1
|
Zhang LY, Wang NX, Lucan D, Nastasi J, Xing Y. Recent Advances of C-S Coupling Reaction of (Hetero)Arenes by C-H Functionalization. CHEM REC 2024; 24:e202400177. [PMID: 39558752 DOI: 10.1002/tcr.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur-containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur-containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur-containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C-H Functionalization. These novel transformations provide effective methods for constructing C-S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C-H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C-H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C-S bonds.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - Dumitra Lucan
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - Julia Nastasi
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| | - Yalan Xing
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| |
Collapse
|
2
|
Mu M, Walker KL, Sánchez-Sanz G, Waymouth RM, Trujillo C, Muldoon MJ, García-Melchor M. Insights into the Palladium(II)-Catalyzed Wacker-Type Oxidation of Styrene with Hydrogen Peroxide and tert-Butyl Hydroperoxide. ACS Catal 2024; 14:1567-1574. [PMID: 38327641 PMCID: PMC10845106 DOI: 10.1021/acscatal.3c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Wacker oxidations are ubiquitous in the direct synthesis of carbonyl compounds from alkenes. While the reaction mechanism has been widely studied under aerobic conditions, much less is known about such processes promoted with peroxides. Here, we report an exhaustive mechanistic investigation of the Wacker oxidation of styrene using hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (TBHP) as oxidants by combining density functional theory and microkinetic modeling. Our results with H2O2 uncover a previously unreported reaction pathway that involves an intermolecular proton transfer assisted by the counterion [OTf]- present in the reaction media. Furthermore, we show that when TBHP is used as an oxidant instead of H2O2, the reaction mechanism switches to an intramolecular protonation sourced by the HOtBu moiety generated in situ. Importantly, these two mechanisms are predicted to outcompete the 1,2-hydride shift pathway previously proposed in the literature and account for the level of D incorporation in the product observed in labeling experiments with α-d-styrene and D2O2. We envision that these insights will pave the way for the rational design of more efficient catalysts for the industrial production of chemical feedstocks and fine chemicals.
Collapse
Affiliation(s)
- Manting Mu
- School
of Chemistry, Trinity College Dublin, College Green, Dublin 2 Dublin, Ireland
| | - Katherine L. Walker
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Goar Sánchez-Sanz
- Research
IT, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Robert M. Waymouth
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Cristina Trujillo
- School
of Chemistry, Trinity College Dublin, College Green, Dublin 2 Dublin, Ireland
| | - Mark J. Muldoon
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT71NN, U.K.
| | - Max García-Melchor
- School
of Chemistry, Trinity College Dublin, College Green, Dublin 2 Dublin, Ireland
| |
Collapse
|
3
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
4
|
Lu S, Ding CH, Xu B. Triple-Consecutive Isocyanide Insertions with Aldehydes: Synthesis of 4-Cyanooxazoles. Org Lett 2023; 25:849-854. [PMID: 36705938 DOI: 10.1021/acs.orglett.3c00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient TMSOTf-promoted selective triple consecutive insertions of tert-butyl isocyanide into aldehydes has been developed, affording pharmacological interesting 4-cyanooxazoles in high yields in a one pot manner. The given method encompasses a wide range of substrates with tert-butyl isocyanide serving as sources of critical "CN" and "C-N═C" moieties. The versatile transformations of the resulting 4-cyanooxazoles were demonstrated. The key reaction intermediates for plausible mechanisms were determined.
