1
|
Kim J, Kim YE, Hong S. Traceless Nucleophile Strategy for C5-Selective C-H Sulfonylation of Pyridines. Angew Chem Int Ed Engl 2024; 63:e202409561. [PMID: 39126202 DOI: 10.1002/anie.202409561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The functionalization of pyridines is crucial for the rapid construction and derivatization of agrochemicals, pharmaceuticals, and materials. Conventional functionalization approaches have primarily focused on the ortho- and para-positions, while achieving precise meta-selective functionalization, particularly at the C5 position in substituted pyridines, remains a formidable challenge due to the intrinsic electronic properties of pyridines. Herein, we present a new strategy for meta- and C5-selective C-H sulfonylation of N-amidopyridinium salts, which employs a transient enamine-type intermediate generated through a nucleophilic addition to N-amidopyridinium salts. This process harnesses the power of electron donor-acceptor complexes, enabling high selectivity and broad applicability, including the construction of complex pyridines bearing valuable sulfonyl functionalities under mild conditions without the need for an external photocatalyst. The remarkable C5 selectivity, combined with the broad applicability to late-stage functionalization, significantly expands the toolbox for pyridine functionalization, unlocking access to previously unattainable meta-sulfonylated pyridines.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Ye-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Zhang SR, Yue JP, Wang LF, Gui YY, Zhang W, Yu DG, Ye JH. Dearomative hydroamination of heteroarenes catalyzed by the phenolate photocatalyst. Chem Commun (Camb) 2024; 60:13083-13086. [PMID: 39440373 DOI: 10.1039/d4cc03879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dearomative functionalization of heteroarenes offers an attractive and sustainable approach for the rapid construction of complex 3D heterocyclic scaffolds from planar structures. Despite progress in this field, dearomative amination of heteroarenes via a radical anion intermediate remains a challenge. Here, we report a photoredox-catalyzed dearomative hydroamination of heteroarenes with hydrazodiformates under mild and transition-metal-free reaction conditions. Various benzofurans and benzothiophenes can efficiently participate in this transformation. A series of mechanistic experiments revealed that heteroaryl radical anions are the crucial intermediates, generated through photo-induced electron transfer between the excited phenolate photocatalyst and heteroarenes.
Collapse
Affiliation(s)
- Shu-Rong Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Long-Fu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
3
|
Dethe DH, Singh P, Joshi A, Biswas P. Ruthenium-Catalyzed Interrupted Transfer Hydrogenation: An Approach for Reductive Functionalization of Quinolinium and Napthyridinium Salts. J Org Chem 2024; 89:13167-13178. [PMID: 39258458 DOI: 10.1021/acs.joc.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Until now, a myriad of effective approaches have emerged for the functionalization of N-heteroaryl C-H bonds. In contrast, dearomatization and construction of fused heterocycles from activated heteroarenes is still a subject to explore. In this work, we present a refined approach for both dearomatization of N-heteroarenes and the synthesis of fused heterocycles from activated heteroarenes ruthenium catalysis using paraformaldehyde along with additive and base. Notably, quinolinium salts with a hydrogen at the C-4 position yield a methoxymethyl-substituted fused cyclic product through the Thorpe Ingold effect. An innovative aspect of this research is the dual functionality of paraformaldehyde as both a hydride donor and electrophile, utilizing readily available feedstock chemicals. A broad range of electron withdrawing and donating substituents was tolerable under standardized reaction conditions.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prabhakar Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Asha Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Proshanta Biswas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
4
|
Hao E, Kong X, Xu T, Zeng F. Synthesis of indolines via palladium-catalyzed [4 + 1] annulation of (2-aminophenyl)methanols with sulfoxonium ylides. Org Biomol Chem 2024; 22:6342-6351. [PMID: 39041823 DOI: 10.1039/d4ob00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
A facile strategy for the synthesis of valuable indolines has been developed, involving a palladium(II)/Brønsted acid co-catalyzed annulation of readily available (2-aminophenyl)methanols and sulfoxonium ylides. This protocol allows for the direct utilization of the OH group as a leaving group, tolerates alkyl and aryl groups on the N atom of the aniline moiety, operates under mild reaction conditions, and exhibits good efficiency.
Collapse
Affiliation(s)
- Erxiao Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| | - Xiaomei Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| |
Collapse
|
5
|
Natarajan P, Subramaniam SV, Peruncheralathan S. Organocatalytic Dearomatization of 5-Aminopyrazoles: Synthesis of 4-Hydroxypyrazolines. J Org Chem 2024; 89:10258-10271. [PMID: 38989804 DOI: 10.1021/acs.joc.4c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Dearomatization is a fundamental chemical reaction that affords complex three-dimensional heterocyclic frameworks. We disclose the first organocatalytic dearomatization of 5-aminopyrazoles, which yields a range of structurally diversified C4-hydroxylated pyrazolines with yields of ≤95% in <1.5 h at room temperature. This catalytic process is achieved using in situ-generated hypervalent iodine. The method also yields a spirolactone via an intramolecular dearomatization process. Furthermore, we demonstrate that substrate-directed reduction of the resulting iminopyrazoline leads to 4,5-difunctionalized pyrazoline as a single diastereomer. Mechanistic studies suggest that the reaction proceeds through a dearomatized cationic intermediate.
