1
|
Rastogi A, Shaw AK, Kumari S, Kant R, Koley D. Ruthenium(II)-Catalyzed C-H Activation/Annulation of 5-Phenyl-pyrroline-2-carboxylates with Alkynes: Synthesis of 2,3-Diphenylspiro-[indene-1,2'pyrrolidine]carboxylate Derivatives. Org Lett 2025. [PMID: 40340351 DOI: 10.1021/acs.orglett.5c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
While saturated nitrogen heterocycles are privileged scaffolds, their streamlined catalytic synthesis with unsymmetrical substitution patterns remains a daunting challenge. Herein, we report the ruthenium(II)-catalyzed synthesis of spiro[indene-proline] derivatives via C-H activation/annulation of 5-phenyl-pyrroline-2-carboxylates with alkynes. The protocol utilized imine coordination, resulting in high reaction yields with a wide range of functional group tolerance, scalability, and scaffold diversity. This annulation was successful even with various biologically active pharmacophores. The reaction featured a reversible C-H metalation step and suggested the possibility of a base-assisted internal electrophilic substitution pathway.
Collapse
Affiliation(s)
- Anushka Rastogi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Kumar Shaw
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suruchi Kumari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Yuan C, Zhang W. Palladium-Catalyzed ortho C-H Allylation of Tertiary Anilines. Org Lett 2025; 27:3877-3882. [PMID: 40135524 DOI: 10.1021/acs.orglett.5c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Allyl groups could be transformed into various functional groups. A novel and highly regioselective approach for the Pd-catalyzed ortho C-H allylation of tertiary anilines has been developed. Various tertiary anilines and substitution groups were well-tolerated, and allylated linezolid, ibuprofen, naproxen, ketoprofen, and dehydroabietic acid derivatives were easily prepared. Notably, this new method overcomes the limitations of classical amide-directing groups, as the amide groups are well-tolerated in the reaction. Preliminary mechanistic studies revealed that a dual-ligand effect may be involved in achieving excellent ortho selectivity in this reaction facilitated by N-Bz-Gly and Ag2CO3. Further studies indicate that FeCl3 is necessary as a Lewis acid to activate allyl bromide.
Collapse
Affiliation(s)
- Chunchen Yuan
- School of Chemistry and Chemical Engineering, Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenlong Zhang
- School of Chemistry and Chemical Engineering, Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| |
Collapse
|
3
|
Barman M, Mandal S, Nanjegowda MV, Punniyamurthy T. Palladium-Catalyzed Directed Alkenylation of Alkyl Amides with Unactivated Alkenes: Access to γ-Alkenyl γ-Lactams. Org Lett 2025; 27:2913-2917. [PMID: 40079667 DOI: 10.1021/acs.orglett.5c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Pd(II)-catalyzed cascade C(sp3)-H alkenylation and cyclization of alkyl amides with readily accessible unactivated alkenes have been accomplished. Alkenylation and subsequent intramolecular cyclization empowered the formation of functionalized γ-lactams, which present as an active core of several bioactive and natural products. The use of catalytic Cu(OAc)2 along with molecular oxygen as the oxidant, a 2-chloropyridine ligand, site selectivity, the substrate scope, and gram-scale synthesis are important practical features.
Collapse
Affiliation(s)
- Madhab Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Maniya V Nanjegowda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
4
|
Dana S, Pandit NK, Boos P, von Münchow T, Peters SE, Trienes S, Haberstock L, Herbst-Irmer R, Stalke D, Ackermann L. Parametrization of κ 2- N, O-Oxazoline Preligands for Enantioselective Cobaltaelectro-Catalyzed C-H Activations. ACS Catal 2025; 15:4450-4459. [PMID: 40144676 PMCID: PMC11934137 DOI: 10.1021/acscatal.5c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
Enantioselective electrocatalyzed C-H activations have emerged as a transformative platform for the assembly of value-added chiral organic molecules. Despite the recent progress, the construction of multiple C(sp3)-stereogenic centers via a C(sp3)-C(sp3) bond formation has thus far proven to be elusive. In contrast, we herein report an annulative C-H activation strategy, generating chiral Fsp3-rich molecules with high levels of diastereo- and enantioselectivity. κ2-N,O-oxazoline preligands were effectively employed in enantioselective cobalt(III)-catalyzed C-H activation reactions. Using DFT-derived descriptors and regression statistical modeling, we performed a parametrization study on the modularity of chiral κ2-N,O-oxazoline preligands. The study resulted in a model describing ligands' selectivity characterized by key steric, electronic, and interaction behaviors.