Collapse
Affiliation(s)
- Shaohang Lu
- Department of Chemistry, Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Chang-Hua Ding
- Department of Chemistry, Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Yi SZ, Li BN, Fu PY, Pan M, Su CY. Interplay of Dual-Proton Transfer Relay to Achieve Full-Color Panel Luminescence in Excited-State Intramolecular Proton Transfer (ESIPT) Fluorophores. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3172-3181. [PMID: 36621007 DOI: 10.1021/acsami.2c20129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new design was applied for the facile synthesis of pure organic photoluminescent molecules with dual excited-state intramolecular proton transfer (ESIPT) sites. In this novel class of emitters, full-color panel emission from blue, green, and yellow to red, including white light, can be achieved in different solvents as modulated by the enol-keto(1st)-keto(2nd) tautomer emissions. A comprehensive transient photophysical study verifies that keto(1st) and keto(2nd) have a precursor (<0.8 ps)-successor (∼20 ps)-relayed absorbance relationship, and then a fast equilibrium between the two is established, resulting in dual emissions in the nanosecond scale (∼1900 ps). Through the research on copper ions' selective PL response, the dual-ESIPT mechanism was further verified; in addition, the study of solid-state PL changes upon the stimulus of organic vapor manifests the potential application sensitivity of the molecules as dual-ESIPT sensors. Theoretical results including reaction potential energy surface analyses manifest the fact that dual-proton transfer goes along a sequential route with a smaller energy barrier, firmly supporting the experimental results. An intrinsic system that undergoes intramolecular double proton relayed transfer is thus established for the achievement of much broadened optical responses and full-color display, providing reference for the design and application of advanced dual-ESIPT optical materials.
Collapse
Affiliation(s)
- Shao-Zhe Yi
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| | - Bao-Ning Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Peng-Yan Fu
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| | - Mei Pan
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Wang W, Tong S, Wang Q, Ao Y, Wang D, Zhu J. Thiazole Boron Difluoride Dyes with Large Stokes Shift, Solid State Emission and Room-Temperature Phosphorescence. Chemistry 2022; 28:e202202507. [PMID: 35994377 PMCID: PMC9825895 DOI: 10.1002/chem.202202507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 01/11/2023]
Abstract
The small Stokes shift and weak emission in the solid state are two main shortcomings associated with the boron-dipyrromethene (BODIPY) family of dyes. This study presents the design, synthesis and luminescent properties of boron difluoro complexes of 2-aryl-5-alkylamino-4-alkylaminocarbonylthiazoles. These dyes display Stokes shifts (Δλ, 77-101 nm) with quantum yields (ϕFL ) up to 64.9 and 34.7 % in toluene solution and in solid state, respectively. Some of these compounds exhibit dual fluorescence and room-temperature phosphorescence (RTP) emission properties with modulable phosphorescence quantum yields (ϕPL ) and lifetime (τp up to 251 μs). The presence of intramolecular H-bonds and negligible π-π stacking revealed by X-ray crystal structure might account for the observed large Stokes shift and significant solid-state emission of these fluorophores, while the enhanced spin-orbit coupling (SOC) of iodine and the self-assembly driven by halogen bonding, π-π and C-H… π interactions could be responsible for the observed RTP of iodine containing phosphors.
Collapse
Affiliation(s)
- Wei Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China,University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shuo Tong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry andChemical BiologyDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Qi‐Qiang Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China,University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yu‐Fei Ao
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China,University of Chinese Academy of SciencesBeijing100049P. R. China
| | - De‐Xian Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China,University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN)Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH53041015LausanneSwitzerland
| |
Collapse
|
7
|
Russo C, Amato J, Tron GC, Giustiniano M. The Dark Side of Isocyanides: Visible-Light Photocatalytic Activity in the Oxidative Functionalization of C(sp 3)-H Bonds. J Org Chem 2021; 86:18117-18127. [PMID: 34851118 PMCID: PMC8689654 DOI: 10.1021/acs.joc.1c02378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The possibility to harness aromatic isocyanides as visible-light photocatalysts in the α-amino C(sp3)-H functionalization is herein presented. Actually, the three-component cross-dehydrogenative coupling of aromatic tertiary amines with isocyanides and water leads to amide products under very mild conditions in high yields and with a good substrate scope. While the reaction with aromatic isocyanides proceeds upon direct photoexcitation, aliphatic isocyanides are able to form a photoactive electron-donor-acceptor complex with aromatic amines. Moreover, the use of a catalytic loading of an aromatic isocyanide promotes the oxidative coupling of N-phenyl-1,2,3,4-tetrahydroisoquinoline with an array of different (pro)nucleophiles in good to excellent yields, thus providing the proof-of-concept for the development of a new highly tunable class of organic visible-light photocatalysts.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
8
|
Chen L, Xuchen X, Wang F, Yang Y, Deng G, Liu Y, Liang Y. Double C-S bond formation via multiple Csp 3-H bond cleavage: synthesis of 4-hydroxythiazoles from amides and elemental sulfur under metal-free conditions. Org Biomol Chem 2021; 19:10068-10072. [PMID: 34762083 DOI: 10.1039/d1ob01989a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel and efficient approach for the synthesis of 4-hydroxythiazoles from amides and elemental sulfur has been developed. In the presence of P2O5, DMSO and HMPA, this metal-free protocol proceeds smoothly and tolerates a spectrum of functional groups. Furthermore, this strategy involves the process of double Csp3-S bond formation through the cleavage of multiple Csp3-H bonds for the first time.
