Bowen Hu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Min Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
46
|
Singh A, Maji A, Joshi M, Choudhury AR, Ghosh K. Designed pincer ligand supported Co(II)-based catalysts for dehydrogenative activation of alcohols: Studies on N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Dalton Trans 2021; 50:8567-8587. [PMID: 34075925 DOI: 10.1039/d0dt03748f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Base-metal catalysts Co1, Co2 and Co3 were synthesized from designed pincer ligands L1, L2 and L3 having NNN donor atoms respectively. Co1, Co2 and Co3 were characterized by IR, UV-Vis. and ESI-MS spectroscopic studies. Single crystal X-ray diffraction studies were investigated to authenticate the molecular structures of Co1 and Co3. Catalysts Co1, Co2 and Co3 were utilized to study the dehydrogenative activation of alcohols for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Under optimized reaction conditions, a broad range of substrates including alcohols, anilines and ketones were exploited. A series of control experiments for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines were examined to understand the reaction pathway. ESI-MS spectral studies were investigated to characterize cobalt-alkoxide and cobalt-hydride intermediates. Reduction of styrene by evolved hydrogen gas during the reaction was investigated to authenticate the dehydrogenative nature of the catalysts. Probable reaction pathways were proposed for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines on the basis of control experiments and detection of reaction intermediates.
Collapse
Affiliation(s)
- Anshu Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | | | | | | | | |
Collapse
|
47
|
Jia JS, Cao Y, Wu TX, Tao Y, Pan YM, Huang FP, Tang HT. Highly Regio- and Stereoselective Markovnikov Hydrosilylation of Alkynes Catalyzed by High-Nuclearity {Co 14} Clusters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01996] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun-Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Yan Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Tai-Xue Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ye Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| |
Collapse
|
48
|
Guo J, Cheng Z, Chen J, Chen X, Lu Z. Iron- and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes. Acc Chem Res 2021; 54:2701-2716. [PMID: 34011145 DOI: 10.1021/acs.accounts.1c00212] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition metal catalyzed asymmetric hydrofunctionalization of readily available unsaturated hydrocarbons presents one of the most straightforward and atom-economic protocols to access valuable optically active products. For decades, noble transition metal catalysts have laid the cornerstone in this field, on account of their superior reactivity and selectivity. In recent years, from an economical and sustainable standpoint, first-row, earth-abundant transition metals have received considerable attention, due to their high natural reserves, affordable costs, and low toxicity. Meanwhile, the earth-abundant metal catalyzed hydrofunctionalization reactions have also gained much interest and been investigated gradually. However, since chiral ligand libraries for earth-abundant transition-metal catalysis are limited to date, the development of highly enantioselective versions remains a significant challenge.This Account summarizes our recent efforts in developing suitable chiral ligands for iron and cobalt catalysts and their applications in the highly enantioselective hydrofunctionalization reactions (hydroboration and hydrosilylation) of alkenes and alkynes. In ligand design, we envisioned that chiral unsymmetric NNN-tridentate (UNT) ligand scaffolds could promote these enantioselective transformations with earth-abundant metals. Therefore, several types of chiral UNT ligands were designed and prepared in our laboratory, utilizing readily available natural amino acids as chiral sources. In the very beginning, chiral oxazoline iminopyridine (OIP) ligands were proposed and investigated through the rational combination of nitrogen-containing ligand scaffolds. After a systematic survey of the ligand effects, the imine moiety in the rigid OIP ligands was replaced by a conformationally more flexible amine unit, leading to the construction of reactive oxazoline aminoisopropylpyridine (OAP) ligands. Subsequently, imidazoline iminopyridine (IIP) and thiazoline iminopyridine (TIP) ligands were prepared by altering the oxygen atom of oxazoline with nitrogen and sulfur linkers, respectively. To further expand the chiral ligand library, other tridentate ligands containing a twisted pincer, anionic, and nonrigid backbone were also designed and synthesized, including iminophenyl oxazolinyl phenylamine (IPOPA) and imidazoline phenyl picolinamide (ImPPA). The efficacy of these chiral UNT ligands for asymmetric induction in iron and cobalt catalysis has been demonstrated through asymmetric hydrofunctionalization of alkenes and asymmetric sequential hydrofunctionalization of alkynes, which exhibit excellent reactivity as well as high chemo-, regio-, and stereoselectivity with broad functional group tolerance. Notably, highly regio- and enantioselective hydrofunctionalization of challenging substrates, such as 1,1-disubstituted aryl alkenes and terminal aliphatic alkenes, was also achieved. Furthermore, the development of asymmetric sequential isomerization/hydroboration of internal alkenes and sequential hydrofunctionalization of alkynes further demonstrates the synthetic power of these catalytic systems. The chiral enantioenriched products obtained by these methodologies could be potentially utilized in organic synthesis, medicinal chemistry, and materials science. We believe that our continuous efforts in this field would be beneficial to the development of asymmetric earth-abundant metal catalysis.
Collapse
Affiliation(s)
- Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jianhui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
49
|
Zhang H, Wang E, Geng S, Liu Z, He Y, Peng Q, Feng Z. Experimental and Computational Studies of the Iron‐Catalyzed Selective and Controllable Defluorosilylation of Unactivated Aliphatic
gem
‐Difluoroalkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Huan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Enhui Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Zhengli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
- Sichuan Key Laboratory of Medical Imaging North Sichuan Medical College Nanchong P. R. China
| |
Collapse
|
50
|
Han Y, Xiong Y, Liu C, Zhang H, Zhao M, Chen W, Chen W, Huang W. Electron-rich isolated Pt active sites in ultrafine PtFe3 intermetallic catalyst for efficient alkene hydrosilylation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|