Collapse
Affiliation(s)
- Pradeep Natarajan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| | - Subhashini V Subramaniam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| |
Collapse
|
6
|
Cao VD, Joung S. Synthesis and utility of N-boryl and N-silyl enamines derived from the hydroboration and hydrosilylation of N-heteroarenes and N-conjugated compounds. Front Chem 2024; 12:1414328. [PMID: 38911995 PMCID: PMC11190178 DOI: 10.3389/fchem.2024.1414328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Catalytic hydroboration and hydrosilylation have emerged as promising strategies for the reduction of unsaturated hydrocarbons and carbonyl compounds, as well as for the dearomatization of N-heteroarenes. Various catalysts have been employed in these processes to achieve the formation of reduced products via distinct reaction pathways and intermediates. Among these intermediates, N-silyl enamines and N-boryl enamines, which are derived from hydrosilylation and hydroboration, are commonly underestimated in this reduction process. Because these versatile intermediates have recently been utilized in situ as nucleophilic reagents or dipolarophiles for the synthesis of diverse molecules, an expeditious review of the synthesis and utilization of N-silyl and N-boryl enamines is crucial. In this review, we comprehensively discuss a wide range of hydrosilylation and hydroboration catalysts used for the synthesis of N-silyl and N-boryl enamines. These catalysts include main-group metals (e.g., Mg and Zn), transition metals (e.g., Rh, Ru, and Ir), earth-abundant metals (e.g., Fe, Co, and Ni), and non-metal catalysts (including P, B, and organocatalysts). Furthermore, we highlight recent research efforts that have leveraged these versatile intermediates for the synthesis of intriguing molecules, offering insights into future directions for these invaluable building blocks.
Collapse
Affiliation(s)
| | - Seewon Joung
- Department of Chemistry, Inha University, Incheon, Republic of Korea
| |
Collapse
|
7
|
Xu X, Zhu YK, Dai CM, Xu J, Jian J. Synthesis and characterization of azaborepin radicals in solid neon through boron-mediated C-N bond cleavage of pyridine. Phys Chem Chem Phys 2024; 26:11048-11055. [PMID: 38528841 DOI: 10.1039/d4cp00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The reactivity of pyridine is a complex topic due to its unique electronic structure. The reactions of atomic boron with pyridine molecules in solid neon have been investigated using matrix isolation infrared absorption spectroscopy. Three products (marked as A, B, and C) were observed and characterized through 10B, D and 15N isotopic substitution pyridine regents as well as quantum chemical calculations. In the reaction, the ground-state boron atom can attack the lone pair electrons of the nitrogen atom in the pyridine molecule, resulting in the formation of a 1-boropyridinyl radical (A). Alternatively, addition to the aromatic π-system of pyridine can occur in a [1,4] type, leading to the formation of a B[η2(1,4)-C5H5N] complex (B). Under UV-visible light (280 < λ < 580 nm) irradiation, these two compounds can further undergo photo-isomerization to form BN-embedded seven-membered azaborepin compounds (C). The observation of species A, B, and the subsequent photo-isomerization to species C is consistent with theoretical predictions, indicating that these reactions are kinetically favorable. This research provides valuable insights into the future design and synthesis of corresponding BN heterocyclic derivatives.
Collapse
Affiliation(s)
- Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Yi-Kang Zhu
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| | - Chuan-Ming Dai
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| |
Collapse
|
8
|
Ge JC, Wang Y, Guo FW, Kong X, Hu F, Li SS. Dearomatization of 3-Aminophenols for Synthesis of Spiro[chromane-3,1'-cyclohexane]-2',4'-dien-6'-ones via Hydride Transfer Strategy-Enabled [5+1] Annulations. Molecules 2024; 29:1012. [PMID: 38474524 DOI: 10.3390/molecules29051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The Sc(OTf)3-catalyzed dearomative [5+1] annulations between readily available 3-aminophenols and O-alkyl ortho-oxybenzaldehydes were developed for synthesis of spiro[chromane-3,1'-cyclohexane]-2',4'-dien-6'-ones. The "two-birds-with-one-stone" strategy was disclosed by the dearomatization of phenols and direct α-C(sp3)-H bond functionalization of oxygen through cascade condensation/[1,5]-hydride transfer/dearomative-cyclization process. In addition, the antifungal activity assay and derivatizations of products were conducted to further enrich the utility of the structure.
Collapse
Affiliation(s)
- Jia-Cheng Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Hailir Pesticides and Chemicals Group Co., Ltd., Qingdao 266109, China
| | - Yufeng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng-Wei Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangyun Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Hailir Pesticides and Chemicals Group Co., Ltd., Qingdao 266109, China
| |
Collapse
|
9
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Filbeck E, Cremer S, Jansen MCF, Kaifer E, Himmel HJ. Halide-Coupled Double Electron Transfer with Electron-Rich Diboranes. Chemistry 2023; 29:e202302911. [PMID: 37728170 DOI: 10.1002/chem.202302911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
The ditriflato-diborane B2 (μ-hpp)2 (OTf)2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate) acts as a stable surrogate of the elusive dication [B2 (hpp)2 ]2+ , being both electrophilic (vacant boron p orbitals) and nucleophilic (filled B-B bond orbital). This combination of seemingly contrasting behaviors could be used to develop a metallomimetic diborane chemistry, with Lewis σ-basic and π-acidic substrates being bound and reduced at the diborane. Here, we report on a novel reaction type within this general theme, in which double electron transfer from the diboron unit to the boron-bound organic substrate is coupled with halide transfer in the other direction. Novel diborylated dienamines are synthesized in this way. The scope of this unprecedented reaction motif and the reaction pathways are elucidated.