Collapse
Affiliation(s)
- Liang Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Huaihua Normal College, Huaihua 418008, China
| | - Xinyu Xuchen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Fei Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Ministry of Education Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yilin Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
9
|
Fei Y, Hu J, Wang Z, Cui L, Jia X, Li C, Li J. Exploring the Reactivity of Propargylic Ester: Acyloxy and Acyl Migratory Rearrangement Relay Enabled by Formal Double Isocyanide Insertion. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youwen Fei
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Jie Hu
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Zhishuang Wang
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Lei Cui
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Xueshun Jia
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Jian Li
- Department of Chemistry College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
10
|
Guo Y, Yao L, Luo L, Wang HX, Yang Z, Wang Z, Ai SL, Zhang Y, Zou QC, Zhang HL. Alkylaminomaleimide fluorophores: synthesis via air oxidation and emission modulation by twisted intramolecular charge transfer. Org Chem Front 2021. [DOI: 10.1039/d0qo01285h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel strategy to synthesize 3-alkylaminomaleimide fluorophores via air oxidation is developed, and the structural features for the designed TICT fluorophores with bright emission are established.
Collapse
|
11
|
Shiri M, Farajinia-Lehi N, Salehi P, Tanbakouchian Z. Transition Metal and Inner Transition Metal Catalyzed Amide Derivatives Formation through Isocyanide Chemistry. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe synthesis of amides is a substantial research area in organic chemistry because of their ubiquitous presence in natural products and bioactive molecules. The use of easily accessible isocyanides as amidoyl (carbamoyl) synthons in cross-coupling reactions using transition metal and inner transition metöal catalysts is a current trend in this area. Isocyanides, owing to their coordination ability as a ligand and inherent electronic properties for reactions with various partners, have expanded the potential application of these transformations for the preparation of novel synthetic molecules and pharmaceutical candidates. This review gives an overview of the achievements in isocyanide-based transition metal and inner transition metal catalyzed amide formation and discusses highlights of the proposed distinct mechanisms.1 Introduction2 Synthesis of Arenecarboxamides3 Synthesis of Alkanamides4 Synthesis of Cyclic Amides5 Formation of Alkynamides6 Formation of Acrylamide-like Molecules7 Formation of Ureas and Carbamates8 Conclusion
Collapse
Affiliation(s)
- Morteza Shiri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University
- Department of R&D, Pakshoo Industrial Group, Second Alley
| | | | - Parvin Salehi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University
| | - Zahra Tanbakouchian
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University
| |
Collapse
|
12
|
Wu YH, Zhang LY, Wang NX, Xing Y. Recent advances in the rare-earth metal triflates-catalyzed organic reactions. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1831758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yue-Hua Wu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lei-Yang Zhang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey, New Jersey, United States
| |
Collapse
|
13
|
Yu W, Zhang H, Yin PA, Zhou F, Wang Z, Wu W, Peng Q, Jiang H, Tang BZ. Restriction of Conformation Transformation in Excited State: An Aggregation-Induced Emission Building Block Based on Stable Exocyclic C=N Group. iScience 2020; 23:101587. [PMID: 33089098 PMCID: PMC7566090 DOI: 10.1016/j.isci.2020.101587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The development of aggregation-induced emission (AIE) building block and deciphering its luminescence mechanism are of great significance. Here a feasible strategy for the construction of AIE unit based on E-Z isomerization (EZI) of exocyclic C=N double bond is proposed. Taking [1,2,4]thiadiazole[4,3-a]pyridine (TZP) derivative as an example, its