Collapse
Affiliation(s)
| | | | | | - Tristan von Münchow
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Sven Erik Peters
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Sven Trienes
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Laura Haberstock
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Dietmar Stalke
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Lutz Ackermann
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Lin Q, Lv H, Lu Y, Yang C, Yu Y, Liu Z. Redox Active vs Redox Neutral in Ru/Pd-Catalyzed Sulfonylation: Theoretical Insights into Structure-Activity Relationship between Metal Centers and Regio-Selectivity. J Org Chem 2024; 89:18131-18141. [PMID: 39658527 DOI: 10.1021/acs.joc.4c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The structure-activity relationship between the metal center and regio-selectivity is persistently a pivotal scientific issue. To address this, we select the 2-phenylpyridine sulfonylation reactions catalyzed by ruthenium and palladium as research subjects. An extensive theoretical study has been conducted on their reaction mechanisms, the sources of regio-selectivity, and the evolution of electronic structures. The distinct electronic structures lead to completely different catalytic mechanisms and electronic structure evolution processes for ruthenium and palladium. Ruthenium tends to form six-coordinate octahedral complexes, thus undergoing an inner-sphere redox active Ru(II)-Ru(III)-Ru(IV)-Ru(II) catalytic cycle. In contrast, palladium tends to form four-coordinate planar quadrilateral complexes, hence undergoing an outer-sphere redox neutral Pd(II) catalytic cycle. The distinct electronic structure evolution processes fundamentally differentiate the radical attack modes in the sulfonation process, thereby determining the regio-selectivity of the reaction. In the Ru-catalyzed system, the meta-selectivity arises mainly from a more stable Schrock carbene-type meta-intermediate. For the Pd-catalyzed system, the ortho-selectivity mainly comes from the stabilizing effect of the Pd(II) center on the single electron. This study provides novel insights into how the electronic structure of metal centers influences the reaction mechanism and selectivity, making a theoretical contribution to a deeper comprehension of the mechanism and regio-selectivity underlying aromatic functionalization reactions.
Collapse
Affiliation(s)
| | | | - Yu Lu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chengkai Yang
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zheyuan Liu
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
6
|
Liu T, Li T, Tea ZY, Wang C, Shen T, Lei Z, Chen X, Zhang W, Wu J. Modular assembly of arenes, ethylene and heteroarenes for the synthesis of 1,2-arylheteroaryl ethanes. Nat Chem 2024; 16:1705-1714. [PMID: 38937591 DOI: 10.1038/s41557-024-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
The 1,2-arylheteroaryl ethane motif stands as a privileged scaffold with promising implications in drug discovery. Conventional de novo syntheses of these molecules have relied heavily on pre-functionalized synthons, entailing harsh conditions and multi-step processes. Here, to address these limitations, we present a modular approach for the direct synthesis of 1,2-arylheteroaryl ethanes using feedstock chemicals, including ethylene, arenes and heteroarenes. We disclosed a photo triplet-energy-transfer-initiated radical cascade process, leveraging homolytic cleavage of C-S bonds in aryl sulfonium salts as the key step to access aryl radicals with excellent regioselectivity. This method allows for rapid structural diversification of bioactive molecules, showcasing excellent functional group tolerance and streamlining the synthesis of bioactive compounds and their derivatives. Furthermore, our approach can be extended to propylene, non-gaseous terminal alkenes and various other electrophilic radical precursors, including heteroaryl radicals, hydroxyl radicals, trifluoromethyl radicals and α-carbonyl alkyl radicals. This study highlights the significance of radical polarity matching in designing selective multi-component couplings.
Collapse
Affiliation(s)
- Tao Liu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Talin Li
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Zhi Yuan Tea
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Chu Wang
- College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore, Republic of Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Weigang Zhang
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
- National University of Singapore Suzhou Research institute, Suzhou, People's Republic of China.
| |
Collapse
|
7
|
Xu Y, Lin Y, Homölle SL, Oliveira JC, Ackermann L. Enantioselective Cobaltaphotoredox-Catalyzed C-H Activation. J Am Chem Soc 2024; 146:24105-24113. [PMID: 39143928 PMCID: PMC11363020 DOI: 10.1021/jacs.4c08459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The quest for sustainable strategies in molecular synthesis has spurred the emergence of photocatalysis as a particularly powerful technique. In recent years, the application of photocatalysis in this context has greatly promoted the development of asymmetric catalysis. Despite the impressive advances, enantioselective photoinduced strong arene C-H activations by cobalt catalysis remain unexplored. Herein, we report a strategy that merges organic photoredox catalysis and enantioselective cobalt-catalyzed C-H activation, enabling the regio- and stereoselective dual functionalization of indoles in an enantioselective fashion. Thereby, the assembly of various chiral indolo[2,3-c]isoquinolin-5-ones was realized with high enantioselectivities of up to 99%. The robustness of the cobaltaphotoredox catalysis was demonstrated through enantioselective C-H activation and annulations in a continuous flow to provide straightforward access to central and axially chiral molecules.
Collapse
Affiliation(s)
| | | | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - João C.
A. Oliveira
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
8
|
Alves EHS, Oliveira DAS, Braga AAC. Palladium(II)-catalyzed annulation of N-methoxy amides and arynes: computational mechanistic insights and substituents effects. J Mol Model 2024; 30:152. [PMID: 38687370 DOI: 10.1007/s00894-024-05930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
CONTEXT The combined use of transition metal-catalyzed C-H activation with aryne annulation reactions has emerged as an important strategy in organic synthesis. In this study, the mechanisms of the palladium(II)-catalyzed annulation reaction of N-methoxy amides and arynes were computationally investigated by density functional theory. The role of methoxy amide as a directing group was elucidated through the calculation of three different pathways for the C-H activation step, showing that the pathway where amide nitrogen acts as a directing group is preferable. At the reductive elimination transition state, an unstable seven-membered ring is formed preventing the lactam formation. A substituent effect study based on an NBO analysis, Hammet, and using a More O'Ferall-Jenks plot indicates that the C-H activation step proceeds via an electrophilic concerted metalation-deprotonation (eCMD) mechanism. The results show that electron-withdrawing groups increase the activation barrier and contribute to an early Pd-C bond formation and a late C-H bond breaking when compared with electron-donating substituents. Our computational results are in agreement with the experimental data provided in the literature. METHODS All calculations were performed using Gaussian 16 software. Geometry optimizations, frequency analyses at 393.15 K, and IRC calculations were conducted at the M06L/Def2-SVP level of theory. Corrected electronic energies, NBO charges, and Wiberg bond indexes were computed at the M06L/Def2-TZVP//M06L/Def2-SVP level of theory. Implicit solvent effects were considered in all calculations using the SMD model, with acetonitrile employed as the solvent.