Collapse
Affiliation(s)
- Erik Filbeck
- Inorganic Chemistry, Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sebastian Cremer
- Inorganic Chemistry, Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Moritz C F Jansen
- Inorganic Chemistry, Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Elisabeth Kaifer
- Inorganic Chemistry, Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Inorganic Chemistry, Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Liu T, Meng W, Feng X, Du H. Stereoselective Hydrosilylation of 1,2-Diketones Catalyzed by Chiral Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2023:e202313957. [PMID: 38065841 DOI: 10.1002/anie.202313957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 12/22/2023]
Abstract
The asymmetric reduction of 1,2-diketones for the synthesis of optically active 1,2-diols, especially 1,2-anti-diols, remains a formidable challenge. In this paper, we describe the first highly stereoselective hydrosilylation of unsymmetrical vicinal diketones with PhSiH3 by using a chiral frustrated Lewis pair (FLP) catalyst, giving a variety of 1,2-diaryl-1,2-anti-diols in high yields with excellent d.r. values and up to 97 % ee. The chiral FLP catalyst exhibits the ability to control regio-, diastereo- and enantioselectivites concurrently.
Collapse
Affiliation(s)
- Ting Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Nad P, Mukherjee A. A Lewis Acid-Base Pair Catalyzed Dearomative Transformation of Unprotected Indoles via B-H Bond Activation. Chem Asian J 2023; 18:e202300714. [PMID: 37811913 DOI: 10.1002/asia.202300714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
A sustainable and metal-free protocol has been described for the reduction of unprotected indoles. The catalytic system consists of B(C6 F5 )3 and THF as a Lewis acid-base pair that can activate the B-H bond of pincolborane (HBpin). The catalytic system encompasses a broad substrate scope. Control experiments were conducted to understand the possible catalytic intermediates involved during the present protocol.
Collapse
Affiliation(s)
- Pinaki Nad
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh (India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh (India
| |
Collapse
|
13
|
Liu DH, Nagashima K, Liang H, Yue XL, Chu YP, Chen S, Ma J. Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2023; 62:e202312203. [PMID: 37803457 DOI: 10.1002/anie.202312203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Hui Liang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue-Lin Yue
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Peng Chu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
14
|
Cao H, Cheng Q, Studer A. meta-Selective C-H Functionalization of Pyridines. Angew Chem Int Ed Engl 2023; 62:e202302941. [PMID: 37013613 DOI: 10.1002/anie.202302941] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
The pyridine moiety is an important core structure for a variety of drugs, agrochemicals, catalysts, and functional materials. Direct functionalization of C-H bonds in pyridines is a straightforward approach to access valuable substituted pyridines. Compared to the direct ortho- and para-functionalization, meta-selective pyridine C-H functionalization is far more challenging due to the inherent electronic properties of the pyridine entity. This review summarizes currently available methods for pyridine meta-C-H functionalization using a directing group, non-directed metalation, and temporary dearomatization strategies. Recent advances in ligand control and temporary dearomatization are highlighted. We analyze the advantages as well as limitations of current techniques and hope to inspire further developments in this important area.
Collapse
Affiliation(s)
- Hui Cao
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Qiang Cheng
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
15
|
van IJzendoorn B, Whittingham JBM, Whitehead GFS, Kaltsoyannis N, Mehta M. A robust Zintl cluster for the catalytic reduction of pyridines, imines and nitriles. Dalton Trans 2023; 52:13787-13796. [PMID: 37721024 DOI: 10.1039/d3dt02896h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Despite p-block clusters being known for over a century, their application as catalysts to mediate organic transformations is underexplored. Here, the boron functionalized [P7] cluster [(BBN)P7]2- ([1]2-; BBN = 9-borabicyclo[3.3.1]nonane) is applied in the dearomatized reduction of pyridines, as well as the hydroboration of imines and nitriles. These transformations afford amine products, which are important precursors to pharmaceuticals, agrochemicals, and polymers. Catalyst [1]2- has high stability in these reductions: recycling nine times in quinoline hydroboration led to virtually no loss in catalyst performance. The catalyst can also be recycled between two different organic transformations, again with no loss in catalyst competency. The mechanism for pyridine reduction was probed experimentally using variable time normalization analysis, and computationally using density functional theory. This work demonstrates that Zintl clusters can mediate the reduction of nitrogen containing substrates in a transition metal-free manner.
Collapse
Affiliation(s)
- Bono van IJzendoorn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | - George F S Whitehead
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Meera Mehta
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
16
|
Xu ZM, Hu Z, Huang Y, Bao SJ, Niu Z, Lang JP, Al-Enizi AM, Nafady A, Ma S. Introducing Frustrated Lewis Pairs to Metal-Organic Framework for Selective Hydrogenation of N-Heterocycles. J Am Chem Soc 2023. [PMID: 37384612 DOI: 10.1021/jacs.3c04929] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Hydrogenated nitrogen heterocyclic compounds play a critical role in the pharmaceutical, polymer, and agrochemical industries. Recent studies on partial hydrogenation of nitrogen heterocyclic compounds have focused on costly and toxic precious metal catalysts. As an important class of main-group catalysts, frustrated Lewis pairs (FLPs) have been widely applied in catalytic hydrogenation reactions. In principle, the combination of FLPs and metal-organic framework (MOF) is anticipated to efficiently enhance the recyclability performance of FLPs; however, the previously studied MOF-FLPs showed low reactivity in the hydrogenation of N-heterocycles compounds. Herein, we offer a novel P/B type MOF-FLP catalyst that was achieved via a solvent-assisted linker incorporation approach to boost catalytic hydrogenation reactions. Using hydrogen gas under moderate pressure, the proposed P/B type MOF-FLP can serve as a highly efficient heterogeneous catalyst for selective hydrogenation of quinoline and indole to tetrahydroquinoline and indoline-type drug compounds in high yield and excellent recyclability.