aryl-substituted derivative (TZPP) shows obvious AIE character. The analysis of spectral data and theoretical calculations indicates that fast structural relaxation of TZPP in the emissive state plays a key role in a low fluorescence quantum yield in dilute solution, which should be caused by the small energy gap between locally excited (LE) state and twisted intramolecular charge transfer state. When in solid state, the bright emission with LE state characteristic reappears due to the large shift barrier of geometry transformation. As a potential building block for AIEgens with special heterocyclic structure, these findings would open up opportunities for developing various functional materials. A new aggregation-induced emission building block A novel AIE mechanism with spectral measurements and theoretical calculations Available starting materials resulting in convenient synthesis and modification A stable exocyclic C=N double bond in heterocycles
Collapse
Affiliation(s)
- Wentao Yu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Han Zhang
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ping-An Yin
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Fan Zhou
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Qian Peng
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Ben Zhong Tang
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Cao M, Fang YL, Wang YC, Xu XJ, Xi ZW, Tang S. Ce(OTf) 3-Catalyzed Multicomponent Reaction of Alkynyl Carboxylic Acids, tert-Butyl Isocyanide, and Azides for the Assembly of Triazole-Oxazole Derivatives. ACS COMBINATORIAL SCIENCE 2020; 22:268-273. [PMID: 32275136 DOI: 10.1021/acscombsci.0c00012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerium(III) triflate-catalyzed multicomponent reactions between alkynyl carboxylic acids, tert-butyl isocyanide, and organic azides have been developed. In the presence of Ce(OTf)3 (10 mol %), the cascade reaction of one molecule of alkynyl carboxylic acid with three molecules of tert-butyl isocyanides proceeds chemoselectively and regioselectively via a triple and ordered isocyanide insertion process at room temperature, and then the cesium-catalyzed [3 + 2] cycloaddtion reaction between the resulted alkynyl oxazole and organic azides was further initiated by the temperature elevation (100 °C), thereby leading to multisubstituted triazole-oxazole derivatives in practical, time-saving, one-pot operations. Furthermore, some of the synthesized target compounds showed potential anticancer activities against MGC803 (human gastric cancer cell) with IC50 values below 20 μmol L-1.
Collapse
Affiliation(s)
- Ming Cao
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Yi-Lin Fang
- Department of Chemistry, Guilin Normal College, 9 Feihu Road, Guilin, 541199, People’s Republic of China
| | - Ying-Chun Wang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Xiao-Juan Xu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Zhi-Wei Xi
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Shi Tang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| |
Collapse
|
15
|
Wang H, Xu Z, Deng G, Huang H. Selective Formation of 2‐(2‐Aminophenyl)benzothiazoles via Copper‐Catalyzed Aerobic C−C Bond Cleavage of Isatins. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hongfen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
- Beijing National Laboratory for Molecular SciencesChinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
16
|
Cao M, Teng QH, Xi ZW, Liu LQ, Gu RY, Wang YC. Facile synthesis of 2-alkynyl oxazoles via a Ce(OTf) 3-catalyzed cascade reaction of alkynyl carboxylic acids with tert-butyl isocyanide. Org Biomol Chem 2020; 18:655-659. [PMID: 31930236 DOI: 10.1039/c9ob02337b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed an efficient and novel protocol to synthesize 2-alkynyl oxazoles from tert-butyl isocyanide and alkynyl carboxylic acids. This method allowed the synthesis of diversely functionalized oxazoles under mild reaction conditions, coupled with operational simplicity and these functionalized oxazoles showed a certain degree of biological activity. Moreover, compounds 2b, 2h, 2k, 2n, 2p and 2t exhibited good anticancer activities in human gastric cancer cells (MGC803) and human bladder tumor cells (T24), with IC50 below 20.0 μM.