Collapse
Affiliation(s)
- Erick H S Alves
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, São Paulo, Brazil
| | - Daniel A S Oliveira
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, São Paulo, Brazil
| | - Ataualpa A C Braga
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, São Paulo, Brazil.
| |
Collapse
|
9
|
Rummel L, Schreiner PR. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew Chem Int Ed Engl 2024; 63:e202316364. [PMID: 38051426 DOI: 10.1002/anie.202316364] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
London dispersion (LD) interactions are the main contribution of the attractive part of the van der Waals potential. Even though LD effects are the driving force for molecular aggregation and recognition, the role of these omnipresent interactions in structure and reactivity had been largely underappreciated over decades. However, in the recent years considerable efforts have been made to thoroughly study LD interactions and their potential as a chemical design element for structures and catalysis. This was made possible through a fruitful interplay of theory and experiment. This review highlights recent results and advances in utilizing LD interactions as a structural motif to understand and utilize intra- and intermolecularly LD-stabilized systems. Additionally, we focus on the quantification of LD interactions and their fundamental role in chemical reactions.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
10
|
Zhu YL, Zhao N, Fu XL, Zhao XY, Li YL, Shao YD, Chen J, Lu Y. Co(III)-Catalyzed C6-Selective C-H Activation/Pyridine Migration of 2-Pyridones with Propiolates. Org Lett 2024; 26:12-17. [PMID: 38127552 DOI: 10.1021/acs.orglett.3c03358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A versatile Co(III)-catalyzed C6-selective C-H activation/pyridine migration of 2-pyridones with available propiolates as coupling partners was demonstrated. This method features high atom economy, excellent regioselectivity, and good functional group tolerance by employing an inexpensive Co(III) catalyst under mild reaction conditions. Moreover, gram-scale synthesis and late-stage modifications of pharmaceuticals were performed to prove the effectiveness of these synthetic approaches.
Collapse
Affiliation(s)
- Yue-Lu Zhu
- School of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Na Zhao
- School of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Xin-Long Fu
- School of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Xin-Yang Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan-Lin Li
- School of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, P. R. China
| | - You-Dong Shao
- School of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Jiao Chen
- College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Jiang W, Yang X, Lin L, Yan C, Zhao Y, Wang M, Shi Z. Merging Visible Light Photocatalysis and P(III)-Directed C-H Activation by a Single Catalyst: Modular Assembly of P-Alkyne Hybrid Ligands. Angew Chem Int Ed Engl 2023; 62:e202309709. [PMID: 37814137 DOI: 10.1002/anie.202309709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Metal-catalyzed C-H activation strategies provide an efficient approach for synthesis by minimizing atom, step, and redox economy. Developing milder, greener, and more effective protocols for these strategies is always highly desirable to the scientific community. In this study, the utilization of a single rhodium complex enabled the visible-light-induced late-stage C-H activation of biaryl-type phosphines with alkynyl bromides, employing inherent phosphorus atoms as directing groups. This chemistry combines P(III)-directed C-H activation with visible light photocatalysis, under exogenous photosensitizer-free conditions, offering a unique platform for ligand design and preparation. Furthermore, this study also explores the asymmetric catalysis and coordination chemistry of the resulting P-alkyne hybrid ligands with specific transition metals. Experimental results and density functional theory calculations demonstrate the mechanistic intricacies of this transformation.
Collapse
Affiliation(s)
- Wang Jiang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiuxiu Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chaoguo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
12
|
Sau S, Mukherjee K, Kondalarao K, Gandon V, Sahoo AK. Probing Chiral Sulfoximine Auxiliaries in Ru(II)-Catalyzed One-Pot Asymmetric C-H Hydroarylation and Annulations with Alkynes. Org Lett 2023; 25:7667-7672. [PMID: 37844260 DOI: 10.1021/acs.orglett.3c02969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Developed herein is a chiral sulfoximine-enabled Ru(II)-catalyzed asymmetric C-H activation/functionalization involving intramolecular hydroarylation and functionalization/annulation of alkynes. This process constructs dihydrobenzofuran- or indoline-fused isoquinolinones having a tertiary or quaternary stereocenter with good yields and enantioselectivities (up to 97:3 enantiomeric ratio). The chiral sulfoxide precursor used in synthesizing the enantiopure sulfoximines is spontaneously eliminated during the reaction. It can be recovered without losing enantiopurity (∼99% enantiomeric excess) and reused.
Collapse
Affiliation(s)
- Somratan Sau
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Kallol Mukherjee
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Koneti Kondalarao
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405 Orsay, France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
13
|
Li F, Luo Y, Ren J, Yuan Q, Yan D, Zhang W. Iridium-Catalyzed Remote Site-Switchable Hydroarylation of Alkenes Controlled by Ligands. Angew Chem Int Ed Engl 2023; 62:e202309859. [PMID: 37610735 DOI: 10.1002/anie.202309859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
An iridium-catalyzed remote site-switchable hydroarylation of alkenes was reported, delivering the products functionalized at the subterminal methylene and terminal methyl positions on an alkyl chain controlled by two different ligands, respectively, in good yields and with good to excellent site-selectivities. The catalytic system showed good functional group tolerance and a broad substrate scope, including unactivated and activated alkenes. More importantly, the regioconvergent transformations of mixtures of isomeric alkenes were also successfully realized. The results of the mechanistic studies demonstrate that the reaction undergoes a chain-walking process to give an [Ar-Ir-H] complex of terminal alkene. The subsequent processes proceed through the modified Chalk-Harrod-type mechanism via the migratory insertion of terminal alkene into the Ir-C bond followed by C-H reductive elimination to afford the hydrofunctionalization products site-selectively.