Collapse
Affiliation(s)
- Ze-Ming Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhuoyi Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yali Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shu-Jin Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
17
|
Coordination Versatility of NHC-metal Topologies in Asymmetric Catalysis: Synthetic Insights and Recent Trends. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Nickel-catalyzed cooperative B-H bond activation for hydroboration of N‑heteroarenes, ketones and imines. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
19
|
Ma X, Mane MV, Cavallo L, Nolan SP. Ruthenium‐Catalyzed Regioselective 1,2‐Hydrosilylation of N‐Heteroarenes. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Manoj V. Mane
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Centre for Nano and Material Sciences Jain (Deemed-to-be University) Jain Global Campus Kanakapura, Bangalore Karnataka 562112 India
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| |
Collapse
|
20
|
Bories CC, Gontard G, Barbazanges M, Derat E, Petit M. Hydrido-Cobalt Complexes for the Chemo- and Regioselective 1,2-Silylative Dearomatization of N-Heteroarenes. Org Lett 2023; 25:843-848. [PMID: 36688841 DOI: 10.1021/acs.orglett.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We describe an efficient regio- and chemoselective dearomatization of N-heteroarenes using hydrido-cobalt catalysts. Reactions were performed under mild conditions on a wide range of N-heteroarenes leading exclusively to the silyl-1,2-dihydroheteroarene. Various quinolines and pyridines bearing electron-donating and electron-withdrawing substituents are compatible with this methodology. DFT calculations, NMR spectroscopic studies, and X-ray diffraction analysis underlined the importance of a second silane for the final step of the reaction.
Collapse
Affiliation(s)
- Cassandre C Bories
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Geoffrey Gontard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marion Barbazanges
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marc Petit
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
21
|
Yadav S, Pawar R. The disposition of bridge hydrogen bond in the homopolar-diborane and its derivatives. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
Meher NK, Verma PK, Geetharani K. Cobalt-Catalyzed Regioselective 1,2-Hydroboration of N-Heteroarenes. Org Lett 2023; 25:87-92. [PMID: 36596240 DOI: 10.1021/acs.orglett.2c03891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Regioselective hydroboration of pyridines to 1,2-dihydropyridines remains a significant challenge for the synthesis of valuable nitrogenous bioactive molecules. Herein, we report a base free ligand-controlled cobalt-catalyzed 1,2-hydroboration of pyridines and quinolines with very low catalyst loading under neat reaction conditions. The choice of sterically demanding N-heterocyclic ligands led to the 1,2-regioselectivity and the scope was demonstrated by the N-heterocycles having a variety of functional groups. The preliminary mechanistic studies corroborate that the two ligands followed a distinct catalytic cycle with Co(I) as an active species.
Collapse
Affiliation(s)
- Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Piyush Kumar Verma
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Hu C, Vo C, Merchant RR, Chen SJ, Hughes JME, Peters BK, Qin T. Uncanonical Semireduction of Quinolines and Isoquinolines via Regioselective HAT-Promoted Hydrosilylation. J Am Chem Soc 2023; 145:25-31. [PMID: 36548026 PMCID: PMC9930105 DOI: 10.1021/jacs.2c11664] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterocycles are the backbone of modern medical chemistry and drug development. The derivatization of "an olefin" inside aromatic rings represents an ideal approach to access functionalized saturated heterocycles from abundant aromatic building blocks. Here, we report an operationally simple, efficient, and practical method to selectively access hydrosilylated and reduced N-heterocycles from bicyclic aromatics via a key diradical intermediate. This approach is expected to facilitate complex heterocycle functionalizations that enable access to novel medicinally relevant scaffolds.
Collapse
Affiliation(s)
- Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Cuong Vo
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Rohan R. Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jonathan M. E. Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Byron K. Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
24
|
Sahoo RK, Sarkar N, Nembenna S. Intermediates, Isolation and Mechanistic Insights into Zinc Hydride-Catalyzed 1,2-Regioselective Hydrofunctionalization of N-Heteroarenes. Inorg Chem 2023; 62:304-317. [PMID: 36571301 DOI: 10.1021/acs.inorgchem.2c03389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The conjugated bis-guanidinate-supported zinc hydride [{LZnH}2; L = {(ArHN) (ArN)-C═N-C═(NAr) (NHAr); Ar = 2,6-Et2-C6H3}] (I)-catalyzed highly demanding exclusive 1,2-regioselective hydroboration and hydrosilylation of N-heteroarenes is demonstrated with excellent yields. This protocol is compatible with many pyridines and N-heteroarene derivatives, including electron-donating and -withdrawing substituents. Catalytic intermediates, such as [(LZnH) (4-methylpyridine)] IIA, [(L'ZnH) (4-methylpyridine) IIA', where L' = CH{(CMe) (2,6-Et2C6H3N)}2)], LZn(1,2-DhiQ) (isoquinoline) III, [L'Zn(1,2-DhiQ) (isoquinoline)] III', and LZn(1,2-(3-MeDHQ)) (3-methylquinoline) V, were isolated and thoroughly characterized by NMR, HRMS, and IR analyses. Furthermore, X-ray single-crystal diffraction studies confirmed the molecular structures of compounds IIA', III, and III'. The NMR data proved that the intermediate III or III' reacted with HBpin and gave a selective 1,2-addition hydroborated product. Stoichiometric experiments suggest that V and III independently reacted with silane, yielding selective 1,2-addition of mono- and bis-hydrosilylated products, respectively. Based on the isolation of intermediates and a series of stoichiometric experiments, plausible catalytic cycles were established. Furthermore, the intermolecular chemoselective hydroboration reaction over other reducible functionalities was studied.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, Odisha 752 050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, Odisha 752 050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, Odisha 752 050, India
| |
Collapse
|
25
|
Catalytic Combustion of Propane over Ce-Doped Lanthanum Borate Loaded with Various 3d Transition Metals. Catalysts 2022. [DOI: 10.3390/catal12121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ce-doped LaBO3 (Ce0.05La0.95BO3) and a corresponding incorporation with 3d transition metals (TMs) were prepared and evaluated for eliminating propane. Our results showed the catalytic activity toward propane combustion has a close relationship with the loaded TMs, which promoted oxygen vacancies density and further enhanced the reduction and acidity of this material. This eventually led to 90% propane conversion at 718 K for a Cu-loaded Ce0.05La0.95BO3 catalyst. During 10 h of catalytic propane oxidation, the propane-elimination rate was maintained very well, with no degradation of the catalyst.