Collapse
Affiliation(s)
- Ming Cao
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China.
| | - Qing-Hu Teng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhi-Wei Xi
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China.
| | - Li-Qiu Liu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China.
| | - Ren-Yong Gu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China.
| | - Ying-Chun Wang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China.
| |
Collapse
|
17
|
Murai T, Yoshihara M, Yamaguchi K, Minoura M. 2‐(2‐Hydroxyphenyl)‐5‐aminothiazoles: Synthesis and Properties Involving Dual Emissions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Toshiaki Murai
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University Yanagido Gifu 50-1193 Japan
| | - Mari Yoshihara
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University Yanagido Gifu 50-1193 Japan
| | - Kirara Yamaguchi
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University Yanagido Gifu 50-1193 Japan
| | - Mao Minoura
- Department of ChemistryGraduate School of ScienceRikkyo University Nishi-ikebukuro, Toshima-ku Tokyo 171-8501 Japan
| |
Collapse
|
18
|
Ebina M, Kondo Y, Iwasa T, Taketsugu T. Low-Lying Excited States of hqxcH and Zn-hqxc Complex: Toward Understanding Intramolecular Proton Transfer Emission. Inorg Chem 2019; 58:4686-4698. [PMID: 30860367 DOI: 10.1021/acs.inorgchem.9b00410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Excited state intramolecular proton transfer (ESIPT) has been a topic of interest due to its potential to lead to multiple emissions. Although many organic molecules showing ESIPT emission are already known, studies on metal complexes showing ESIPT and their related theoretical understandings are very limited. In this study, we focus on [Zn(hqxc)2(DMSO)2] (Zn-hqxc: hqxc = 3-hydroxy-2-quinoxalinecarboxylate, DMSO = dimethyl sulfoxide), which shows ESIPT emission in the solid state, even though the hqxcH ligand does not show ESIPT emission. To gain insights into the role of the zinc atom and the emission mechanisms, we examined excited states of free hqxcH and the Zn-hqxc complex using time-dependent density functional theory calculations. From the results, it was shown that the zinc atom triggers a structural change of the hqxcH ligand from the lactam form (3,4-dihydro-3-oxo-2-quinoxalinecarboxylic acid) to the enol form (3-hydroxy-2-quinoxalinecarboxylic acid), where the latter form has several stable excited states. Several stable geometries were found for singlet and triplet excited states, suggesting that emissions for the Zn-hqxc complex can be both phosphorescence and fluorescence caused by the enol-enol, keto-keto, and keto-enol forms of the two hqcx ligands in the complex. We found that the photophysical properties of the Zn-hqxc complex are dominated by the ligand due to the filled d10 of Zn(II). The presented results suggest that, to design new ESIPT metal complexes, one possible approach is to combine a metal atom showing ligand centered emission and a ligand that has separate ESIPT and coordination sites.