Collapse
Affiliation(s)
- Fei Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinbao Ren
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qianjia Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Deyue Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
14
|
Radzhabov MR, Mankad NP. Activation of robust bonds by carbonyl complexes of Mn, Fe and Co. Chem Commun (Camb) 2023; 59:11932-11946. [PMID: 37727948 DOI: 10.1039/d3cc03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Metal carbonyl complexes possess among the most storied histories of any compound class in organometallic chemistry. Nonetheless, these old dogs continue to be taught new tricks. In this Feature, we review the historic discoveries and recent advances in cleaving robust bonds (e.g., C-H, C-O, C-F) using carbonyl complexes of three metals: Mn, Fe, and Co. The use of Mn, Fe, and Co carbonyl catalysts in controlling selectivity during hydrofunctionalization reactions is also discussed. The chemistry of these earth-abundant metals in the field of robust bond functionalization is particularly relevant in the context of sustainability. We expect that an up-to-date perspective on these seemingly simple organometallic species will emphasize the wellspring of reactivity that continues to be available for discovery.
Collapse
Affiliation(s)
- Maxim R Radzhabov
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| |
Collapse
|
15
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
16
|
Wang X, Si XJ, Sun Y, Wei Z, Xu M, Yang D, Shi L, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Isoquinolinone Skeletons Construction via Cobalt-Catalyzed Atroposelective C-H Activation/Annulation. Org Lett 2023; 25:6240-6245. [PMID: 37595028 DOI: 10.1021/acs.orglett.3c01685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Herein, the atroposelective construction of isoquinolinones bearing a C-N chiral axis has been successfully developed via a Co-catalyzed C-H bond activation and annulation process. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere to generate the target C-N axially chiral frameworks with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives. Additionally, the current protocol has proved to be an alternative approach for the C-N axial architectures fabrication under electrochemical conditions for cobalt/Salox catalysis, and this strategy allowed the efficient and atom-economical synthesis of various axially chiral isoquinolinones under mild reaction conditions.
Collapse
Affiliation(s)
- Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yingjie Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhisen Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao Xu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
17
|
Li T, Shi L, Wang X, Yang C, Yang D, Song MP, Niu JL. Cobalt-catalyzed atroposelective C-H activation/annulation to access N-N axially chiral frameworks. Nat Commun 2023; 14:5271. [PMID: 37644016 PMCID: PMC10465517 DOI: 10.1038/s41467-023-40978-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The N-N atropisomer, as an important and intriguing chiral system, was widely present in natural products, pharmaceutical lead compounds, and advanced material skeletons. The anisotropic structural characteristics caused by its special axial rotation have always been one of the challenges that chemists strive to overcome. Herein, we report an efficient method for the enantioselective synthesis of N-N axially chiral frameworks via a cobalt-catalyzed atroposelective C-H activation/annulation process. The reaction proceeds under mild conditions by using Co(OAc)2·4H2O as the catalyst with a chiral salicyl-oxazoline (Salox) ligand and O2 as an oxidant, affording a variety of N-N axially chiral products with high yields and enantioselectivities. This protocol provides an efficient approach for the facile construction of N-N atropisomers and further expands the range of of N-N axially chiral derivatives. Additionally, under the conditions of electrocatalysis, the desired N-N axially chiral products were also successfully achieved with good to excellent efficiencies and enantioselectivities.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chen Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| |
Collapse
|
18
|
Li T, Shi L, Zhao X, Wang J, Si XJ, Yang D, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Skeletons Construction via Cobalt-Catalyzed Atroposelective Annulation. Org Lett 2023. [PMID: 37428108 DOI: 10.1021/acs.orglett.3c01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Herein, the atroposelective construction of five-six heterobiaryl skeleton-based C-N chiral axis has been successfully accomplished via a Co-catalyzed C-H bond activation and annulation process, in which the isonitrile was employed as the C1 source and the 8-aminoquinoline moiety served as both directing group and integral part of C-N atropisomers, respectively. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere, generating the target axial heterobiaryls with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives, and the obtained 3-iminoisoindolinone products with a five membered N-heterocycle exhibit high atropostability. Additionally, the C-N axially chiral monophosphine backbones derived from this protocol possess the potential to become an alternative ligand platform.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaofang Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jianli Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
19
|
Zhang ZJ, Li SW, Oliveira JCA, Li Y, Chen X, Zhang SQ, Xu LC, Rogge T, Hong X, Ackermann L. Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C-N axial chirality via cobalt catalysis. Nat Commun 2023; 14:3149. [PMID: 37258542 DOI: 10.1038/s41467-023-38872-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Challenging enantio- and diastereoselective cobalt-catalyzed C-H alkylation has been realized by an innovative data-driven knowledge transfer strategy. Harnessing the statistics of a related transformation as the knowledge source, the designed machine learning (ML) model took advantage of delta learning and enabled accurate and extrapolative enantioselectivity predictions. Powered by the knowledge transfer model, the virtual screening of a broad scope of 360 chiral carboxylic acids led to the discovery of a new catalyst featuring an intriguing furyl moiety. Further experiments verified that the predicted chiral carboxylic acid can achieve excellent stereochemical control for the target C-H alkylation, which supported the expedient synthesis for a large library of substituted indoles with C-central and C-N axial chirality. The reported machine learning approach provides a powerful data engine to accelerate the discovery of molecular catalysis by harnessing the hidden value of the available structure-performance statistics.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Shu-Wen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Yanjun Li
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Li-Cheng Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China.