Collapse
|
26
|
Cao H, Cheng Q, Studer A. Radical and ionic
meta
-C–H functionalization of pyridines, quinolines, and isoquinolines. Science 2022; 378:779-785. [DOI: 10.1126/science.ade6029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Carbon-hydrogen (C−H) functionalization of pyridines is a powerful tool for the rapid construction and derivatization of many agrochemicals, pharmaceuticals, and materials. Because of the inherent electronic properties of pyridines, selective
meta
-C−H functionalization is challenging. Here, we present a protocol for highly regioselective
meta
-C−H trifluoromethylation, perfluoroalkylation, chlorination, bromination, iodination, nitration, sulfanylation, and selenylation of pyridines through a redox-neutral dearomatization-rearomatization process. The introduced dearomative activation mode provides a diversification platform for meta-selective reactions on pyridines and other azaarenes through radical as well as ionic pathways. The broad scope and high selectivity of these catalyst-free reactions render these processes applicable for late-stage functionalization of drugs.
Collapse
Affiliation(s)
- Hui Cao
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| | - Qiang Cheng
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
27
|
Sun H, Cheng Y, Teng H, Chen X, Niu X, Yang H, Cui YM, Xu LW, Yang L. 3-Alkyl-2-pyridyl Directing Group-Enabled C2 Selective C-H Silylation of Indoles and Pyrroles via an Iridium Catalyst. J Org Chem 2022; 87:13346-13351. [PMID: 36129738 DOI: 10.1021/acs.joc.2c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iridium-catalyzed, directing group-enabled site selective intra- and intermolecular silylation of indoles and pyrroles with hydrosilanes has been developed under ligand-free conditions. Fine-tuning of the removable 3-alkyl-2-pyridyl directing group was found to be crucial for achieving high yields for C2-silylated indole and pyrrole products. Moreover, the scalability was demonstrated, and further transformations of the silylation products were achieved.
Collapse
Affiliation(s)
- Hui Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Houyun Teng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoqi Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaokang Niu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Ming Cui
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
28
|
Hazra S, Mahato S, Kanti Das K, Panda S. Transition-Metal-Free Heterocyclic Carbon-Boron Bond Formation. Chemistry 2022; 28:e202200556. [PMID: 35438817 DOI: 10.1002/chem.202200556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Heteroaryl boronic acids and esters are extremely important and valuable intermediates because of their wide application in the synthesis of marketed drugs and bioactive compounds. Over the last couple of decades, the construction of highly important heteroaryl carbon-boron bonds has created huge attention. The transition-metal-free protocols are more green, less sensitive to air and moisture, and also economically advantageous over the transition-metal-based protocols. The transition-metal-free C-H borylation of heteroarenes and C-X (X=halogen) borylation of heteroaryl halides represents an excellent approach for their synthesis. Also, various cyclization and alkyne activation protocols have been recently established for their synthesis. The goal of this review article is to summarize the existing literature and the current state of the art for transition-metal-free synthesis of heteroaryl boronic acid and esters.