Collapse
Affiliation(s)
- Masanori Ebina
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan
| | - Yusuke Kondo
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Kyoto 615-8520 , Japan
| | - Takeshi Iwasa
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Kyoto 615-8520 , Japan.,Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Tetsuya Taketsugu
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0810 , Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Kyoto 615-8520 , Japan.,Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo 001-0021 , Japan
| |
Collapse
|
19
|
Jong JAW, Bao X, Wang Q, Zhu J. Formal [4+1] Cycloaddition ofo‐Aminobenzyl Chlorides with Isocyanides: Synthesis of 2‐Amino‐3‐Substituted Indoles. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jacobus A. W. Jong
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPNBCH5304 CH-1015 Lausanne Switzerland
| | - Xu Bao
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPNBCH5304 CH-1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPNBCH5304 CH-1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPNBCH5304 CH-1015 Lausanne Switzerland
| |
Collapse
|
20
|
Huang H, Qu Z, Ji X, Deng GJ. Three-component bis-heterocycliation for synthesis of 2-aminobenzo[4,5]thieno[3,2-d]thiazoles. Org Chem Front 2019. [DOI: 10.1039/c8qo01365a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A cooperative base system has been developed for the novel three-component synthesis of 2-aminobenzo[4,5]thieno[3,2-d]thiazoles via bis-heterocyclization of methylketoxime acetates.
Collapse
Affiliation(s)
- Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Zhonghua Qu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaochen Ji
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
21
|
Mi P, Lang J, Lin S. Retracted Article: Molybdenum-silver co-catalyzed cycloaddition of alkynes with N-isocyanoiminotriphenylphosphorane (NIITP): an efficient strategy for the synthesis of monosubstituted pyrazoles. Chem Commun (Camb) 2019; 55:7986-7989. [DOI: 10.1039/c9cc03363g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A highly efficient synthesis of monosubstituted pyrazoles from alkynes and N-isocyanoiminotriphenylphosphorane (NITTP) is developed via molybdenum-silver co-catalyzed [3+2] cycloaddition.
Collapse
Affiliation(s)
- Pengbing Mi
- College of Light Industry and Textile and Food Engineering
- Sichuan University
- Chengdu 610065
- China
- Institute of Fundamental and Frontier Sciences
| | - Jiajia Lang
- Research Center for Medicine
- University of South China
- Hengyang 421001
- China
| | - Shaojian Lin
- College of Light Industry and Textile and Food Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
22
|
Zheng SC, Wang Q, Zhu J. Catalytic Atropenantioselective Heteroannulation between Isocyanoacetates and Alkynyl Ketones: Synthesis of Enantioenriched Axially Chiral 3-Arylpyrroles. Angew Chem Int Ed Engl 2018; 58:1494-1498. [DOI: 10.1002/anie.201812654] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Sheng-Cai Zheng
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
23
|
Zheng SC, Wang Q, Zhu J. Catalytic Atropenantioselective Heteroannulation between Isocyanoacetates and Alkynyl Ketones: Synthesis of Enantioenriched Axially Chiral 3-Arylpyrroles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812654] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sheng-Cai Zheng
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
24
|
From isonitrile to nitrile via ketenimine intermediate: Palladium-catalyzed 1,1-carbocyanation of allyl carbonate by α-isocyanoacetate. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Sung DB, Mun B, Park S, Lee HS, Lee J, Lee YJ, Shin HJ, Lee JS. Synthesis, Molecular Engineering, and Photophysical Properties of Fluorescent Thieno[3,2- b]pyridine-5(4 H)-ones. J Org Chem 2018; 84:379-391. [PMID: 30426749 DOI: 10.1021/acs.joc.8b01924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a synthetic approach for a set of fluorescent thieno[3,2- b]pyridine-5(4 H)-one derivatives and their photophysical properties. These fluorophores are prepared by a series of reactions employing the Suzuki-Miyaura cross-coupling reaction and a regioselective aza-[3 + 3] cycloaddition of 3-aminothiophenes with α,β-unsaturated carboxylic acids. Our findings revealed that the photophysical properties are chemically tunable by an appropriate choice of functional group on the thieno[3,2- b]pyridine-5(4 H)-one scaffold.