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing, 100190, PR China.
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, PR China.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| |
Collapse
|
20
|
Garcia-Roca A, Pérez-Soto R, Stoica G, Benet-Buchholz J, Maseras F, Kleij AW. Comprehensive Mechanistic Scenario for the Cu-Mediated Asymmetric Propargylic Sulfonylation Forging Tertiary Carbon Stereocenters. J Am Chem Soc 2023; 145:6442-6452. [PMID: 36883980 DOI: 10.1021/jacs.3c00188] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Metal-catalyzed propargylic transformations represent a powerful tool in organic synthesis to achieve new carbon-carbon and carbon-heteroatom bonds. However, detailed knowledge about the mechanistic intricacies related to the asymmetric formation of propargylic products featuring challenging heteroatom-substituted tertiary stereocenters is scarce and therefore provides an inspiring challenge. Here, we present a meticulous mechanistic analysis of a propargylic sulfonylation reaction promoted by a chiral Cu catalyst through a combination of experimental techniques and computational studies. Surprisingly, the enantio-discriminating step is not the coupling between the nucleophile and the propargylic precursor but rather the following proto-demetalation step, a scenario further validated by computing enantio-induction levels under other previously reported experimental conditions. A full mechanistic scenario for this propargylic substitution reaction is provided, including a catalyst pre-activation stage, a productive catalytic cycle, and an unanticipated non-linear effect at the Cu(I) oxidation level.
Collapse
Affiliation(s)
- Aleria Garcia-Roca
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Raúl Pérez-Soto
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Georgiana Stoica
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluïs Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
21
|
Garai B, Ali MR, Mandal R, Sundararaju B. Cp*Co(III)-Catalyzed C(8)-Nucleophilic Cascade Cyclization of Quinoline N-Oxide with 1,6-Enyne. Org Lett 2023; 25:2018-2023. [PMID: 36926924 DOI: 10.1021/acs.orglett.3c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The C(8)-selective nucleophilic cascade cyclization of quinoline N-oxide with easily derived 1,6-enyne from phenol derivatives is demonstrated. A variety of quinoline N-oxide and alkynes are discovered to be suitable for producing a library of quinoline N-oxide tethered cis-hydrobenzofurans with high yields and excellent functional group tolerance. The utility of the protocol has been accomplished by post-synthetic modification of the cyclized product. The mechanistic studies indicate a base-assisted internal electrophilic-type substitution (BIES)-type pathway for C-H bond activation, and electrospray ionization mass spectrometry (ESI-MS) analysis of the stoichiometric reaction confirmed the formation of a key five-membered cobaltacycle.
Collapse
Affiliation(s)
- Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Molla Rahamat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
22
|
Naksomboon K, Gómez-Bengoa E, Mehara J, Roithová J, Otten E, Fernández-Ibáñez MÁ. Mechanistic studies of the palladium-catalyzed S,O-ligand promoted C-H olefination of aromatic compounds. Chem Sci 2023; 14:2943-2953. [PMID: 36937590 PMCID: PMC10016329 DOI: 10.1039/d2sc06840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Pd-catalyzed C-H functionalization reactions of non-directed substrates have recently emerged as an attractive alternative to the use of directing groups. Key to the success of these transformations has been the discovery of new ligands capable of increasing both the reactivity of the inert C-H bond and the selectivity of the process. Among them, a new type of S,O-ligand has been shown to be highly efficient in promoting a variety of Pd-catalyzed C-H olefination reactions of non-directed arenes. Despite the success of this type of S,O-ligand, its role in the C-H functionalization processes is unknown. Herein, we describe a detailed mechanistic study focused on elucidating the role of the S,O-ligand in the Pd-catalyzed C-H olefination of non-directed arenes. For this purpose, several mechanistic tools, including isolation and characterization of reactive intermediates, NMR and kinetic studies, isotope effects and DFT calculations have been employed. The data from these experiments suggest that the C-H activation is the rate-determining step in both cases with and without the S,O-ligand. Furthermore, the results indicate that the S,O-ligand triggers the formation of more reactive Pd cationic species, which explains the observed acceleration of the reaction. Together, these studies shed light on the role of the S,O-ligand in promoting Pd-catalyzed C-H functionalization reactions.