Collapse
Affiliation(s)
- Subrata Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Somenath Mahato
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
29
|
Sieland B, Hoppe A, Stepen A, Paradies J. Frustrated Lewis pair‐catalyzed hydroboration of nitriles: FLP versus borenium catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Axel Hoppe
- Paderborn University Faculty of Science GERMANY
| | - Arne Stepen
- Paderborn University Faculty of Science GERMANY
| | | |
Collapse
|
30
|
Raut RK, Waghamare AB, Patel N, Majumdar M. Role of N, N′‐diboryl‐4, 4′‐bipyridinylidene in the Transition metal‐free Borylation of Aryl Halides and Direct C‐H arylation of Unactivated Benzene. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ravindra K. Raut
- Indian Institute of Science Education and Research Pune Chemistry INDIA
| | | | - Niranjan Patel
- Indian Institute of Science Education and Research Pune Chemistry INDIA
| | - Moumita Majumdar
- Indian Institute of Science Education and Research, Pune Chemistry Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
31
|
Kischkewitz M, Marinic B, Kratena N, Lai Y, Hepburn HB, Dow M, Christensen KE, Donohoe TJ. Evolution of the Dearomative Functionalization of Activated Quinolines and Isoquinolines: Expansion of the Electrophile Scope. Angew Chem Int Ed Engl 2022; 61:e202204682. [PMID: 35560761 PMCID: PMC9321684 DOI: 10.1002/anie.202204682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Herein we disclose a mild protocol for the reductive functionalisation of quinolinium and isoquinolinium salts. The reaction proceeds under transition-metal-free conditions as well as under rhodium catalysis with very low catalyst loadings (0.01 mol %) and uses inexpensive formic acid as the terminal reductant. A wide range of electrophiles, including enones, imides, unsaturated esters and sulfones, β-nitro styrenes and aldehydes are intercepted by the in situ formed enamine species forming a large variety of substituted tetrahydro(iso)quinolines. Electrophiles are incorporated at the C-3 and C-4 position for quinolines and isoquinolines respectively, providing access to substitution patterns which are not favoured in electrophilic or nucleophilic aromatic substitution. Finally, this reactivity was exploited to facilitate three types of annulation reactions, giving rise to complex polycyclic products of a formal [3+3] or [4+2] cycloaddition.
Collapse
Affiliation(s)
- Marvin Kischkewitz
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Bruno Marinic
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Nicolas Kratena
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yonglin Lai
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Hamish B. Hepburn
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Mark Dow
- Chemical Development, Pharmaceutical Technology & DevelopmentOperations, AstraZenecaMacclesfieldSK10 2NAUK
| | - Kirsten E. Christensen
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
32
|
Kischkewitz M, Marinic B, Kratena N, Lai Y, Hepburn HB, Dow M, Christensen KE, Donohoe TJ. Evolution of the Dearomative Functionalization of Activated Quinolines and Isoquinolines: Expansion of the Electrophile Scope. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202204682. [PMID: 38505668 PMCID: PMC10946825 DOI: 10.1002/ange.202204682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/07/2022]
Abstract
Herein we disclose a mild protocol for the reductive functionalisation of quinolinium and isoquinolinium salts. The reaction proceeds under transition-metal-free conditions as well as under rhodium catalysis with very low catalyst loadings (0.01 mol %) and uses inexpensive formic acid as the terminal reductant. A wide range of electrophiles, including enones, imides, unsaturated esters and sulfones, β-nitro styrenes and aldehydes are intercepted by the in situ formed enamine species forming a large variety of substituted tetrahydro(iso)quinolines. Electrophiles are incorporated at the C-3 and C-4 position for quinolines and isoquinolines respectively, providing access to substitution patterns which are not favoured in electrophilic or nucleophilic aromatic substitution. Finally, this reactivity was exploited to facilitate three types of annulation reactions, giving rise to complex polycyclic products of a formal [3+3] or [4+2] cycloaddition.
Collapse
Affiliation(s)
- Marvin Kischkewitz
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Bruno Marinic
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Nicolas Kratena
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yonglin Lai
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Hamish B. Hepburn
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Mark Dow
- Chemical Development, Pharmaceutical Technology & DevelopmentOperations, AstraZenecaMacclesfieldSK10 2NAUK
| | - Kirsten E. Christensen
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
33
|
Rodriguez J, Conley MP. A Heterogeneous Iridium Catalyst for the Hydroboration of Pyridines. Org Lett 2022; 24:4680-4683. [PMID: 35709504 DOI: 10.1021/acs.orglett.2c01859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfated zirconium oxide (SZO) capped with silylium-like ions reacts with (cod)Ir(py)Cl (cod = 1,5-cyclooctadiene; py = pyridine) to form [Ir(cod)py][SZO] (1) and Me3SiCl. 1 can also be formed in reactions of phosphonium functionalized SZO and [Ir(cod)(OSi(OtBu)3]2, which forms [Ir(cod)P(tBu)2Ph][SZO] (2), followed by reaction with pyridine to form 1. FTIR and 15N{1H} MAS NMR spectroscopy are consistent with coordination of pyridine in 1 to an electrophilic iridium. 1 is moderately active in the dearomative hydroboration of pyridine. The primary product of this reaction is 1,2-dihydropyridine, which converts to the 1,4-dihydropyridine product at long reaction times. 1 catalyzes the dearomative hydroboration of a variety of substituted pyridines and is also reactive toward pyrazines and N-methylimidazole.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
34
|
Facile access to fused 2D/3D rings via intermolecular cascade dearomative [2 + 2] cycloaddition/rearrangement reactions of quinolines with alkenes. Nat Catal 2022. [DOI: 10.1038/s41929-022-00784-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractHybrid fused two-dimensional/three-dimensional (2D/3D) rings are important pharmacophores in drugs owing to their unique structural and physicochemical properties. Preparation of these strained ring systems often requires elaborate synthetic effort and exhibits low efficiency, thus representing a limiting factor in drug discovery. Here, we report two types of energy-transfer-mediated cascade dearomative [2 + 2] cycloaddition/rearrangement reactions of quinoline derivatives with alkenes, which provide a straightforward avenue to 2D/3D pyridine-fused 6−5−4−3- and 6−4−6-membered ring systems. Notably, this energy-transfer-mediated strategy features excellent diastereoselectivity that bypasses the general reactivity and selectivity issues of photochemical [2 + 2] cycloaddition of various other aromatics. Tuning the aza-arene substitutions enabled selective diversion of the iridium photocatalysed energy transfer manifold towards either cyclopropanation or cyclobutane-rearrangement products. Density functional theory calculations revealed a cascade energy transfer scenario to be operative.