Collapse
Affiliation(s)
- Dan-Bi Sung
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , Busan , Republic of Korea
| | - Bohyun Mun
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , Busan , Republic of Korea
| | - Sol Park
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , Busan , Republic of Korea.,Department of Marine Biotechnology , Korea University of Science and Technology , Daejeon , Republic of Korea
| | - Hyi-Seung Lee
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , Busan , Republic of Korea.,Department of Marine Biotechnology , Korea University of Science and Technology , Daejeon , Republic of Korea
| | - Jihoon Lee
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , Busan , Republic of Korea
| | - Yeon-Ju Lee
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , Busan , Republic of Korea.,Department of Marine Biotechnology , Korea University of Science and Technology , Daejeon , Republic of Korea
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , Busan , Republic of Korea.,Department of Marine Biotechnology , Korea University of Science and Technology , Daejeon , Republic of Korea
| | - Jong Seok Lee
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , Busan , Republic of Korea.,Department of Marine Biotechnology , Korea University of Science and Technology , Daejeon , Republic of Korea
| |
Collapse
|
26
|
Calvino C, Weder C. Microcapsule-Containing Self-Reporting Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802489. [PMID: 30265445 DOI: 10.1002/smll.201802489] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Self-reporting polymers, which can indicate damage or exposure to excessive stress with a clearly perceptible optical signal, are potentially useful for several technological applications, including stress-sensitive sensors that enable in situ monitoring of mechanical events and structural health monitoring systems. A versatile and simple concept to realize this function is the exploitation of microcapsules that are filled with solutions of dyes that are released and chemically or physically activated when the protective shell is damaged. Such microcapsules can readily be incorporated into polymers and the composites thus made can be processed into films, coatings, or other objects. Mechanochromic effects can be realized with different types of dyes and activation schemes. In this concept article, a selection of recent key studies is presented to provide an overview of the state of the field. Different architectures and operating principles and their advantages and drawbacks are reviewed. The parameters that influence the design of microcapsule-based mechanochromic systems are considered and unexplored chromophore systems that might be useful to design future self-reporting polymers are discussed. Finally, specific aspects of capsule design, fabrication, and integration into polymers are presented. Throughout the article, challenges and opportunities of the concept are highlighted and possible future directions are discussed.
Collapse
Affiliation(s)
- Céline Calvino
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
27
|
Wang Q, Wang DX, Wang MX, Zhu J. Still Unconquered: Enantioselective Passerini and Ugi Multicomponent Reactions. Acc Chem Res 2018; 51:1290-1300. [PMID: 29708723 DOI: 10.1021/acs.accounts.8b00105] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Passerini three-component (P-3CR) and the Ugi four-component (U-4CR) are two of the most prominent isocyanide-based multicomponent reactions (IMCRs). The P-3CR transforms isocyanides, aldehydes (ketones), and carboxylic acids to α-acyloxy carboxamides, while the U-4CR converts isocyanides, aldehydes (ketones), amines, and carboxylic acids to α-acetamido carboxamides. Conversion of the high energy formal divalent isocyano carbon into a tetravalent amide carbonyl carbon provides the driving force for these reactions. While the prototypical P-3CR and U-4CR provide linear adducts, many heterocycles and macrocycles are now readily synthesized by modifying these truly versatile reactions. As one stereocenter is generated by the nucleophilic addition of the isocyanide to the carbonyl and imine functions, the search for enantioselective versions of these reactions has become a much sought after goal among synthetic chemists. This seemingly trivial endeavor turns out to be extremely difficult to achieve, in sharp contrast to the remarkable progress documented in the field of asymmetric synthesis in general and catalytic enantioselective nucleophilic addition to C═X bond in particular. Since Denmark's first report in 2003 on the catalytic enantioselective Passerini two-component reaction of isocyanides with aldehydes, several Lewis acid (LA) and Brønsted acid-catalyzed enantioselective protocols have been developed. However, it is fair to say that truly catalytic enantioselective P-3CR and U-4CR with wide application scope remain elusive. In this Account, we