Collapse
Affiliation(s)
- Kananat Naksomboon
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Enrique Gómez-Bengoa
- Department of Organic Chemistry I, Universidad País Vasco, UPV/EHU Apdo. 1072 20080 San Sebastian Spain
| | - Jaya Mehara
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - M Ángeles Fernández-Ibáñez
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
23
|
Yang D, Zhang X, Wang X, Si XJ, Wang J, Wei D, Song MP, Niu JL. Cobalt-Catalyzed Enantioselective C–H Annulation with Alkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xian Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinghua Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
24
|
Cattani S, Secchi A, Ackermann L, Cera G. Triazole-enabled, iron-catalysed linear/branched selective C-H alkylations with alkenes. Org Biomol Chem 2023; 21:1264-1269. [PMID: 36636890 DOI: 10.1039/d2ob02206k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Iron-catalysed C-H alkylations with alkenes were achieved on benzamides by N-triazole assistance. A notable switch of the regioselectivity from linear to branched was observed depending on the nature of the olefin employed. The approach allowed for the synthesis of a family of decorated benzamides with ample scope and high levels of chemo-, regio- and site-selectivity.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
25
|
Lin L, Zhang XJ, Xu X, Zhao Y, Shi Z. Ru 3 (CO) 12 -Catalyzed Modular Assembly of Hemilabile Ligands by C-H Activation of Phosphines with Isocyanates. Angew Chem Int Ed Engl 2023; 62:e202214584. [PMID: 36479789 DOI: 10.1002/anie.202214584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Hemilabile ligands have been applied extensively in transition metal catalysis, but preparations of these molecules typically require multistep synthesis. Here, modular assembly of diverse phosphine-amide ligands, including related axially chiral compounds, is first reported through ruthenium-catalyzed C-H activation of phosphines with isocyanate directed by phosphorus(III) atoms. High reactivity and regioselectivity can be obtained by using a Ru3 (CO)12 catalyst with a mono-N-protected amino acid ligand. This transformation significantly expands the pool of phosphine-amide ligands, some of which have shown excellent efficiency for asymmetric catalysis. More broadly, the discovery constitutes a proof of principle for facile construction of hemilabile ligands directly from the parent monodentate phosphines by C-H activation with ideal atom, step and redox economy. Several dinuclear ruthenium complexes were characterized by single-crystal X-ray diffraction analysis revealing the key mechanistic features of this transformation.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xue-Jun Zhang
- Department of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
26
|
Maayuri R, Gandeepan P. Manganese-catalyzed hydroarylation of multiple bonds. Org Biomol Chem 2023; 21:441-464. [PMID: 36541044 DOI: 10.1039/d2ob01674e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition metal-catalyzed C-H activation has become a promising strategy in organic synthesis due to its improved atom-, step- and resource economy. Considering the Earth's abundance, economic benefits, and low toxicity, 3d metal catalysts for C-H activation have received a significant focus. In particular, organometallic manganese-catalyzed C-H activation has proven to be versatile and suitable for a wide range of transformations such as C-H addition to π-components, arylation, alkylation, alkynylation, amination, and many more. Among them, manganese-catalyzed C-H addition to C-C and C-heteroatom multiple bonds exhibited unique and promising reactivity to construct a wide range of complex organic molecules. In this review, we highlight the developments in the field of manganese-catalyzed hydroarylation of multiple bonds via C-H activation with a range of applications until August 2022.
Collapse
Affiliation(s)
- Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| |
Collapse
|
27
|
Zhang WW, Wang Q, Zhang SZ, Zheng C, You SL. (SCp)Rhodium-Catalyzed Asymmetric Satoh-Miura Reaction for Building-up Axial Chirality: Counteranion-Directed Switching of Reaction Pathways. Angew Chem Int Ed Engl 2023; 62:e202214460. [PMID: 36383091 DOI: 10.1002/anie.202214460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
Satoh-Miura reaction is an important method for extending π-systems by forging multi-substituted benzene rings via double aryl C-H activation and annulation with alkynes. However, the development of highly enantioselective Satoh-Miura reaction remains rather challenging. Herein, we report an asymmetric Satoh-Miura reaction between 1-aryl benzo[h]isoquinolines and internal alkynes enabled by a SCpRh-catalyst. Judiciously choosing the counteranion of the Rh-catalyst is crucial for the desired reactivity over the competitive formation of azoniahelicenes. Detailed mechanistic studies support the proposal of counteranion-directed switching of reaction pathways in Rh-catalyzed asymmetric C-H activation.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Su-Zhen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
28
|
DFT Insights into the mechanism of Ru(II) Catalyzed C7-selective amidation of N-pivaloylindole. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Mahato SK, Zhang T, Chatani N. Ir(III)-Catalyzed C(sp 2)–H Amidation of 2-Aroylimidazoles with 2,2,2-Trichloroethoxycarbonyl Azide (TrocN 3). J Org Chem 2022; 87:16390-16398. [DOI: 10.1021/acs.joc.2c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanjit K. Mahato
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Chemistry At CreAgro (Discovery), PI Industries Ltd., Udaipur, Rajasthan 313001, India
| | - Tianhao Zhang
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Li K, Jiang H, Zeng M, Tan C, Chen Z, Yin G. Observing the Agostic Hydrogen in Pd(II)-Catalyzed Aromatic C–H Activation. J Org Chem 2022; 87:16592-16603. [DOI: 10.1021/acs.joc.2c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kaiwen Li
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hongwu Jiang
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Miao Zeng
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chen Tan
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
31
|
Sihag P, Jeganmohan M. Rhodium(III)-Catalyzed Redox-Neutral [4 + 1]-Annulation of Unactivated Alkenes with Sulfoxonium Ylides. J Org Chem 2022; 87:11073-11089. [PMID: 35946405 DOI: 10.1021/acs.joc.2c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology for redox-neutral [4 + 1] annulation of unactivated alkenes with sulfoxonium ylides leads to the synthesis of a diverse library of indanone compounds. The developed annulation reaction was found to be highly versatile due to its compatibility with various unactivated alkenes functionalized with various sensitive functional groups as well as substituted sulfoxonium ylides. Further, multiple transformations such as ring-expansion, reduction, aldol condensation, and Wittig reaction were carried out with indanones. Using this way, highly useful cyclic heterocycles such as indene, dihydroisocoumarin, and 1-indanilidene were prepared in a single step. A possible reaction mechanism was supported by deuterium labeling studies, competitive studies, and kinetic isotopic studies.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
32
|
Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Cobalt(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective Synthesis of Benzothiadiazine-1-oxides via C-H Activation. Angew Chem Int Ed Engl 2022; 61:e202205341. [PMID: 35491238 DOI: 10.1002/anie.202205341] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/11/2022]
Abstract
Among sulfoximine derivatives containing a chiral sulfur center, benzothiadiazine-1-oxides are important for applications in medicinal chemistry. Here, we report that the combination of an achiral cobalt(III) catalyst and a pseudo-C2 -symmetric H8 -binaphthyl chiral carboxylic acid enables the asymmetric synthesis of benzothiadiazine-1-oxides from sulfoximines and dioxazolones via enantioselective C-H bond cleavage. With the optimized protocol, benzothiadiazine-1-oxides with several functional groups can be accessed with high enantioselectivity.