Collapse
|
35
|
Pang M, Shi LL, Xie Y, Geng T, Liu L, Liao RZ, Tung CH, Wang W. Cobalt-Catalyzed Selective Dearomatization of Pyridines to N–H 1,4-Dihydropyridines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maofu Pang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Le-Le Shi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufang Xie
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tianyi Geng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lan Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
36
|
Jeong E, Heo J, Jin S, Kim D, Chang S. KO tBu-Catalyzed 1,2-Silaboration of N-Heteroarenes to Access 2-Silylheterocycles: A Cooperative Model for the Regioselectivity. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Eunchan Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Joon Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seongho Jin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
37
|
Affiliation(s)
- Ning Wang
- Sichuan University West China Hospital Department of laboratory medicine CHINA
| | - Jing Ren
- Sichuan University West China Hospital Department of Radiology CHINA
| | - Kaizhi Li
- Sichuan University West China Hospital Department of laboratory medicine Biophamaceutical Research Institute, West China Hospital, Sichuan University, Ch 610041 Chengdu CHINA
| |
Collapse
|
38
|
Zhen G, Jiang K, Yin B. Progress in Organocatalytic Dearomatization Reactions Catalyzed by Heterocyclic Carbenes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangjin Zhen
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Kai Jiang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Biaolin Yin
- South China University of Technology Dept. of Chenistry and chemical engineering Wushan Street 510640 Guangzhou CHINA
| |
Collapse
|
39
|
Jo DG, Kim C, Lee S, Yun S, Joung S. Synthesis of Cyclic N-Acyl Amidines by [3 + 2] Cycloaddition of N-Silyl Enamines and Activated Acyl Azides. Molecules 2022; 27:molecules27051696. [PMID: 35268798 PMCID: PMC8912012 DOI: 10.3390/molecules27051696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we describe the synthesis of cyclic N-acyl amidines from readily available N-heteroarenes. The synthetic methodology utilized the versatile N-silyl enamine intermediates from the hydrosilylation of N-heteroarenes for the [3 + 2] cycloaddition reaction step. We evaluated various acyl azides and selected an electronically activated acyl azide, thereby achieving a reasonable yield of cyclic N-acyl amidines. We analyzed the relationship between the reactivity of each step and the electronic nature of substrates using in situ nuclear magnetic resonance spectroscopy. In addition, we demonstrated gram-scale synthesis using the proposed methodology.
Collapse
|
40
|
Kobylarski M, Berthet JC, Cantat T. Reductive depolymerization of polyesters and polycarbonates with hydroboranes by using a lanthanum(III) tris(amide) catalyst. Chem Commun (Camb) 2022; 58:2830-2833. [PMID: 35133392 DOI: 10.1039/d2cc00184e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The homogeneous reductive depolymerization of polyesters and polycarbonates with hydroboranes is achieved with the use of an f-metal complex catalyst. These polymeric materials are transformed into their value-added alcohol equivalents. Catalysis proceeds readily, under mild conditions, with La[N(SiMe3)2]3 (1 mol%) and pinacolborane (HBpin) and shows high selectivity towards alcohols and diols, after hydrolysis.
Collapse
Affiliation(s)
| | | | - Thibault Cantat
- NIMBE, CEA Paris-Saclay, Gif-sur-Yvette Cedex 91191, France.
| |
Collapse
|
41
|
Luo Z, Wan S, Pan Y, Yao Z, Zhang X, Li B, Li J, Xu L, Fan Q. Metal‐Free Reductive Amination of Ketones with Amines Using Formic Acid as the Reductant under BF
3
⋅ Et
2
O Catalysis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Shanhong Wan
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zhen Yao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Jiajie Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qing‐Hua Fan
- Institute of Chemistry Chinese Academy of Sciences and University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
42
|
Wang G, Wei M, Liu T, Jin W, Zhang Y, Wang B, Xia Y, Liu C. Palladium‐catalyzed Stereoselective Intramolecular Heck Dearomative Silylation of Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Weiwei Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences CHINA
| | | | | | - Yu Xia
- Xinjiang University CHINA
| | | |
Collapse
|
43
|
Kuram MR, Yadav S, Chaudhary D, Maurya NK, Kumar D, Km I. Transfer hydrogenation of pyridinium and quinolinium species using ethanol as a hydrogen source to access saturated N-heterocycles. Chem Commun (Camb) 2022; 58:4255-4258. [DOI: 10.1039/d2cc00241h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic transfer hydrogenation (TH) for the reduction of heterocycles is an emerging strategy for accessing biologically active saturated N-heterocycles. Herein, we report a TH protocol that utilizes ethanol as a...