summarize the progress recorded in this field over the past 15 years. We entered the field by investigating the enantioselective reaction of α-isocyanoacetamides with aldehydes and imines, which was previously developed in our lab for the synthesis of functionalized 5-aminooxazoles. Our initial experimental results, in conjunction with Dömling's and Schreiber's earlier findings, prompted us to assume that the low turnover number in LA-catalyzed asymmetric IMCRs is a main hurdle for enantioselectivity. We speculated that the LA incapable of forming chelates would be the catalyst of choice for enantioselectivity, the rational being that the P-3CR and the U-4CR afforded bidentate intermediates (α-hydroxy imidates, α-amino imidates) and products (α-acyloxy carboxamides, α-acetamido carboxamides) from nonchelating inputs. Therefore, the transfer of catalyst from these chelating intermediates or products to the monocoordinating starting materials would be difficult, hence the problem with catalyst turnover. This working hypothesis turned out to be a valuable guide that allowed us to develop Al-salen and Al-phosphate-catalyzed enantioselective P-3CR and enantioselective construction of chiral heterocycles such as oxazoles and tetrazoles. Nevertheless, all our attempts to apply these LA catalysts to the Ugi reaction failed. Indeed, to date, no reports on the successful LA-catalyzed asymmetric Ugi-type reactions exist in the literature. However, significant progress has been made in recent years employing organocatalysts. We developed a chiral phosphoric acid (CPA)-catalyzed enantioselective three-component synthesis of 2-(1-aminoalkyl)-5-aminooxazoles, a four-component synthesis of epoxy-tetrahydropyrrolo[3,4- b]pyridin-5-ones and a Ugi four-center, three-component reaction of isocyanides, anilines, and 2-formylbenzoic acids for the synthesis of isoindolinones. Other groups have found that chiral dicarboxylic acid and BOROX are effective catalysts for truncated Ugi three-component reactions.
Collapse
Affiliation(s)
- Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Mei-Xiang Wang
- Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Wang J, Yu JH, Yang QF, Xu JQ. New Thiocyanatocadmate and Halo-thiocyanatocadmates Modified by Imidazole or Triazole Derivatives: Synthesis, Structural Characterization, and Photoluminescence Property. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Murai T, Furukawa H, Yamaguchi K. Synthesis and Photophysical Properties of 5-N-Arylaminothiazoles with Sulfur-Containing Groups on the Aromatic Ring at the 2-Position. HETEROCYCLES 2018. [DOI: 10.3987/com-18-s(t)28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Clemenceau A, Wang Q, Zhu J. Cooperative Pd/Cu Catalysis: Multicomponent Synthesis of Tetrasubstituted Imidazolones from Methyl α-Isocyanoacetates, Primary Amines, and Aryl(vinyl) Iodides. Org Lett 2017; 20:126-129. [DOI: 10.1021/acs.orglett.7b03479] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonin Clemenceau
- Laboratory of Synthesis and Natural Products,
Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products,
Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products,
Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Cheng Y, Xiang JC, Wang ZX, Ma JT, Wang M, Tang BC, Wu YD, Zhu YP, Wu AX. Dimerization of Phenylalanine: An Approach to Thiazoles and Oxazoles Involved S/O-Insertion. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan Cheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Hubei, Wuhan 430079 People's Republic of China
| | - Jia-Chen Xiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Hubei, Wuhan 430079 People's Republic of China
| | - Zi-Xuan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Hubei, Wuhan 430079 People's Republic of China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Hubei, Wuhan 430079 People's Republic of China
| | - Miao Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Hubei, Wuhan 430079 People's Republic of China
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Hubei, Wuhan 430079 People's Republic of China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Hubei, Wuhan 430079 People's Republic of China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Shandong, Yantai 264005 People's Republic of China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Hubei, Wuhan 430079 People's Republic of China
| |
Collapse
|
32
|
Clemenceau A, Wang Q, Zhu J. Silver Nitrate-Catalyzed Isocyanide Insertion/Lactamization Sequence to Imidazolones and Quinazolin-4-ones: Development and Application in Natural Product Synthesis. Org Lett 2017; 19:4872-4875. [DOI: 10.1021/acs.orglett.7b02334] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Antonin Clemenceau
- Laboratory of Synthesis and
Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and
Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and
Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| |
Collapse
|