Collapse
Affiliation(s)
- Yuki Hirata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshimi Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Luqing Lin
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
33
|
Yoshino T. Enantioselective C–H Functionalization Using High-Valent Group 9 Metal Catalysts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812
| |
Collapse
|
34
|
Yao QJ, Chen JH, Song H, Huang FR, Shi BF. Cobalt/Salox-Catalyzed Enantioselective C-H Functionalization of Arylphosphinamides. Angew Chem Int Ed Engl 2022; 61:e202202892. [PMID: 35385597 DOI: 10.1002/anie.202202892] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Previous methods on CoIII -catalyzed asymmetric C-H activation rely on the use of tailor-made cyclopentadienyl-ligated CoIII complexes, which require lengthy steps for the preparation. Herein, we report an unprecedented enantioselective C-H functionalization enabled by a simple cobalt/salicyloxazoline (Salox) catalysis. The chiral Salox ligands can be easily prepared in one step from salicylonitrile and chiral amino alcohols. A broad range of P-stereogenic compounds were synthesized in high yields with excellent enantioselectivities (45 examples, up to 99 % yield and >99 % ee). The isolation and characterization of several intermediates provided insights into the generation of active catalytic cobalt species, the action of Salox, and the mode of stereocontrol.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hong Song
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
35
|
|
36
|
Logeswaran R, Jeganmohan M. Transition‐Metal‐Catalyzed, Chelation‐Assisted C−H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Cobalt(III)/Chiral Carboxylic Acid‐Catalyzed Enantioselective Synthesis of Benzothiadiazine‐1‐oxides via C−H Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Hirata
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Yoshimi Kato
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Luqing Lin
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| |
Collapse
|
38
|
Kurihara T, Kojima M, Yoshino T, Matsunaga S. Achiral Cp*Rh(III)/Chiral Lewis Base Cooperative Catalysis for Enantioselective Cyclization via C–H Activation. J Am Chem Soc 2022; 144:7058-7065. [DOI: 10.1021/jacs.2c01223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Takumaru Kurihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
39
|
Yao QJ, Chen JH, Song H, Huang FR, Shi BF. Cobalt/Salox‐Catalyzed Enantioselective C–H Functionalization of Arylphosphinamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi-Jun Yao
- Zhejiang University Department of Chemistry CHINA
| | - Jia-Hao Chen
- Zhejiang University Department of Chemistry CHINA
| | - Hong Song
- Zhejiang University Department of Chemistry CHINA
| | | | - Bing-Feng Shi
- Zhejiang University Department of Chemistry 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
40
|
Ye M, Xu W. Enantioselective Cobalt-Catalyzed C–H Functionalization. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1801-2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractCo-catalyzed C–H functionalization has received great attention due to the high earth abundance, low biotoxicity, and unique reactivity of cobalt; enantioselective control of these reactions has been a formidable challenge. Various efficient strategies have recently been developed for enantioselective Co-catalyzed C–H functionalization, but there is no topical review of this field. Herein, we give a detailed summary of this rapidly growing field, highlighting critical progress, current challenges, and future trends.1 Introduction2 Enantioselective C–H Functionalization via Low-Valent Co Catalysis2.1 Chiral Diphosphines for Enantioselective Control2.2 Chiral Monophosphines or N-Heterocyclic Carbenes for Enantioselective Control3 Enantioselective C–H Functionalization via High-Valent Co Catalysis3.1 Chiral Acids for Enantioselective Control3.2 Chiral Cp Ligands for Enantioselective Control4 Conclusions and Outlook
Collapse
Affiliation(s)
- Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University
- Haihe Laboratory of Sustainable Chemical Transformations
| | - Weiwei Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University
| |
Collapse
|
41
|
Xiong M, Shu Y, Tang J, Yang F, Xing D. Iridium(I)-Catalyzed Isoindolinone-Directed Branched-Selective Aromatic C-H Alkylation with Simple Alkenes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061923. [PMID: 35335286 PMCID: PMC8954050 DOI: 10.3390/molecules27061923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
We report an iridium(I)-catalyzed branched-selective C–H alkylation of N-arylisoindolinones with simple alkenes as the alkylating agents. The amide carbonyl group of the isoindolinone motif acts as the directing group to assist the ortho C–H activation of the N-aryl ring. With this atom-economic and highly branched-selective protocol, an array of biologically relevant N-arylisoindolinones were obtained in good yields. Asymmetric control was achieved with up to 87:13 er when a BiPhePhos-like chiral ligand was employed.