Collapse
|
44
|
Lou SJ, Luo G, Yamaguchi S, An K, Nishiura M, Hou Z. Modular Access to Spiro-dihydroquinolines via Scandium-Catalyzed Dearomative Annulation of Quinolines with Alkynes. J Am Chem Soc 2021; 143:20462-20471. [PMID: 34813697 DOI: 10.1021/jacs.1c10743] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic enantioselective construction of three-dimensional molecular architectures from planar aromatics such as quinolines is of great interest and importance from the viewpoint of both organic synthesis and drug discovery, but there still exist many challenges. Here, we report the scandium-catalyzed asymmetric dearomative spiro-annulation of quinolines with alkynes. This protocol offers an efficient and selective route for the synthesis of spiro-dihydroquinoline derivatives containing a quaternary carbon stereocenter with an unprotected N-H group from readily accessible quinolines and diverse alkynes, featuring high yields, high enantioselectivity, 100% atom-efficiency, and broad substrate scope. Experimental and density functional theory studies revealed that the reaction proceeded through the C-H activation of the 2-aryl substituent in a quinoline substrate by a scandium alkyl (or amido) species followed by alkyne insertion into the Sc-aryl bond and the subsequent dearomative 1,2-addition of the resulting scandium alkenyl species to the C═N unit in the quinoline moiety. This work opens a new avenue for the dearomatization of quinolines, leading to efficient and selective construction of spiro molecular architectures that were previously difficult to access by other means.
Collapse
Affiliation(s)
- Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shigeru Yamaguchi
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
45
|
Zhang S, Xu H, He J, Zhang Y. Application of Mutualism in Organic Synthetic Chemistry: Mutually Promoted C−H Functionalization of Indole and Reduction of Quinoline. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sutao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 People's Republic of China
| | - Hai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 People's Republic of China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 People's Republic of China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 People's Republic of China
| |
Collapse
|
46
|
Liu C, Zhao R, Song L, Li Z, Tian G, He Y, Van Meervelt L, Peshkov VA, Van der Eycken EV. Palladium-catalyzed post-Ugi arylative dearomatization/Michael addition cascade towards plicamine analogues. Org Biomol Chem 2021; 19:9752-9757. [PMID: 34730164 DOI: 10.1039/d1ob01805a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A palladium-catalyzed intramolecular cyclization of Ugi-adducts via a cascade dearomatization/aza-Michael addition process has been developed. Diverse plicamine analogues are constructed in a rapid, highly efficient and step-economical manner, through the combination of an Ugi-4CR and a palladium-catalyzed dearomatization. The synthetic utility of this approach is illustrated by further functional group transformations.
Collapse
Affiliation(s)
- Chao Liu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium.
| | - Ruiqi Zhao
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium.
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Zhenghua Li
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium.
| | - Guilong Tian
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium.
| | - Yi He
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium.
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Vsevolod A Peshkov
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, China.,Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 010000, Republic of Kazakhstan
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium. .,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow, 117198, Russia
| |
Collapse
|
47
|
Takahashi T, Kurahashi T, Matsubara S. Ni-Catalyzed Dearomative Cycloaddition of Alkynes to 10π Aromatic Benzothiophenes: Elucidation of Reaction Mechanism. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshifumi Takahashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takuya Kurahashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
48
|
Yu Y, Zhang Z, Voituriez A, Rabasso N, Frison G, Marinetti A, Guinchard X. Enantioselective Au(I)-catalyzed dearomatization of 1-naphthols with allenamides through Tethered Counterion-Directed Catalysis. Chem Commun (Camb) 2021; 57:10779-10782. [PMID: 34586114 DOI: 10.1039/d1cc04088j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Tethered Counterion-Directed Catalysis (TCDC) approach has been applied to the enantioselective Au(I) catalyzed dearomatizations of 1-naphthols with allenamides. Stereocontrol is ensured by the intramolecular ion-pairing between the chiral gold-tethered phosphate and an iminium unit, that provides a rigid, well-defined chiral environment to the key electrophilic intermediate.
Collapse
Affiliation(s)
- Yunliang Yu
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. .,Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France
| | - Zhenhao Zhang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. .,LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Nicolas Rabasso
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France
| | - Gilles Frison
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.,Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 75005 Paris, France
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Xavier Guinchard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
49
|
Clarke JJ, Maekawa Y, Nambo M, Crudden CM. Borenium-Catalyzed Reduction of Pyridines through the Combined Action of Hydrogen and Hydrosilane. Org Lett 2021; 23:6617-6621. [PMID: 34383490 DOI: 10.1021/acs.orglett.1c01892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mesoionic carbene-stabilized borenium ions efficiently reduce substituted pyridines to piperidines in the presence of a hydrosilane and a hydrogen atmosphere. Control experiments and deuterium labeling studies demonstrate reversible hydrosilylation of the pyridine, enabling full reduction of the N-heterocycle under milder conditions. The silane is a critical reaction component to prevent adduct formation between the piperidine product and the borenium catalyst.
Collapse
Affiliation(s)
- Joshua J Clarke
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | - Yuuki Maekawa
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
50
|
Clarke JJ, Devaraj K, Bestvater BP, Kojima R, Eisenberger P, DeJesus JF, Crudden CM. Hydrosilylation and Mukaiyama aldol-type reaction of quinolines and hydrosilylation of imines catalyzed by a mesoionic carbene-stabilized borenium ion. Org Biomol Chem 2021; 19:6786-6791. [PMID: 34318834 DOI: 10.1039/d1ob01056e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldimines and ketimines containing electron-donating and electron-withdrawing groups can be hydrosilylated with borenium catalysts at as low as 1 mol% catalyst loading at room temperature, providing the corresponding secondary amines in excellent yields. Reactions with 2-phenylquinoline gave the 1,4-hydrosilylquinoline product selectively which can be further functionalized in a one-pot synthesis to give unique γ-amino alcohol derivatives. Control experiments suggest that the borenium ion catalyzes both the hydrosilylation and subsequent addition to the aldehyde.
Collapse
Affiliation(s)
- Joshua J Clarke
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada.
| | | | | | | | | | | | | |
Collapse
|