Collapse
|
42
|
Teng S, Zhou JS. Metal-catalyzed asymmetric heteroarylation of alkenes: diverse activation mechanisms. Chem Soc Rev 2022; 51:1592-1607. [PMID: 35166742 DOI: 10.1039/d1cs00426c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review summarizes the state-of-the-art in transition metal-catalyzed asymmetric alkylation of heteroarenes using alkenes (covering literature from 2000 to late 2021). Based on elementary reactions on metals for substrate activation, these reactions are broadly classified in several categories: (A) concerted oxidative addition of heteroaryl C-H bonds on rhodium(I) and iridium(I), (B) ligand-to-ligand hydrogen transfer (LLHT) on low-valent 3d metal complexes of nickel and cobalt, (C) different ways for deprotonation of heteroaryl C-H bonds by late transition metal complexes, especially palladium, including electrophilic aromatic substitution and a related mechanism, base-assisted intramolecular electrophilic substitution, concerted and nonconcerted metalation deprotonation, (D) σ-bond metathesis by d0 early transition metal complexes, (E) electrophilic activation of olefins by Pd(II), Pt(II) and Au(I), and (F) metal hydride insertion of aryl olefins and dienes. The demand to achieve enantiocontrol in the heteroarylation reactions has also driven innovation in chiral ancillary ligands, exemplified by extremely bulky, chiral N-heterocyclic carbenes for nickel catalysts, bulky monodentate oxazolines for Wacker-type reactions and chiral cyclopentadienyl ligands for half-sandwich complexes of scandium.
Collapse
Affiliation(s)
- Shenghan Teng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
43
|
Tahara K, Takezaki S, Ozawa Y, Abe M. Synthesis of an Organometallic Alkyl-Co(III) Complex with Amidoquinoline Directing Groups via C(sp3)-H Activation and its UV-vis/NMR Spectroscopic, Crystallographic, DFT, and Electrochemical Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shun Takezaki
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
44
|
Liu D, Xu Z, Liu M, Fu Y. Mechanistic insights into the rhodium-catalyzed aryl C–H carboxylation. Org Chem Front 2022. [DOI: 10.1039/d1qo01560e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have conducted an in-depth theoretical exploration of the details for direct C–H bond activation and lactonization of 2-arylphenols.
Collapse
Affiliation(s)
- DeGuang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - ZheYuan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - MingQiang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
45
|
Maji K, Thorve PR, Rai P, Maji B. Enantioselective C–H bond functionalization of aromatic ketones with 1,6-enynes via photoredox/cobalt dual catalysis. Chem Commun (Camb) 2022; 58:9516-9519. [DOI: 10.1039/d2cc03595b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective ortho-C(sp2)–H functionalization of ketones with 1,6-enynes is demonstrated via the photoredox/cobalt dual catalysis. The method exhibits high yields, functional group tolerance, and selectivity. Mechanistic studies suggested the operation...
Collapse
|
46
|
Britton L, Docherty JH, Sklyaruk J, Cooney J, Nichol GS, Dominey AP, Thomas SP. Iron-catalysed alkene and heteroarene H/D exchange by reversible protonation of iron-hydride intermediates. Chem Sci 2022; 13:10291-10298. [PMID: 36277640 PMCID: PMC9473494 DOI: 10.1039/d2sc03802a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
The iron-catalysed C(sp2)–H bond H/D exchange reaction using CD3OD is reported for both heterocycles and alkenes. Characterisation of the key C–H metallation intermediates provided evidence for reversible protonation of the iron hydride catalyst.
Collapse
Affiliation(s)
- Luke Britton
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Jamie H. Docherty
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Jan Sklyaruk
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Jessica Cooney
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | | | - Stephen P. Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| |
Collapse
|
47
|
Ramachandran K, Anbarasan P. Cp*Co III-catalyzed C2-alkylation of indole derivatives with substituted cyclopropanols. Chem Commun (Camb) 2022; 58:10536-10539. [DOI: 10.1039/d2cc03719j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and efficient Cp*CoIII-catalyzed C2-alkylation of N-pyridylindoles has been achieved utilizing cyclopropanols as an alkylating reagent.
Collapse
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India
| |
Collapse
|
48
|
Chandra D, Manisha, Sharma U. Recent Advances in the High-Valent Cobalt-Catalyzed C-H Functionalization of N-Heterocycles. CHEM REC 2021; 22:e202100271. [PMID: 34932274 DOI: 10.1002/tcr.202100271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Indexed: 12/18/2022]
Abstract
Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
49
|
Gao P, Zhang X, Zheng QZ. Cobalt(III)-catalyzed C-H amidation of N, N-dialkyl thiobenzamides by sulfur coordination. Org Biomol Chem 2021; 19:10332-10336. [PMID: 34817486 DOI: 10.1039/d1ob02034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient inexpensive cobalt(III)-catalyzed intermolecular amidation of N,N-dialkyl thiobenzamides with 1,4,2-dioxazol-5-ones via C-H bond activation is described. The reaction proceeds with high functional group tolerance under external oxidant free conditions, providing a straightforward approach for the direct modification of thioamide derivatives, which are prevalent organic motifs found in vital biological and pharmaceutical molecules.
Collapse
Affiliation(s)
- Pengpeng Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiaohui Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Qing-Zhong Zheng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. .,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China
| |
Collapse
|
50
|
Yamazaki K, Rej S, Ano Y, Chatani N. An Unusual Perpendicular Metallacycle Intermediate is the Origin of Branch Selectivity in the Rh(II)-Catalyzed C–H Alkylation of Aryl Sulfonamides with Vinylsilanes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| |
Collapse
|